1, 2, 3 please help
1. If f(x) = 5x¹ 6x² + 4x - 2, w find f'(x) and f'(2). STATE all rules used. 2. If f(x) = xºe, find f'(x) and f'(1). STATE all rules used. 3. Find x²-x-12 lim x3 x² + 8x + 15 (No points for using

Answers

Answer 1

If function f(x) = 5x¹ 6x² + 4x - 2, then  f'(x) = 15x^2 + 12x + 4 and f'(2) = 88.

To find f'(x), we can use the power rule and the sum rule for differentiation.

The power rule states that if f(x) = x^n, then f'(x) = nx^(n-1).

The sum rule states that if f(x) = g(x) + h(x), then f'(x) = g'(x) + h'(x).

Applying the power rule and sum rule to f(x) = 5x^3 + 6x^2 + 4x - 2, we get:

f'(x) = 35x^(3-1) + 26x^(2-1) + 1*4x^(1-1)

= 15x^2 + 12x + 4

To find f'(2), we substitute x = 2 into f'(x):

f'(2) = 15(2)^2 + 12(2) + 4

= 60 + 24 + 4

= 88

Therefore, f'(x) = 15x^2 + 12x + 4, and f'(2) = 88.

To find f'(x), we can use the product rule and the derivative of the exponential function e^x.

The product rule states that if f(x) = g(x)h(x), then f'(x) = g'(x)h(x) + g(x)h'(x).

Applying the product rule and the derivative of e^x to f(x) = x^0 * e^x, we get:

f'(x) = 0 * e^x + x^0 * e^x

= e^x + 1

To find f'(1), we substitute x = 1 into f'(x):

f'(1) = e^1 + 1

= e + 1

Therefore, f'(x) = e^x + 1, and f'(1) = e + 1.

To find the limit lim(x->3) (x^2 - x - 12) / (x^3 + 8x + 15), we can directly substitute x = 3 into the expression:

(x^2 - x - 12) / (x^3 + 8x + 15) = (3^2 - 3 - 12) / (3^3 + 8*3 + 15)

= (9 - 3 - 12) / (27 + 24 + 15)

= (-6) / (66)

= -1/11

Therefore, the limit is -1/11.

To learn more about “limit” refer to the https://brainly.com/question/23935467

#SPJ11


Related Questions

The Great Pyramid of King Khufu was built of limestone in Egypt over a 20-year time period from 2580 BC to 2550 BC. Its base is a square with side length 755 ft and its height when built was 481 ft. (It was the talle 3800 years) The density of the limestone is about 150/². (4) Estimate the total work done in building the pyramid. (Round your answer to three decimal places) 20¹2-b (b) If each laborer worked 10 hours a day for 20 years, for 30 days a year and did 200 m-lb/h of work in lifting the limestone blocks into place, about how many taborars were needed to construct the pyrami taborars stone in Egypt over a 20-year time period from 2580 BC to 2560 BC. Its base is a square with side length 736 it and its height when built was 481 ft. (It was the tallest manmade structure in the world for more than = 150 m² g the pyramid. (Round your answer to three decimal places) for 20 years, for 340 days a year and did 200 ft- of work in trong the limestone blocks into place, about how many laborers were needed to construct the pyramid?

Answers

To estimate the total work done in building the pyramid, we need to calculate the work done for each limestone block and then sum up the work for all the blocks.

The work done to lift a single limestone block can be calculated using the formula:

Work = Force x Distance

The force can be calculated by multiplying the weight of the block (mass x gravity) by the density of the limestone. The distance is equal to the height of the pyramid.

Given:

Side length of the base = 755 ft

Height of the pyramid = 481 ft

Density of limestone = 150 lb/ft^3

First, let's calculate the weight of a single limestone block:

Weight = mass x gravity

The mass can be calculated by multiplying the volume of the block by its density. The volume of the block is equal to the area of the base multiplied by the height.

Learn more about pyramid here;

https://brainly.com/question/14677373

#SPJ11

Find the absolute maximum and absolute minimum values off on the given interval. f(x) = x3 - 9x2 + 4, (-4, 7]

Answers

The absolute maximum and absolute minimum values of the function f(x) = x³ - 9x² + 4 on the interval (-4, 7] need to be determined.

The first step in finding the absolute maximum and minimum values is to find the critical points of the function within the given interval. Critical points occur where the derivative of the function is either zero or undefined. To find the critical points, we take the derivative of f(x) and set it equal to zero:

f'(x) = 3x² - 18x = 0

Solving this equation, we find two critical points: x = 0 and x = 6.

Next, we evaluate the function f(x) at the endpoints of the interval (-4, 7]. Plug in x = -4 and x = 7 into the function:

f(-4) = (-4)³ - 9(-4)² + 4 = -16 + 144 + 4 = 132

f(7) = 7³ - 9(7)² + 4 = 343 - 441 + 4 = -94

Finally, we evaluate the function at the critical points:

f(0) = 0³ - 9(0)² + 4 = 4

f(6) = 6³ - 9(6)² + 4 = 216 - 324 + 4 = -104

From these calculations, we find that the absolute maximum value of f(x) on the interval (-4, 7] is 132, which occurs at x = -4, and the absolute minimum value is -104, which occurs at x = 6.

To learn more about  absolute maximum and minimum click here : brainly.com/question/28767824

#SPJ11

Jamel uses the two equations to solve the system algebraically. Since both equations start with h=, he can set the expressions 18 - s and 12.5 - 0.5s equal to one another.

`h = 18 - s `

`h = 12.5 - 0.5s`

`18 - s= 12.5 - 0.5s`

Then use one of the original equations and replace s with number of shirts to find the

Answers

The solution to the system of equations is s = 11 and h = 7.

To solve the system of equations algebraically, we can start with the given equations:

Equation 1: h = 18 - s

Equation 2: h = 12.5 - 0.5s

Since both equations start with "h =", we can set the expressions on the right side of the equations equal to each other:

18 - s = 12.5 - 0.5s

To solve for s, we can simplify and solve for s:

18 - 12.5 = -0.5s + s

5.5 = 0.5s

To isolate s, we can divide both sides of the equation by 0.5:

5.5/0.5 = s

11 = s

Now that we have found the value of s, we can substitute it back into one of the original equations to solve for h.

Let's use Equation 1:

h = 18 - s

h = 18 - 11

h = 7

Therefore, the solution to the system of equations is s = 11 and h = 7.

For similar question on equations.

https://brainly.com/question/22688504  

#SPJ8

- Find the area A of the region that is bounded between the curve f(x) = ln (2) and the line g(x) = -32 +4 over the interval [1, 4]. e Enter exact answer. Provide your answer below: A = units?

Answers

To find the area bounded between the curve f(x) = ln(2) and the line g(x) = -32 + 4 over the interval [1, 4], we need to calculate the definite integral of the difference between the two functions over the given interval.

The function f(x) = ln(2) represents a horizontal line at the height of ln(2), while the function g(x) = -32 + 4 represents a linear function with a slope of 4 and a y-intercept of -32.

