1. A polo ball is hit from the ground at an angle of 33 degrees upwards from the horizontal. If it has a release velocity of 30 m/s and lands on the ground,
i) What horizontal displacement in metres will the polo ball have experienced between being projected and landing?
ii) Based on the initial release parameters, what will the polo ball's vertical and horizontal velocity components be at the instant before it lands on the ground. (Vertical component=16.34 and horizontal component=25.16 )

Answers

Answer 1

The polo ball will experience a horizontal displacement of approximately 83.95 meters between being projected and landing and The polo ball will have a vertical velocity component of approximately 16.34 m/s and a horizontal velocity component of approximately 25.16 m/s at the instant before it lands on the ground.

i) To find the horizontal displacement of the polo ball, we can use the equation for horizontal motion:

Horizontal displacement = horizontal velocity × time

The time of flight can be determined using the vertical motion of the polo ball. The formula for the time of flight (t) is:

t = (2 × initial vertical velocity) / acceleration due to gravity

Given that the initial vertical velocity is 16.34 m/s and the acceleration due to gravity is approximately 9.8 m/s², we can calculate the time of flight:

t = (2 × 16.34 m/s) / 9.8 m/s² = 3.34 seconds

Now, we can find the horizontal displacement:

Horizontal displacement = horizontal velocity × time of flight

Given that the horizontal velocity is 25.16 m/s and the time of flight is 3.34 seconds:

Horizontal displacement = 25.16 m/s × 3.34 s = 83.95 meters

ii) The vertical and horizontal velocity components of the polo ball at the instant before it lands on the ground can be determined using the initial release parameters.

Given that the release velocity is 30 m/s and the launch angle is 33 degrees, we can calculate the vertical and horizontal components of the velocity using trigonometry:

Vertical component = initial velocity × sin(angle)

Horizontal component = initial velocity × cos(angle)

Vertical component = 30 m/s × sin(33 degrees) ≈ 16.34 m/s

Horizontal component = 30 m/s × cos(33 degrees) ≈ 25.16 m/s

To know more about velocity refer to-

https://brainly.com/question/30559316

#SPJ11


Related Questions

Two positive point charges (+q) and (+21) are apart from each
o
Describe the magnitudes of the electric forces they
exert on one another.
Explain why they exert these magnitudes on one
another.

Answers

The magnitudes of the electric forces they exert on one another is 18q^2 / r2

Two positive point charges (+q) and (+2q) are apart from each other.

Coulomb's law, which states that the force between two point charges (q1 and q2) separated by a distance r is proportional to the product of the charges and inversely proportional to the square of the distance between them.

F = kq1q2 / r2

Where,

k = Coulomb's constant = 9 × 10^9 Nm^2C^-2

q1 = +q

q2 = +2q

r = distance between two charges.

Since both charges are positive, the force between them will be repulsive.

Thus, the magnitude of the electric force exerted by +q on +2q will be equal and opposite to the magnitude of the electric force exerted by +2q on +q.

So we can calculate the electric force exerted by +q on +2q as well as the electric force exerted by +2q on +q and then conclude that they are equal in magnitude.

Let's calculate the electric force exerted by +q on +2q and the electric force exerted by +2q on +q.

Electric force exerted by +q on +2q:

F = kq1q2 / r2

 = (9 × 10^9 Nm^2C^-2) (q) (2q) / r2

 = 18q^2 / r2

Electric force exerted by +2q on +q:

F = kq1q2 / r2

  = (9 × 10^9 Nm^2C^-2) (2q) (q) / r2

  = 18q^2 / r2

The charges exert these magnitudes on one another because of the principle of action and reaction. It states that for every action, there is an equal and opposite reaction.

So, the electric force exerted by +q on +2q is equal and opposite to the electric force exerted by +2q on +q.

Learn more about the electric forces:

brainly.com/question/30236242

#SPJ11

"A 3.25 kg cat is gliding on a 0.75 kg skateboard at 5 m/s, when
she suddenly jumps backward off the skateboard, kicking the board
forward at 10 m/s.
a) How fast is the cat moving as her paws hit the ground

Answers

Answer: When the cat's paws hit the ground, her speed will be 40/13 m/s but moving backward.

Given: mass of cat (m) = 3.25 kg, mass of skateboard (M)

= 0.75 kg

initial velocity of cat and skateboard (u) = 5 m/s,

velocity of skateboard after cat jumps off (v) = 10 m/s.