First, let's find the points where the two functions intersect by setting them equal to each other:

ln(2) = -32 + 4

To solve this equation, we can isolate the variable:

ln(2) + 32 = 4

ln(2) = 4 - 32

ln(2) = -28

Now we can find the area by calculating the definite integral of the difference between the two functions from x = 1 to x = 4:

A = ∫[1,4] (f(x) - g(x)) dx

Since f(x) = ln(2), we have:

A = ∫[1,4] (ln(2) - g(x)) dx

Substituting g(x) = -32 + 4 = -28, we get:

A = ∫[1,4] (ln(2) - (-28)) dx

A = ∫[1,4] (ln(2) + 28) dx

Now we can integrate the constant term:

A = [x(ln(2) + 28)]|[1,4]

A = (4(ln(2) + 28)) - (1(ln(2) + 28))

A = 4ln(2) + 112 - ln(2) - 28

A = 3ln(2) + 84

Therefore, the exact area A bounded between the curve f(x) = ln(2) and the line g(x) = -32 + 4 over the interval [1, 4] is 3ln(2) + 84 square units.

To learn more about area visit:

brainly.com/question/13252576

#SPJ11

Use a change of variables or the table to evaluate the following definite integral. 1 Sex³ ( 9x8 (1-x) dx 0 Click to view the table of general integration formulas. 1 √ 9x³ ( 1 − xº) dx = □ (

Answers

To evaluate the definite integral [tex]\int\limits^1_0 {{\sqrt{(9x^{3}(1 - x))}} } \, dx[/tex], we can use a change of variables or refer to the table of general integration formulas.

By recognizing the integrand as a standard form, we can directly substitute the values into the appropriate formula and evaluate the integral.

The definite integral[tex]\int\limits^1_0 {{\sqrt{(9x^{3}(1 - x))}} } \, dx[/tex] represents the area under the curve of the function [tex]{\sqrt{(9x^{3}(1 - x))}}[/tex] between the limits of 0 and 1. To evaluate this integral, we can use a change of variables or refer to the table of general integration formulas.

By recognizing that the integrand, [tex]{\sqrt{(9x^{3}(1 - x))}}[/tex], is in the form of a standard integral formula, specifically the formula for the integral of [tex]{\sqrt{(9x^{3}(1 - x))}}[/tex], we can directly substitute the values into the formula. The integral formula for [tex]{\sqrt{(9x^{3}(1 - x))}}[/tex] is:

[tex]\int {\sqrt{(9x^{3}(1 - x))}} \, dx[/tex] =[tex](2/15) * (2x^3 - 3x^4)^{3/2} + C[/tex]

Applying the limits of integration, we have:

[tex]\int\limits^1_0 {{\sqrt{(9x^{3}(1 - x))}} } \, dx[/tex] =[tex](2/15) * [(2(1)^3 - 3(1)^4)^{3/2} - (2(0)^3 - 3(0)^4)^{3/2}][/tex]

Simplifying further, we get:

[tex]\int\limits^1_0 {{\sqrt{(9x^{3}(1 - x))}} } \, dx[/tex]= [tex](2/15) * [(2 - 3)^{3/2} - (0 - 0)^{3/2}][/tex]

Since (2 - 3) is -1 and any power of 0 is 0, the integral evaluates to:

[tex]\int\limits^1_0 {{\sqrt{(9x^{3}(1 - x))}} } \, dx[/tex] = [tex](2/15) * [(-1)^{3/2} - 0^{3/2}][/tex]

However, [tex](-1)^{3/2}[/tex] is not defined in the real number system, as it involves taking the square root of a negative number. Therefore, the definite integral [tex]\int\limits^1_0 {{\sqrt{(9x^{3}(1 - x))}} } \, dx[/tex] dx does not exist.

To learn more about definite integral visit:

https://brainly.com/question/31061185

#SPJ11

Suppose you show up at a bus stop to wait for a bus that comes by once every 15 minutes. You do not know what time the bus came by last. The arrival time of the next bus is a uniform distribution with c=0 and d=15 measured in minutes. Find the probability that you will wait 5 minutes for the next bus. That is, find P(X=5) A.7.5 B.0 C.0.667 D.0.333

Answers

The probability of waiting exactly 5 minutes for the next bus, given a uniform distribution with a range of 0 to 15 minutes, is 1/15 that is option C.

Since the arrival time of the next bus is uniformly distributed between 0 and 15 minutes, we can find the probability of waiting exactly 5 minutes for the next bus by calculating the probability density function (PDF) at that specific point.

In a uniform distribution, the probability density function is constant within the range of possible values. In this case, the range is from 0 to 15 minutes, and the PDF is given by:

f(x) = 1 / (d - c)

where c is the lower bound (0 minutes) and d is the upper bound (15 minutes).

Substituting the values, we have:

f(x) = 1 / (15 - 0) = 1/15

Therefore, the probability of waiting exactly 5 minutes for the next bus is equal to the value of the PDF at x = 5, which is:

P(X = 5) = f(5) = 1/15

To know more about uniform distribution,

https://brainly.com/question/28012686

#SPJ11

12. What is the length of the unknown leg of the right triangle rounded to the nearest tenth of a foot? 2 ft 9 ft 7-1 Understand the Pythagorean Theorem 385​

Answers

Based on the Pythagorean Theorem, the length of the unknown leg of the right triangle, rounded to the nearest tenth of a foot, is: 8.1 ft.

How to Find the Unknown Length of a Side of a Right Triangle Using the Pythagorean Theorem?

In order to find the unknown side length of the right triangle that is shown in the image attached below, we would apply the Pythagorean Theorem, which states that:

c² = a² + b², where the longest side is represented as c.

Therefore, we have:

Unknown length = √(9² - 2²)

Unknown length = 8.1 ft (nearest tenth).

Learn more about Pythagorean Theorem on:

https://brainly.com/question/343682

#SPJ1

(1 point) Evaluate the indefinite integral. (use C for the constant of integration.) 28 دروني | dc (1 point) Evaluate the indefinite integral using Substitution. (use C for the constant of inte

Answers

(1 point) The indefinite integral of 28 دروني with respect to dc can be evaluated as follows:∫28 دروني dc = 28 ∫دروني dc

Here, ∫ represents the integral symbol and دروني is a term that seems to be written in a language other than English, so its meaning is unclear. Assuming دروني is a constant, the integral simplifies to:∫28 دروني dc = 28 دروني ∫dc = 28 دروني(c) + C

Therefore, the indefinite integral of 28 دروني dc is 28 دروني(c) + C, where C is the constant of integration. (1 point) To evaluate the indefinite integral using substitution, we need a clearer understanding of the function or expression. However, based on the given information, we can provide a general outline of the substitution method. Identify a suitable substitution: Look for a function or expression within the integrand that can be replaced by a single variable. Choose a substitution that simplifies the integral.

Compute the derivative: Differentiate the chosen substitution variable with respect to the original variable. Substitute variables: Replace the function or expression and the differential in the integral with the substitution variable and its derivative. Simplify and integrate: Simplify the integral using the new variable and perform the integration. Apply the appropriate rules of integration, such as the power rule or trigonometric identities. Reverse the substitution: Replace the substitution variable with the original function or expression. Note: Without specific details about the integrand or the substitution variable, it is not possible to provide a detailed solution.

To learn more about substitution method click here:

brainly.com/question/22340165

#SPJ11

COMPLETE QUESTION-  (1 point) Evaluate the indefinite integral. (use C for the constant of integration.) 28 دروني | integrate (x ^ 8)/((x ^ 9 - 4) ^ 9) dx =  .  dc (1 point) Evaluate the indefinite integral using Substitution. (use C for the constant of integration.) integrate (- 7 * ln(x))/x dx = .

find the derivative
2-3x (c) [8] y = x+sinx (d) [8] f(x) = (x2 – 2)4(3x + 2)5 (Simplify your answer)

Answers

(a) The derivative of y = 2 - 3x is -3.

The derivative of a constant term (2) is 0, and the derivative of -3x is -3.

(b) The derivative of y = x + sin(x) is 1 + cos(x).

The derivative of x is 1, and the derivative of sin(x) is cos(x) by the chain rule.

[tex](c) The derivative of f(x) = (x^2 - 2)^4(3x + 2)^5 is 4(x^2 - 2)^3(2x)(3x + 2)^5 + 5(x^2 - 2)^4(3x + 2)^4(3).[/tex]

The derivative of (x^2 - 2)^4 is 4(x^2 - 2)^3(2x) by the chain rule, and the derivative of (3x + 2)^5 is 5(3x + 2)^4(3) by the chain rule.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11








3.1 Evaluate the following integral by first reversing the order of integration. cos(y2) dy dx 2x SL*() 3.2 Use spherical coordinates to evaluate the integral V9-x? 9-x2-y2 Vx2 + y2 + z2 dz dy dx 19-x

Answers

3.1 To reverse the order of integration, we need to express the limits of integration in terms of the other variable. So, we have:

∫∫R cos(y^2) dy dx

where R is the region bounded by x = 0, x = 2, y = 0, and y = x/2.

Now, we can express the limits of integration with respect to y as follows:

∫0^2 ∫0^2y cos(y^2) dx dy

And, integrating this expression with respect to x, we get:

3.1 The integral ∫∫ cos(y^2) dy dx over the region 2x ≤ y ≤ 3.2 can be evaluated by reversing the order of integration.

2x ≤ y ≤ 3.2 implies x ≤ y/2 ≤ 1.6. Reversing the order of integration, the integral becomes ∫∫ cos(y^2) dx dy, where the limits of integration are now y/2 ≤ x ≤ 1.6 and 2x ≤ y ≤ 3.2.

To evaluate the integral, we first integrate with respect to x, keeping y as a constant. The integral of cos(y^2) with respect to x is x cos(y^2). Next, we integrate this expression with respect to y, using the limits 2x ≤ y ≤ 3.2.

∫∫ cos(y^2) dx dy = ∫ (∫ cos(y^2) dx) dy = ∫ (x cos(y^2))|2x to 3.2 dy.

Now we evaluate this expression with the limits 2x and 3.2 substituted into the integral.

∫ (x cos(y^2))|2x to 3.2 dy = [x cos(y^2)]|2x to 3.2 = (3.2 cos((2x)^2)) - (2x cos((2x)^2)).

This is the final result of evaluating the integral by reversing the order of integration.

3.2 The integral ∫∫∫ (9 - x) dV over the region V: x^2 + y^2 + z^2 ≤ 9 can be evaluated using spherical coordinates.

In spherical coordinates, the region V corresponds to 0 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π, and 0 ≤ φ ≤ π/2. The integrand (9 - x) can be expressed in terms of spherical coordinates as (9 - ρ sin φ cos θ).

The integral then becomes ∫∫∫ (9 - ρ sin φ cos θ) ρ^2 sin φ dρ dθ dφ, with the limits of integration mentioned above. To evaluate this integral, we first integrate with respect to ρ, then θ, and finally φ. The limits for each variable are as mentioned above.

∫∫∫ (9 - ρ sin φ cos θ) ρ^2 sin φ dρ dθ dφ = ∫[0 to π/2] ∫[0 to 2π] ∫[0 to 3] (9ρ^2 sin φ - ρ^3 sin φ cos θ) dρ dθ dφ.

Evaluating this triple integral will give the numerical result of the integral over the specified region in spherical coordinates.

Learn more about spherical coordinates here: brainly.com/question/31471419

#SPJ11

For a temporary life annuity-immediate on (30), you are given: (a) The annuity has 20 certain payments. (b) The annuity will not make more than 40 payments. (c) Mortality follows the Standard Ultimate Life Table. (d) i = 0.05 Determine the actuarial present value of this annuity.

Answers

The actuarial present value of a temporary life annuity-immediate can be calculated using the life table and an assumed interest rate. In this case, the annuity is for a person aged 30 and has 20 certain payments. We are also given that the annuity will not make more than 40 payments and that mortality follows the Standard Ultimate Life Table. The interest rate is given as 0.05 (or 5%).

To determine the actuarial present value, we need to calculate the present value of each payment and sum them up. The present value of each payment is calculated by multiplying the payment amount by the present value factor, which is derived from the life table and the interest rate. The present value factor represents the present value of receiving a payment at each age, considering the probability of survival.

The detailed calculation requires specific mortality and interest rate tables, as well as formulas for present value factors. Without this information, it is not possible to provide a specific answer. I recommend consulting actuarial resources or using actuarial software to perform the calculation accurately.

Learn more about probability here: brainly.com/question/30034780

#SPJ11

What is the value of sin k? Round to 3 decimal places.
105
K
E
88
137
F
LL

Answers

The value of sink in triangle is 0.64.

KEF is a right angled triangle.

We have to find the value of sink.

From the triangle , KE is 105, EF is 88 and KF is 137.

We know that sine function is a ratio of opposite side and hypotenuse.

The opposite side of k is EF which is 88.

Hypotenuse us 137.

Sink=88/137

=0.64

Hence, the value of sink in triangle is 0.64.

To learn more on trigonometry click:

https://brainly.com/question/25122835

#SPJ1

For a mass-spring oscillator, Newton's second law implies that the position yct) of the mass is governed by the second order diferential equation myo+by'()ky)=0 (a) Find the equation of motion for the

Answers

The equation of motion for a mass-spring oscillator can be derived from Newton's second law,The solution to this equation represents the position function y(t) that satisfies the given initial conditions and describes the motion of the oscillator.

which states that the net force acting on an object is equal to its mass multiplied by its acceleration.In the case of a mass-spring oscillator, the net force is given by the sum of the force exerted by the spring and any external forces acting on the mass. The force exerted by the spring can be described by Hooke's Law, which states that the force is proportional to the displacement from the equilibrium position.

Let's consider a mass-spring oscillator with mass m, spring constant k, and damping coefficient b.

The equation of motion for the mass-spring oscillator is:

my''(t) + by'(t) + ky(t) = 0

Here, y(t) represents the displacement of the mass from its equilibrium position at time t, y'(t) represents the velocity of the mass at time t, and y''(t) represents the acceleration of the mass at time t.

This second-order linear homogeneous differential equation describes the motion of the mass-spring oscillator.

To know more about oscillator click the link below:

brainly.com/question/30885577

#SPJ11

1. What is the farthest point on the sphere 2² + y2 + z2 = 16 from the point (2, 2, 1) ? ) 8 (a) 8 3 4 3 3 (b) ( 8 8 4 3'3'3 8 (c) 8 4 3'3 3 8 (d) 8 3 3) 3 (e) ) 8 8 4 3'3'3

Answers

The farthest point on the sphere 2² + y² + z² = 16 from the point (2, 2, 1) is (8/3, 8/3, 4/3). Among the given options, the closest match to the coordinates (8/3, 8/3, 4/3) is option (c) 8 4 3'3 3 8.

To find the farthest point on the sphere 2² + y² + z² = 16 from the point (2, 2, 1), we can use the distance formula. The farthest point will have the maximum distance from the given point.