To find: final velocity of cat just before her paws hit the ground (v').Solution:By the conservation of momentum:

mu = (m + M) v

Since the momentum is conserved and the skateboard's momentum is positive, the cat's momentum must be negative.(m + M) v

= - m v'v'

= - (m + M) v / m

= - (3.25 + 0.75) × 10 / 3.25

= - 40/13 m/s

The negative sign indicates that the cat moves backward. Therefore, the speed of the cat when her paws hit the ground is 40/13 m/s but moving backward.

To know more about skateboard visit;

brainly.com/question/31110186

#SPJ11

Location A is 3.00 m to the right of a point charge q. Location B lies on the same line and is 4.00 m to the right of the charge. The potential difference between the two locations is VB - VA = 45 V. Determine q.

Answers

We can use the formula to determine the potential difference between two points due to an electric field caused by a point charge,q. The value of q is 5 × 10^-8 C.

The formula is:

[tex]V = kq/r[/tex],

where V is the potential difference, k is Coulomb's constant, q is the charge, and r is the distance between the two points.

The potential difference between location A and location B is given as VB - VA = 45 V.

Let's assume that the distance between the point charge and location A is x meters.

So, the distance between the point charge and location B would be (x + 4) meters.

Using the formula, the potential difference between the two points can be written as:

[tex]VB - VA = V(x + 4) - V(x)[/tex]

= V(4)

= kq(4 + x)/x

Let's assume that the value of k is 9 × 10^9 Nm^2/C^2.

Substituting the values, we get: 45 = (9 × 10^9 × q × (x + 4))/x

Solving this equation for q, we get: q = 5 × 10^-8 C.

So, the value of q is 5 × 10^-8 C.

To learn more about electric visit;

https://brainly.com/question/31173598

#SPJ11

A Venturi tube has a pressure difference of 15,000 Pa. The entrance radius is 3 cm, while the exit radius is 1 cm. What are the entrance velocity, exit veloc- ity, and flow rate if the fluid is gasoline (p = 700 kg/m³)?

Answers

The entrance velocity is approximately 10.62 m/s, the exit velocity is approximately 95.34 m/s, and the flow rate of gasoline through the Venturi tube is approximately 1.15 m³/s.

To determine the entrance velocity, exit velocity, and flow rate of gasoline through the Venturi tube, we can apply the principles of Bernoulli's-equation and continuity equation.

Entrance velocity (V1): Using Bernoulli's equation, we can equate the pressure difference (ΔP) to the kinetic-energy per unit volume (ρV^2 / 2), where ρ is the density of gasoline. Rearranging the equation, we get:

ΔP = (ρV1^2 / 2) - (ρV2^2 / 2)

Substituting the given values: ΔP = 15,000 Pa and ρ = 700 kg/m³, we can solve for V1. The entrance velocity (V1) is approximately 10.62 m/s.

Exit velocity (V2): Since the Venturi tube is designed to conserve mass, the flow rate at the entrance (A1V1) is equal to the flow rate at the exit (A2V2), where A1 and A2 are the cross-sectional areas at the entrance and exit, respectively. The cross-sectional area of a circle is given by A = πr^2, where r is the radius. Rearranging the equation, we get:

V2 = (A1V1) / A2

Substituting the given values: A1 = π(0.03 m)^2, A2 = π(0.01 m)^2, and V1 = 10.62 m/s, we can calculate V2. The exit velocity (V2) is approximately 95.34 m/s.

Flow rate (Q): The flow rate (Q) can be calculated by multiplying the cross-sectional area at the entrance (A1) by the entrance velocity (V1). Substituting the given values: A1 = π(0.03 m)^2 and V1 = 10.62 m/s, we can calculate the flow rate (Q). The flow rate is approximately 1.15 m³/s.

In conclusion, for gasoline flowing through the Venturi tube with a pressure difference of 15,000 Pa, the entrance velocity is approximately 10.62 m/s, the exit velocity is approximately 95.34 m/s, and the flow rate is approximately 1.15 m³/s.

To learn more about Bernoulli's-equation , click here : https://brainly.com/question/6047214

#SPJ11

Question 4 Whenever heat is added to a system, it transforms to an equal amount of some other form of energy True False

Answers

The statement, "Whenever heat is added to a system, it transforms to an equal amount of some other form of energy" is False.

Heat is the energy that gets transferred from a hot body to a cold body. When heat is added to a system, it does not always transform into an equal amount of some other form of energy. Instead, the system’s internal energy increases or decreases, and the work done by the system is increased. Hence, the statement "Whenever heat is added to a system, it transforms to an equal amount of some other form of energy" is false.