The distance between two points (x₁, y₁, z₁) and (x₂, y₂, z₂) in 3D space is given by the formula:

distance = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)

In this case, the given point is (2, 2, 1), and we need to find the farthest point on the sphere. Let's assume the coordinates of the farthest point are (x, y, z).

Substituting the values into the distance formula, we have:

distance = √((x - 2)² + (y - 2)² + (z - 1)²)

To find the farthest point, we want to maximize the distance. However, since the equation of the sphere 2² + y² + z² = 16 represents a spherical surface, the maximum distance will be along the radius of the sphere.

The equation of the sphere can be rewritten as:

x² + y² + z² = 4

Since the center of the sphere is at (0, 0, 0), the point (2, 2, 1) is not on the surface of the sphere.

Therefore, the farthest point on the sphere from (2, 2, 1) will lie on the line connecting the center of the sphere to the point (2, 2, 1).

The coordinates of the farthest point can be found by scaling the direction vector of the line connecting the center to (2, 2, 1) to have a length of 4 (radius of the sphere).

Scaling the direction vector (2, 2, 1) gives us:

(2, 2, 1) * (4/√(2² + 2² + 1²))

Simplifying, we get:

(2, 2, 1) * (4/√9) = (2, 2, 1) * (4/3)

Multiplying the scalars with the vector components, we get:

(8/3, 8/3, 4/3)

The sphere's farthest point from the point (2, 2, 1) is (8/3, 8/3, 4/3), which is determined by the formula 22 + y2 + z2 = 16.

Option (c) 8 4 3'3 3 8 is the option that matches the coordinates (8/3, 8/3, and 3/3) the most closely.

To know more about sphere refer here:

https://brainly.com/question/12390313#

#SPJ11

number 5 please
For Problems 1-13, find and classify, if possible, all the relative extreme points and saddle points. - 3 1. f(x, y) = x2 + y2 + 15x - 8y + 6 2 2. f(x, y) = 3x2 - y2 – 12x + 16y + 21 5 3. f(x, y) =

Answers

We have to find and classify all the relative extreme points and saddle points for the function f(x,y) = -2x² + 3xy - 3y² + 4x - 3y + 5. There are different methods to find and classify the relative extrema and saddle points of a multivariable function, but we will use the method of finding the critical points and analyzing the second partial derivatives using the second partial derivative test.

The first-order partial derivatives of the function, equate them to zero and solve the system of equations to find the critical points. Analyze the second partial derivatives of the function at each critical point using the Hessian matrix, and classify the nature of each critical point as a local maximum, local minimum, or saddle point.

1. First-order partial derivatives fx(x,y) = -4x + 3y + 4fy(x,y) = 3x - 6y - 3. Setting these equal to zero and solving the system of equations, we get-4x + 3y + 4 = 03x - 6y - 3 = 0. Solving for x and y, we getx = 3/2 and y = -4/3.

So, the only critical point is (3/2,-4/3).

2. Second partial derivativesfxx(x,y) = -4fxy(x,y) = 3fyx(x,y) = 3fyy(x,y) = -6.

Substituting the values of x and y for the critical point, we getfxx(3/2,-4/3) = -4fxy(3/2,-4/3) = 3fyx(3/2,-4/3) = 3fyy(3/2,-4/3) = -6.

Therefore, the Hessian matrix isH(x,y) = \[\begin{bmatrix}f_{xx} & f_{xy} \\ f_{yx} & f_{yy}\end{bmatrix}\]H(3/2,-4/3) = \[\begin{bmatrix}-4 & 3 \\ 3 & -6\end{bmatrix}\].

The determinant of H is (-4)*(-6) - 3*3 = 9 < 0, so the critical point (3/2,-4/3) is a saddle point.Answer: Saddle point.

Learn more about Hessian matrix here ;

https://brainly.com/question/32547012

#SPJ11

Evaluate the integral using integration by parts. Do not use any other method. You must show your work. Vu x sin(x) dx

Answers

Integration by parts method is a method of integration that involves choosing one part of the function as the “first” function and the remaining part of the function as the “second” function.

The integral of the product of these functions can be calculated using the integration by parts formula.

Let us evaluate the integral:

∫v(x)sin(x)dx

Let us assume that

u(x) = sin(x), then,

dv(x)/dx = v(x) = v = x

To integrate the above integral using the integration by parts formula:

∫u(x)dv(x) = u(x)v - ∫v(x)du(x)/dx dx

Thus, substituting the value of u(x) and dv(x), we get:

∫sin(x)x dx = sin(x) ∫x dx - ∫ (dx/dx) (x cos(x)) dx

= -x cos(x) + sin(x) + C,

where C is the constant of integration.

Therefore, the integral using integration by parts is given by-

∫x cos(x) dx = x sin(x) - ∫sin(x) dx= -x cos(x) + sin(x) + C,

where C is the constant of integration.

Final Answer: Therefore, the integral using integration by parts is given by- ∫x cos(x) dx = -x cos(x) + sin(x) + C.

To know more about Integration

https://brainly.com/question/30215870

#SPJ11







-3.2 Let f(2)= Evaluate f'(x) at x = 7. sin(2) + cos(x) f(1) = ' 1

Answers

To find f'(x) at x = 7, we first need to determine the function f(x) and its derivative. Given that f(2) = -3.2, we can find the function f(x) by integrating its derivative. Then, by evaluating the derivative of f(x) at x = 7, we can determine f'(x) at that point.

In order to find f(x), we need more information or an equation that relates f(x) to its derivative. Without additional details, it is not possible to determine the specific form of f(x) and calculate its derivative at x = 7.

As for the second statement, "f(1) = ' 1," the symbol "'" typically represents the first derivative of a function. However, the equation "f(1) = ' 1" is not a valid mathematical expression.

Without more information or an equation relating f(x) to its derivative, it is not possible to determine f'(x) at x = 7 or the specific form of f(x). The second statement, "f(1) = ' 1," does not provide a valid mathematical expression.

Learn more about derivative here: brainly.com/question/25324584

#SPJ11




Find the local maxima, local minima, and saddle points, if any, for the function z = 2x3 + 3x²y + 4y. (Use symbolic notation and fractions where needed. Give your answer as point coordinates in the f

Answers

.....................................................

The function [tex]z = 2x^3 + 3x^{2y} + 4y[/tex] does not have any local maxima, local minima, or saddle points.

To find the local maxima, local minima, and saddle points for the function [tex]z = 2x^3 + 3x^{2y} + 4y[/tex], we need to find the critical points and analyze the second partial derivatives.

Let's start by finding the critical points by taking the partial derivatives with respect to x and y and setting them equal to zero:

[tex]\partial z/\partial x = 6x^2 + 6xy = 0[/tex]   (Equation 1)

[tex]\partial z/\partial y = 3x^2 + 4 = 0[/tex]     (Equation 2)

From Equation 2, we can solve for x:

[tex]3x^2 = -4\\x^2 = -4/3[/tex]

The equation has no real solutions for x, which means there are no critical points in the x-direction.

Now, let's analyze the second partial derivatives to determine the nature of the critical points. We calculate the second partial derivatives:

[tex]\partial^2z/\partial x^2 = 12x + 6y\\\partial^2z/\partial x \partial y = 6x\\\partial^2z/\partial y^2 = 0[/tex](constant)

To determine the nature of the critical points, we need to evaluate the second partial derivatives at the critical points. Since we have no critical points in the x-direction, there are no local maxima, local minima, or saddle points for x.