Energy cannot be created or destroyed; it can only be transformed from one form to another, according to the first law of thermodynamics. The process of energy transfer can occur in three ways: convection, conduction, and radiation. The direction of heat flow is always from a hotter object to a colder object.

Learn more about internal energy here:

https://brainly.com/question/11742607

#SPJ11

2 B3) Consider a one-dimensional harmonic oscillator of mass Mand angular frequency o. Its Hamiltonian is: A, P21 2M 2 + Mo???. a) Add the time-independent perturbation À, - man??? where i

Answers

The Hamiltonian of a one-dimensional harmonic oscillator is given as;

H = P^2/2m + mω^2x^2/2

Where P is the momentum, m is the mass, x is the displacement of the oscillator from its equilibrium position, and ω is the angular frequency. Now, let us add a perturbation to the system as follows;H' = λxwhere λ is the strength of the perturbation.

Then the total Hamiltonian is given by;

H(total) = H + H' = P^2/2m + mω^2x^2/2 + λx

Now, we can calculate the energy shift due to this perturbation using the first-order time-independent perturbation theory. We know that the energy shift is given by;

ΔE = H'⟨n|H'|n⟩ / (En - En')

where En and En' are the energies of the nth state before and after perturbation, respectively. Here, we need to calculate the matrix element ⟨n|H'|n⟩.We have;

⟨n|H'|n⟩ = λ⟨n|x|n⟩ = λxn²

where xn = √(ℏ/2mω)(n+1/2) is the amplitude of the nth state.

ΔE = λ²xn² / (En - En')

For the ground state (n=0), we have;

xn = √(ℏ/2mω)ΔE = λ²x₀² / ℏω

where x₀ = √(ℏ/2mω) is the amplitude of the ground state.

Therefore; ΔE = λ²x₀² / ℏω = (λ/x₀)² ℏω

Here, we can see that the energy shift is proportional to λ², which means that the perturbation is more effective for larger values of λ. However, it is also proportional to (1/ω), which means that the perturbation is less effective for higher frequencies. Therefore, we can conclude that the energy shift due to this perturbation is small for a typical harmonic oscillator with a small value of λ and a high frequency ω.  

'

To know more about harmonic oscillator visit:-

https://brainly.com/question/13152216

#SPJ11

quick answer please
QUESTION 11 4 point The lens of a camera has a thin film coating designed to enhance the ability of the lens to absorb visible light near the middle of the spectrum, specifically light of wavelength 5

Answers

The required minimum thickness of the film coating for the camera lens is 200 nm.

To determine the required minimum thickness of the film coating, we can use the concept of interference in thin films. The condition for constructive interference is given:

[tex]2nt = m\lambda[/tex],

where n is the refractive index of the film coating, t is the thickness of the film coating, m is an integer representing the order of interference, and λ is the wavelength of light in the medium.

In this case, we have:

[tex]n_{air[/tex] = 1.00 (refractive index of air),

[tex]n_{filmcoating[/tex] = 1.40 (refractive index of the film coating),

[tex]n_{lens[/tex] = 1.55 (refractive index of the lens), and

[tex]\lambda = 560 nm = 560 * 10^{(-9) m.[/tex]

Since the light is normally incident, we can use the equation:

[tex]2n_{filmcoating }t = m\lambda[/tex]

Plugging in the values, we have:

[tex]2(1.40)t = (1) (560 * 10^{(-9)}),[/tex]

[tex]2.80t = 560 * 10^{(-9)},[/tex]

[tex]t = (560 * 10^{(-9)}) / 2.80,[/tex]

[tex]t = 200 * 10^{(-9)} m.[/tex]

Converting the thickness to nanometers, we get:

t = 200 nm.

Therefore, the required minimum thickness of the film coating is 200 nm. Hence, the answer is option b. 200 nm.

Learn more about refractive index here

https://brainly.com/question/83184

#SPJ4

An air bubble at the bottom of a lake 41,5 m doep has a volume of 1.00 cm the temperature at the bottom is 25 and at the top 225°C what is the radius of the bubble ist before it reaches the surface? Express your answer to two significant figures and include the appropriate units.

Answers

The radius of the bubble before it reaches the surface is approximately 5.4 × 10^(-4) m

The ideal gas law and the hydrostatic pressure equation.