Therefore, the function [tex]z = 2x^3 + 3x^{2y} + 4y[/tex] does not have any local maxima, local minima, or saddle points.

To learn more about local maxima from the given link

https://brainly.com/question/29167373

#SPJ4


break down your solution into steps
Assess the differentiability of the following function. State value(s) of x where it is NOT differentiable, and state why. |(x2 – 2x + 1) f(x) = (x2 – 2x)", ) = x + 1

Answers

The function is not differentiable at due to the sharp corner or "cusp" at that point. At, the derivative does not exist since the function changes direction abruptly.

What is the differentiability of a function?

The differentiability of a function refers to the property of the function where its derivative exists at every point within its domain. In calculus, the derivative measures the rate at which a function changes with respect to its independent variable. A function is considered differentiable at a particular point if the slope of the tangent line to the graph of the function is well-defined at that point. This means that the function must have a well-defined instantaneous rate of change at that specific point.

[tex]\[f(x) = |(x^2 - 2x + 1)|\][/tex]

To determine the points where the function is not differentiable, we first simplify the function:

[tex]\[f(x) = |(x - 1)^2|\][/tex]

Since the absolute value of a function is always non-negative, the derivative of [tex]\(f(x)\)[/tex] exists for all points except where  [tex]\(f(x)\)[/tex] is equal to zero.

To find the values of [tex]\(x\)[/tex] where [tex]\(f(x) = 0\)[/tex] we solve the equation:

[tex]\[(x - 1)^2 = 0\][/tex]

This equation is satisfied when [tex]\(x - 1 = 0\),[/tex] so the only value of [tex]\(x\)[/tex] where [tex]\(f(x) = 0\)[/tex] is  [tex]\(x = 1\).[/tex]

Therefore, the function [tex]\(f(x)\)[/tex] is not differentiable at [tex]\(x = 1\)[/tex] due to the sharp corner or "cusp" at that point. At [tex]\(x = 1\)[/tex], the derivative does not exist since the function changes direction abruptly.

In summary, the function [tex]\(f(x) = |(x^2 - 2x + 1)|\)[/tex] is differentiable for all values of x except  [tex]\(x = 1\)[/tex].

Learn more about the differentiability of a function:

https://brainly.com/question/18962394

#SPJ4

Answer all parts. i will rate your answer only if you answer all
correctly.
Evaluate the indefinite integral. (Use symbolic notation and fractions where needed.) | x2(x15 – 7)32 dx = Use the Change of Variables Formula to evaluate the definite integral. 34 1=1* S. * (x �

Answers

The indefinite integral of |x^2(x^15 - 7)^32 dx is evaluated as (1/33)(x^34(x^15 - 7)^33/(x^15 - 7)) + C, where C is the constant of integration.

To evaluate the indefinite integral, we can use the power rule for integration, which states that the integral of x^n dx is (1/(n+1))x^(n+1) + C, where C is the constant of integration. Applying this rule, we can rewrite the given integral as the sum of two integrals: the integral of x^34 dx and the integral of (x^15 - 7)^32 dx.

The first integral, ∫x^34 dx, can be evaluated using the power rule as (1/35)x^35 + C1, where C1 is the constant of integration.

For the second integral, ∫(x^15 - 7)^32 dx, we can use the substitution u = x^15 - 7. Taking the derivative of u with respect to x gives du = 15x^14 dx, or dx = (1/15x^14) du. Substituting these values into the integral, we get ∫(x^15 - 7)^32 dx = ∫(1/15x^14) u^32 du.

Now, the integral becomes (1/15) ∫u^32 du. Applying the power rule, this evaluates to (1/15)(1/33)u^33 + C2, where C2 is the constant of integration.

Substituting back u = x^15 - 7, we get (1/15)(1/33)(x^15 - 7)^33 + C2.

Finally, combining the results of the two integrals, we have the indefinite integral as (1/35)x^35 + (1/15)(1/33)(x^15 - 7)^33 + C.

Simplifying further, we can write it as (1/33)(x^34(x^15 - 7)^33/(x^15 - 7)) + C.

Learn more about indefinite integral here:

https://brainly.com/question/28036871

#SPJ11

which box and whisker plot has the greatest interquartile range (iqr)?responsesbottom plotbottom plottop plottop plot

Answers

The box and whisker plot with the greatest interquartile range (IQR) is the one with the largest vertical distance between the upper and lower quartiles. Looking at the given responses, it is difficult to determine which plot has the greatest IQR without actually seeing the plots. However, if we assume that all the plots have a similar scale, the bottom plot is likely to have the greatest IQR as the box appears to be longer than the other plots.

The IQR is the range between the first quartile (Q1) and the third quartile (Q3) of a data set. It represents the middle 50% of the data and is a measure of variability. The greater the IQR, the more spread out the data is.

To determine which box and whisker plot has the greatest IQR, we need to compare the length of the boxes of each plot. Assuming a similar scale, the bottom plot is likely to have the greatest IQR.

To know more about interquartile range visit:

https://brainly.com/question/29204101

#SPJ11

Compute the derivative of the following function. f(x) = 6xe 2x f'(x) = f

Answers

Using product rule, the derivative of the function f(x) = 6xe²ˣ is f'(x) = 6e²ˣ + 12xe²ˣ.

What is the derivative of the function?

To find the derivative of the function f(x) = 6xe²ˣ we can use the product rule and the chain rule. The product rule states that if we have two functions u(x) and v(x), then the derivative of their product is given by (u(x)v(x))' = u'(x)v(x) + u(x)v'(x).

In this case, let's consider u(x) = 6x and v(x) = e²ˣ. Applying the product rule, we have:

f'(x) = (u(x)v(x))'

f'(x) = u'(x)v(x) + u(x)v'(x).

Now, let's compute the derivatives of u(x) and v(x):

u'(x) = d/dx (6x)

u'(x) = 6.

v'(x) = d/dx (e²ˣ)

v'(x) = 2e²ˣ

Substituting these derivatives into the product rule formula, we get:

f'(x) = 6 * e²ˣ + 6x * 2e²ˣ.

Simplifying this expression, we have:

f'(x) = 6e²ˣ + 12xe²ˣ.

Learn more on product rule here;

https://brainly.com/question/27072366

#SPJ1

1. (10 points) Find the value of the constant m for which the area between the parabolas y=2x² and y=-x² + 6mx is 12/13

Answers

The value of the constant m is -∛(3/13).

What is area of a parabola?

The area under a parabolic curve can be found using definite integration. Let's consider a parabola defined by the equation y = f(x), where f(x) is a function representing the parabolic curve.

To find the value of the constant m for which the area between the parabolas y = 2x² and y = -x² + 6mx is [tex]\frac{12}{13}[/tex], we need to set up the integral and solve for m.

The area between two curves can be found by taking the definite integral of the difference between the two functions over the interval where they intersect.

First, let's find the x-values where the two parabolas intersect. Set the two equations equal to each other:

2x² = -x² + 6mx

Rearrange the equation to obtain:

3x² - 6mx = 0

Factor out x:

x(3x - 6m) = 0

This equation will be satisfied if either x = 0 or 3x - 6m = 0.

If x = 0, then we have one intersection point at the origin (0,0).

If 3x - 6m = 0, then x = 2m.

So, the two parabolas intersect at x = 0 and x = 2m.

To find the area between the two parabolas, we integrate the difference between the upper and lower curves over the interval [0, 2m]:

Area = [tex]\int\limits^{2m}_0 (2x^2 - (-x^2 + 6mx)) dx[/tex]

Simplifying the integral:

Area = [tex]\int\limits^{2m}_0 (3x^2 -6mx)dx[/tex]

Using the power rule of integration, we integrate term by term:

Area =[tex][x^3 - 3mx^2]^{2m}_0[/tex]

Area = (2m)³ - 3m(2m)² - (0³ - 3m(0)²)

Area = 8m³ - 12m³

Area = -4m³

Since we want the area to be[tex]\frac{12}{13}[/tex], we set -4m³ equal to [tex]\frac{12}{13}[/tex]:

-4m³ =[tex]\frac{12}{13}[/tex]

Solving for m:

m³ = -3/13

Taking the cube root of both sides:

m = -∛(3/13)

Therefore, the value of the constant m for which the area between the two parabolas is 12/13 is m = -∛(3/13).

To learn more about area of a parabola  from the given link

brainly.com/question/64712

#SPJ4

Given ƒ (x) = -3, 9(x) = 2x − 7, and h(x) 1²-9¹ a) The domain of f(x). Write the answer in interval notation. b) The domain of g(x). Write the answer using interval notation. c) (fog)(x). Simp"

Answers

Answer:

a) The domain of f(x) is all real numbers since there are no restrictions or conditions given in the function.

b) The domain of g(x) is all real numbers except for x = 1 since the function h(x) has a term of (x - 1) in the denominator, which cannot be equal to zero.

c) To find (fog)(x), we substitute the function g(x) = 2x - 7 into f(x) and simplify.

Step-by-step explanation:

a) The function f(x) = -3 is defined for all real numbers. Therefore, the domain of f(x) is (-∞, ∞) in interval notation.

b) The function g(x) is given by g(x) = 2x - 7. The only restriction in the domain occurs when the denominator of h(x) is zero. Since h(x) = (x - 1)² - 9, we set the denominator equal to zero and solve for x:

(x - 1)² - 9 = 0

(x - 1)² = 9

x - 1 = ±√9

x - 1 = ±3

x = 1 ± 3

x = 4 or x = -2

Therefore, the domain of g(x) is (-∞, -2) ∪ (-2, 4) ∪ (4, ∞) in interval notation.

c) To find (fog)(x), we substitute g(x) into f(x):

(fog)(x) = f(g(x)) = f(2x - 7)

Using the definition of f(x) = -3, we have:

(fog)(x) = -3

Therefore, (fog)(x) simplifies to -3 for any input x.

In summary:

a) The domain of f(x) is (-∞, ∞).

b) The domain of g(x) is (-∞, -2) ∪ (-2, 4) ∪ (4, ∞).

c) The composition (fog)(x) simplifies to -3.

To learn more about interval notation

brainly.com/question/13048073

#SPJ11

Q3
Using the Ratio test, determine whether the series converges or diverges : Pn Σ ("Vn2+1) P/(2n)! n=1

Answers

The series converges by the Ratio test.

To determine whether the series converges or diverges, we can apply the Ratio test. Let's denote the general term of the series as "a_n" for simplicity. In this case, "a_n" is given by the expression "Vn^2+1 * P/(2n)!", where "n" represents the index of the term.

According to the Ratio test, we need to evaluate the limit of the absolute value of the ratio of consecutive terms as "n" approaches infinity. Let's consider the ratio of the (n+1)-th term to the n-th term:

|a_(n+1) / a_n| = |V(n+1)^2+1 * P/[(2(n+1))!]| / |Vn^2+1 * P/(2n)!|

Simplifying the expression, we find:

|a_(n+1) / a_n| = [(n+1)^2+1 / n^2+1] * [(2n)! / (2(n+1))!]

Canceling out the common terms and simplifying further, we have:

|a_(n+1) / a_n| = [(n+1)^2+1 / n^2+1] * [1 / (2n+2)(2n+1)]

As "n" approaches infinity, both fractions approach 1, indicating that the ratio tends to a finite value. Therefore, the limit of the ratio is less than 1, and by the Ratio test, the series converges.

To learn more about ratio test click here: brainly.com/question/20876952

#SPJ11

An experimenter conducted a two-tailed hypothesis test on a set of data and obtained a p-value of 0.44. If the experimenter had conducted a one-tailed test on the same set of data, which of the following is true about the possible p-value(s) that the experimenter could have obtained? 0.94 (A) The only possible p-value is 0.22. (B) The only possible p-value is 0.44. The only possible p-value is 0.88. (D) T'he possible p-values are 0.22 and 0.78.18 (E) The possible p-values are 0.22 and 0.88. az

Answers

The correct answer is (E) The possible p-values are 0.22 and 0.88.

If the experimenter conducted a one-tailed hypothesis test on the same set of data, the possible p-value(s) that they could have obtained would depend on the direction of the test.

In a one-tailed test, the hypothesis is directional and the experimenter is only interested in one side of the distribution (either the upper or lower tail). Therefore, the p-value would only be calculated for that one side.

If the original two-tailed test had a p-value of 0.44, it means that the null hypothesis was not rejected at the significance level of 0.05 (assuming a common level of significance).

If the experimenter conducted a one-tailed test with a directional hypothesis that was consistent with the direction of the higher tail of the original two-tailed test, then the possible p-value would be 0.22 (half of the original p-value). If the directional hypothesis was consistent with the lower tail of the original two-tailed test, then the possible p-value would be 0.88 (one minus half of the original p-value).

Therefore, the correct answer is (E) The possible p-values are 0.22 and 0.88.

Learn more about hypothesis test here,

https://brainly.com/question/31481964

#SPJ11

If g (x) > f (x), and if f g (x) dx is divergent, then f f (x) dx is also divergent. True O False
1 ²√x²+4 True O False S dx √2²+4 4x +C

Answers

The statement "If g(x) > f(x), and if ∫g(x) dx is divergent, then ∫f(x) dx is also divergent" is false.

The divergence or convergence of an integral depends on the behavior of the function being integrated, not the relationship between two different functions.

The given statement suggests that if g(x) is greater than f(x) and the integral of g(x) diverges, then the integral of f(x) must also diverge. However, this is not necessarily true. The divergence or convergence of an integral depends on the properties of the function being integrated.

Consider a scenario where g(x) and f(x) are both positive functions. If ∫g(x) dx diverges, it means that the integral does not have a finite value. However, f(x) could still have a finite integral if it is bounded or has certain properties that lead to convergence. Therefore, the divergence of ∫g(x) dx does not imply the divergence of ∫f(x) dx.

In conclusion, the relationship between two functions and the divergence or convergence of their integrals are not directly connected, so the statement is false.