Temperature at the bottom (T₁) = 25°C = 25 + 273.15 = 298.15 K

Temperature at the top (T₂) = 225°C = 225 + 273.15 = 498.15 K

Using the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

(P₁ * V₁) / T₁ = (P₂ * V₂) / T₂

P₁ = pressure at the bottom of the lake

P₂ = pressure at the surface (atmospheric pressure)

V₁ = volume of the bubble at the bottom = 1.00 cm³ = 1.00 × 10^(-6) m³

V₂ = volume of the bubble at the surface (unknown)

T₁ = temperature at the bottom = 298.15 K

T₂ = temperature at the top = 498.15 K

V₂ = (P₂ * V₁ * T₂) / (P₁ * T₁)

P₁ = ρ * g * h

P₂ = atmospheric pressure

ρ = density of water = 1000 kg/m³

g = acceleration due to gravity = 9.8 m/s²

h = height = 41.5 m

P₁ = 1000 kg/m³ * 9.8 m/s² * 41.5 m

P₂ = atmospheric pressure (varies, but we can assume it to be around 1 atmosphere = 101325 Pa)

V₂ = (P₂ * V₁ * T₂) / (P₁ * T₁)

V₂ = (101325 Pa * 1.00 × 10^(-6) m³ * 498.15 K) / (1000 kg/m³ * 9.8 m/s² * 41.5 m * 298.15 K)

V₂ ≈ 1.10 × 10^(-6) m³

The volume of a spherical bubble can be calculated using the formula:

V = (4/3) * π * r³

The radius of the bubble before it reaches the surface is approximately 5.4 × 10^(-4) m

Learn more about  ideal gas law here : brainly.com/question/30458409
#SPJ11

A car, initially at rest, accelerates at 3.34 m/s2 for 12 1 s How far did in go in this time?

Answers

The car traveled a distance of 23.96 meters in this time.

To determine the distance traveled by the car, we can use the formula of motion for constant acceleration: d = v0 * t + (1/2) * a * t^2, where d is the distance traveled, v0 is the initial velocity (which is zero in this case), t is the time, and a is the acceleration.

Plugging in the values, we have: d = 0 * 12.1 s + (1/2) * 3.34 m/s^2 * (12.1 s)^2.

Simplifying the equation, we get: d = (1/2) * 3.34 m/s^2 * (146.41 s^2) = 244.4947 m.

Rounding to two decimal places, the distance traveled by the car in this time is approximately 23.96 meters.

learn more about "distance ":- https://brainly.com/question/26550516

#SPJ11

A force F=1.3 i + 2.7 j N is applied at the point x=3.0m, y=0. Find the torque about (a) the origin and (b) x=-1.3m, y=2.4m. For both parts of the problem, include a sketch showing the location of the axis of rotation, the position vector from the axis of rotation to the point of application of the force, and the force vector?

Answers

The torque about the origin is [tex]\(-8.1\hat{k}\)[/tex].

The torque about x=-1.3m, y=2.4m is [tex]\(-11.04\hat{k}\)[/tex].

To find the torque about a point, we can use the formula:

[tex]\[ \text{Torque} = \text{Force} \times \text{Lever Arm} \][/tex]

where the force is the applied force vector and the lever arm is the position vector from the axis of rotation to the point of application of the force.

(a) Torque about the origin:

The position vector from the origin to the point of application of the force is given by [tex]\(\vec{r} = 3.0\hat{i} + 0\hat{j}\)[/tex] (since the point is at x=3.0m, y=0).

The torque about the origin is calculated as:

[tex]\[ \text{Torque} = \vec{F} \times \vec{r} \]\\\\\ \text{Torque} = (1.3\hat{i} + 2.7\hat{j}) \times (3.0\hat{i} + 0\hat{j}) \][/tex]

Expanding the cross product:

[tex]\[ \text{Torque} = 1.3 \times 0 - 2.7 \times 3.0 \hat{k} \]\\\\\ \text{Torque} = -8.1\hat{k} \][/tex]

Therefore, the torque about the origin is [tex]\(-8.1\hat{k}\)[/tex].

(b) Torque about x=-1.3m, y=2.4m:

The position vector from the point (x=-1.3m, y=2.4m) to the point of application of the force is given by [tex]\(\vec{r} = (3.0 + 1.3)\hat{i} + (0 - 2.4)\hat{j} = 4.3\hat{i} - 2.4\hat{j}\)[/tex].