Learn more about convergence here:

https://brainly.com/question/28202684

#SPJ11

The number of flaws in bolts of cloth in textile manufacturing is assumed to be Poisson distributed with a mean of 0.08 flaw per square meter. a) What is the probability that there are two flaws in one square meter of cloth? Round your answer to four decimal places (e.g. 98.7654). P= i b) What is the probability that there is one flaw in 10 square meters of cloth? Round your answer to four decimal places (e.g. 98.7654). P= i c) What is the probability that there are no flaws in 20 square meters of cloth? Round your answer to four decimal places (e.g. 98.7654). P= i d) What is the probability that there are at least two flaws in 10 square meters of of cloth? Round your answer to four decimal places (e.g. 98.7654). P= i

Answers

a) The probability of having two flaws in one square meter of cloth is 0.0044. b) The probability of having one flaw in 10 square meters of cloth is 0.0360. c) The probability of having no flaws in 20 square meters of cloth is 0.1653. d) The probability of having at least two flaws in 10 square meters of cloth is 0.0337.

a) The Poisson distribution is used to model the number of flaws in bolts of cloth. The mean is given as 0.08 flaws per square meter. Using the formula for the Poisson distribution, we can calculate the probability of having two flaws in one square meter of cloth. The formula is P(X = k) = (e^(-λ) * λ^k) / k!, where λ is the mean and k is the number of flaws. Plugging in the values, we get [tex]P(X = 2) = (e^(-0.08) * 0.08^2) / 2! ≈ 0.0044.[/tex]

b) To find the probability of having one flaw in 10 square meters of cloth, we need to consider the rate per square meter. Since the mean is given as 0.08 flaws per square meter, the mean for 10 square meters would be 0.08 * 10 = 0.8. Using the same Poisson formula, we calculate P(X = 1) = [tex](e^(-0.8) * 0.8^1) / 1! ≈ 0.0360.[/tex]

c) For the probability of having no flaws in 20 square meters of cloth, we can again use the Poisson formula with the mean adjusted for the area. The mean for 20 square meters is 0.08 * 20 = 1.6. Plugging the values into the formula, we get [tex]P(X = 0) = (e^(-1.6) * 1.6^0) / 0! ≈ 0.1653.[/tex]

d) To find the probability of having at least two flaws in 10 square meters of cloth, we can calculate the complement of the probability of having zero or one flaw. Using the same mean of 0.8, we can calculate P(X ≤ 1) and subtract it from 1 to get the desired probability. P(X ≤ 1) = P(X = 0) + P(X = 1) ≈ 0.2018. Therefore, P(X ≥ 2) ≈ 1 - 0.2018 = 0.7982.

Learn more about Poisson distribution here:

https://brainly.com/question/30992240

#SPJ11

Find the equation of the tangent line to f(x) = 4(x at the point where x = 2 x 3 In 2 217 x+3 a) y = 4x + 1 b) y = x - 4 c) y = x + 8 d) y = x +4 2 2.7²43 4 e) None of the above

Answers

The equation of the tangent line to the function f(x) = 4(x^2 + 3x + 2) at the point where x = 2 is y = 4x + 1. The equation of the tangent line to f(x) at x = 2 is y = 4x + 1, which is option (a) correct.

To find the equation of the tangent line, we need to determine the slope of the tangent line at the given point and then use the point-slope form to write the equation. First, we find the derivative of the function f(x) with respect to x, which will give us the slope of the tangent line at any given point. Taking the derivative of f(x) = 4(x^2 + 3x + 2) with respect to x, we get f'(x) = 8x + 12.

Next, we substitute x = 2 into f'(x) to find the slope at the point where x = 2: f'(2) = 8(2) + 12 = 28. Therefore, the slope of the tangent line at x = 2 is 28.

Using the point-slope form of a linear equation, y - y₁ = m(x - x₁), where (x₁, y₁) represents the given point on the line and m represents the slope, we substitute the values x₁ = 2, y₁ = f(2) = 4(2^2 + 3(2) + 2) = 36, and m = 28. Simplifying the equation, we get y - 36 = 28(x - 2), which can be rearranged to y = 28x - 52. This equation can be simplified further to y = 4x + 1.

Therefore, the equation of the tangent line to f(x) at x = 2 is y = 4x + 1, which is option (a).

Learn more about derivative here:

https://brainly.com/question/30365299

#SPJ11




1. Find the following limits. x-1 (a). lim x→-2+ x²(x+2) x²-2x-8 x2+x²–5x+6 (b). lim (c). lim x-5 x²-6x+5 x-5 x²+3x x -3x²-x-12 (d). lim

Answers

we determine the limit of x²(x+2)/(x²-2x-8) as x approaches -2 from the right. In part (b), we find the limit of (x²+x²–5x+6)/(x-5) as x approaches 5. In part (c), we calculate the limit of (x-3x²-x-12)/(x²+3x) as x approaches infinity. Lastly, in part (d), we determine the limit of x as x approaches negative infinity.

In part (a), as x approaches -2 from the right, the expression x²(x+2)/(x²-2x-8) is undefined because it results in division by zero. Thus, the limit does not exist.

In part (b), as x approaches 5, the expression (x²+x²–5x+6)/(x-5) is of the form 0/0. By factoring the numerator and simplifying, we get (2x-1)(x-3)/(x-5). When x approaches 5, the denominator becomes zero, but the numerator does not. Therefore, we can use the limit laws to simplify the expression and find that the limit is 7.

In part (c), as x approaches infinity, the expression (x-3x²-x-12)/(x²+3x) can be simplified by dividing each term by x². This results in (-3/x-1-1/x-12/x²)/(1+3/x). As x approaches infinity, the terms with 1/x or 1/x² tend to zero, and we are left with -3/1. Therefore, the limit is -3.

In part (d), as x approaches negative infinity, the expression x approaches negative infinity itself. Thus, the limit is negative infinity.

To learn more about limit: -brainly.com/question/12211820#SPJ11

Other Questions
rewarding faithful party workers with government employment is called and determine its routin 9+ 16) (10 points) Find a power series representation for the function () of convergence Part 1) Home Depot: In the fiscal year ended February 2, 2020, The Home Depot generated $13,723 millionfrom operating activities. Indicate where this cash was spent by listing the two largest cashoutflows.a. Share Repurchase ($6,965 million) and Cash Dividends ($5,958 million)b. Share Repurchase ($6,965 million) and Capital Expenditures ($2,678 million)c. Long-Term Debt Repayments ($1,070 million) and Share Repurchase ($6,965 million)d. Cash Dividends ($5,958 million) and Share Repurchase ($6,965 million) The Eagle Eyes' projected sales for the second half of year 2022 are shown in the corresponding table: July August September RM255,000.00 October RM300,000.00 November RM215,000.00 December RM235,000.00 RM200,000.00 RM305,000.00 The cost of goods sold is 65 percent of sales, purchases are made in credit 2 months in advance of its sales. Twenty percent of the payment to suppliers was made during the month of purchase, 50 percent in the following month, and the remaining two months after the purchase. Thirty percent of sales were in cash, the remaining on credit. Collections are made in the following two months, in equal parts. Besides these, Eagle Eyes has certain expenses that have to be paid on a monthly basis. Rental is RM25,000.00; the interest expense is RM15,000.00; the sale's commission is RM45,000.00. Utilities will be 3 percent of monthly sales, and depreciation is fixed at RM4,500.00 per month. Tax prepayments of RM15,500.00 are made each quarter, beginning in March. Eagle Eyes tries to maintain a security balance, in cash, of RM30,000.00. Eagle Eyes can borrow at 12 percent annual rate if this amount is below the figure mentioned. Interest on short- term loans is paid monthly. Borrowing to meet estimated monthly cash needs, occurs at the beginning of the month with interest to be paid the following month. The cash balance for July 1, 2022, is RM50,000.00; the sales for April till June, 2022 are RM240,000.00, RM300,000.00, and RM280,000.00 respectively. The expected sales in January 2023 are RM350,000.00 and the expected sales in February are 320,000.00. REQUIRED: a. Prepare a cash budget for the second half of year 2022. [48.5 marks] b. Eagle Eyes has RM100,000.00 in notes payable due in December 2022 that must be repaid or renegotiated for an extension. Will the company have ample cash to repay the notes? Can you show the steps or the work as well thank you. PLEASE ANSWER BOTH PLEASE THANK YOU Question 1: (1 point) Find an equation of the tangent plane to the surface 2 =2*+ at the point(0.0.1). Cz=4e x + 4e y-8e+1 Cz= 4x + 4y-7 z = 2 x + 2e y-4e+1 2= 2*x + 2 y - 4e? + 1 Cz=x + y + 1 Cz=2x +2y + 1 z=ex+ey-2? + 1 z=ex + ey-2+1 Question 2: (1 point) Find an equation of the tangent plane to the surface 2 = x2 + y at the point (1, 1, 2). Cz=2x +2y-2 Cz=x+y Cz=x+2y-1 Cz=2x C2=x+1 Cz=2x - 2y + 2 Cz=2x-y + 1 Cz=2x + y-1 We considered a simple model for a rocket launched from the surface of the Earth. A better expression for a rocket's position measured from the center of the Earth is given by y(t) = (Re^(3/2)+ 3g/2 RE^t)^2/3 where RE is the radius of the Earth (6.38 x 10^6 m) and g is the constant acceleration of an object in free fall near the Earth's surface 9.81 m/s^2What are Vy and ay when y = 4Re? People were polled on how many books they read the previous year. Initial survey results indicate that s 19.5 books. Complete parts (a) through (d) below a) How many su ects are needed to estimate the mean number of books read the previous year within six books with 90% confidence? This 90% confidence level requires subjects (Round up to the nearest subject.) (b) How many subjects are needed to estimate the mean number of books read the previous year within three boo This 90% confidence level requires subjects (Round up to the nearest subject) (e) What effect does doubling the required accuraoy have on the sample size? O A. Doubling the required accuracy quadruples the sample size. ks with 90% confidence? B. O C. Doubling the required accuracy doubles the sample size. Doubling the required accuracy quarters the sample size. the sample sizeT (d) How many subjects are needed to estimate the mean number of books read the previous year within six books with 99% confidence? This 99% confidence level requires subjects (Round up to the nearest subject.) Compare this result to part (a). How does increasing the level of confidence in the estimate affect sample size? Why is this reasonable? Click to select your answerts). a project has a beta of 0.97, the risk-free rate is 4.1%, and the market risk premium is 8.1%. what is the project's expected rate of return? D. Use a circular doubly linked chain to implement the ADT deque. what programs do you suggest the county general implement to decrease turnover? suggest at least two programs, and be specific. JAVApackage algs21;import stdlib.*;// Exercise 2.1.14/*** Complete the following method to sort a deck of cards,* with the restriction that the only allowed operations are to look* at the values of the top two cards, to exchange the top two cards,* and to move the top card to the bottom of the deck.*/public class MyDeckSort {public static void sort (MyDeck d) {// TODO// You must sort the Deck using only the public methods of Deck.// It should be sufficient to use the following:// d.size ();// d.moveTopToBottom ();// d.topGreaterThanNext ();// d.swapTopTwo ();// While debugging, you will want to print intermediate results.// You can use d.toString() for that:// StdOut.format ("i=%-3d %s\n", i, d.toString ());}private static double time;private static void countops (MyDeck d) {boolean print = true;if (print) StdOut.println (d.toString ());d.moveTopToBottom ();if (print) StdOut.println (d.toString ());Stopwatch sw = new Stopwatch ();sort (d);time = sw.elapsedTime ();if (print) StdOut.println (d.toString ());d.isSorted ();}public static void main (String[] args) {int N = 10;MyDeck d = new MyDeck (N);countops (d);//System.exit (0); // Comment this out to do a doubling test!double prevOps = d.ops ();double prevTime = time;for (int i = 0; i < 10; i++) {N *= 2;d = new MyDeck (N);countops (d);StdOut.format ("%8d %10d %5.1f [%5.3f %5.3f]\n", N, d.ops (), d.ops () / prevOps, time, time / prevTime);prevOps = d.ops ();prevTime = time;}}}/*** The Deck class has the following API:** * MyDeck (int N) // create a randomized Deck of size N* int size () // return the size of N* int ops () // return the number of operations performed on this Deck* boolean topGreaterThanNext () // compare top two items* void swapTopTwo () // swap top two itens* void moveTopToBottom () // move top item to bottom* void isSorted () // check if isSorted (throws exception if not)* */class MyDeck {private int N;private int top;private long ops;private int[] a;public long ops () {return ops;}public int size () {return N;}public MyDeck (int N) {this.N = N;this.top = 0;this.ops = 0;this.a = new int[N];for (int i = 0; i < N; i++)a[i] = i;StdRandom.shuffle (a);}public boolean topGreaterThanNext () {int i = a[top];int j = a[(top + 1) % N];ops += 2;return i > j;}public void swapTopTwo () {int i = a[top];int j = a[(top + 1) % N];a[top] = j;a[(top + 1) % N] = i;ops += 4;}public void moveTopToBottom () {top = (top + 1) % N;ops += 1;}public String toString () {StringBuilder b = new StringBuilder ();b.append ('[');for (int i = top;;) {b.append (a[i]);i = (i + 1) % N;if (i == top) return b.append (']').toString ();b.append (", ");}}public void isSorted () {boolean print = false;long theOps = ops; // don't count the operations require by isSortedfor (int i = 1; i < N; i++) {if (print) StdOut.format ("i=%-3d %s\n", i, toString ());if (topGreaterThanNext ()) throw new Error ();moveTopToBottom ();}if (print) StdOut.format ("i=%-3d %s\n", N, toString ());moveTopToBottom ();if (print) StdOut.format ("i=%-3d %s\n", N + 1, toString ());ops = theOps;}} examples of non sustainable human activities or behaviors include true/false : critical chain scheduling assumes that resources multitask and maximizes multitasking. A person's body generates about 0.2 uCi of radioactivity. Determine the total radioactivity emitted by 300 students in a lecture hall. (1 Ci = 3.7x10^10 Bq, 1 Bq = 1/decay/s, u = 10^-6A. 2.2 x10^6 decay/sB. 9.1x10^16 decay/sC. 70 decay/sD. 7.3x10^3 decay/s (25 points) Find two linearly independent solutions of 2xy - xy +(2x + 1)y = 0, x > 0 of the form y = x" (1 + ax + a2x2 + az x3 + ...) y2 = x" (1 + bx + b2x + b3x3 + ...) where ri > r2. Enter brad sold a rental house that he owned for $247,500. brad bought the rental house five years ago for $227,500 and has claimed $48,750 of depreciation expense. what is the amount and character of brad's gain or loss? A Company produces balto sale but for the month is as follows: March 19.900 units. Apr.204 May 16.00 June 21,100 The Company sending the goods inventory policy 20% of the following mas Marching injected to be 210 How many units will be produced in April 19.40 12.520 13.200 13.680 30. What is a User Story? How are they used? Provide an example of a User Story. if i roll a standard 6-sided die, what is the probability that the number showing will be even and greater than 3 I NEED HELP BEFORE 05/24/23Why might Johnsons conviction and removal have weakened the office of president? Steam Workshop Downloader