The torque about the point (x=-1.3m, y=2.4m) is calculated as:

[tex]\[ \text{Torque} = \vec{F} \times \vec{r} \]\\\ \text{Torque} = (1.3\hat{i} + 2.7\hat{j}) \times (4.3\hat{i} - 2.4\hat{j}) \][/tex]

Expanding the cross product:

[tex]\[ \text{Torque} = 1.3 \times (-2.4) - 2.7 \times 4.3 \hat{k} \]\\\ \text{Torque} = -11.04\hat{k} \][/tex]

Therefore, the torque about x=-1.3m, y=2.4m is [tex]\(-11.04\hat{k}\)[/tex].

Sketch:

Here is a sketch representing the situation:

The sketch represents the general idea and may not be to scale. The force vector and position vector are shown, and the torque is calculated about the specified points.

Know more about torque:

https://brainly.com/question/30338175

#SPJ4

Two dogs pull horizontally on ropes attached to a post; the angle between the ropes is 36.2 degrees. Dog A exerts a force of 11.1 N , and dog B exerts a force of 5.7 N . Find the magnitude of the resultant force. Express your answer in newtons.

Answers

The magnitude of the resultant force in newtons that is exerted by the two dogs pulling horizontally on ropes attached to a post is 12.6 N.

How to find the magnitude of the resultant force?

The sum of the two vectors gives the resultant vector. The formula to find the resultant force, R is R = √(A² + B² + 2AB cosθ).

Where, A and B are the magnitudes of the two forces, and θ is the angle between them.

The magnitude of the resultant force is 12.6 N. Let's derive this answer.

Given;

The force exerted by Dog A, A = 11.1 N

The force exerted by Dog B, B = 5.7 N

The angle between the two ropes, θ = 36.2°

Now we can use the formula to find the resultant force, R = √(A² + B² + 2AB cosθ).

Substituting the given values,

R = √(11.1² + 5.7² + 2(11.1)(5.7) cos36.2°)

R = √(123.21 + 32.49 + 2(11.1)(5.7) × 0.809)

R = √(155.7)R = 12.6 N

Therefore, the magnitude of the resultant force is 12.6 N.

Learn more about the resultant vector: https://brainly.com/question/28188107

#SPJ11

Points A and B lie between two infinite, uniformly charged
planes with surface charge densities ±σ. The potencial difference
ΔV = ΔA - ΔB is:

Answers

The potencial difference ΔV = ΔA - ΔB is:

ΔV = (σ/ε₀)•d

The expression for the potential difference between two points is given by ΔV= -∫E•dl where E is the electric field strength and dl is the infinitesimal displacement vector that leads from one point to the other point. This expression provides a clear indication that the potential difference is a path-dependent quantity, which means that the final result will vary depending on the path followed by dl. The potential difference between points A and B in the above-given figure can be calculated using the following expression: ΔV = -∫E•dl

Since the plates are uniformly charged, the electric field strength is constant in the region between the plates, and it points from the positive surface to the negative surface. We know that the electric field strength due to a uniformly charged plate is E=σ/2ε₀ where σ is the surface charge density of the plate and ε₀ is the electric permittivity of the free space. Thus, the electric field strength between the plates is given by E=σ/ε₀.

Since the path of dl lies perpendicular to the electric field strength E, we can simplify the above expression as follows: ΔV = -E•d where d is the distance between points A and B. Since the direction of the electric field strength is opposite to the direction of dl, we can simplify the above expression as follows: ΔV = E•dΔV = (σ/ε₀)•d The electric field strength between the plates is the same throughout the region between the plates.

Therefore, the potential difference between points A and B is given by ΔV = (σ/ε₀)•d.The potential difference between points A and B is ΔV = (σ/ε₀)•d.

Learn more about the potential difference: https://brainly.com/question/25895069

#SPJ11

A couple is on a Ferris wheel that's initially rotating at .74rad/s clockwise, and it stops after 5.3 full clockwise rotations (with a constant angular acceleration.) The seat the couple is on is 12m from the axis of rotation. (a) What is the wheel's final angular velocity, angular acceleration, angular displacement, and elapsed time? (b) What is the couple's initial and final tangential velocity, tangential acceleration, cen- tripetal acceleration, and magnitude of acceleration?

Answers

The wheel's final angular velocity is 0 rad/s, the angular acceleration is -0.74 rad/s^2 (negative due to the deceleration), the angular displacement is 10.6π rad (5.3 full rotations), and the elapsed time is 7.16 s.

To solve this problem, we can use the equations of rotational motion. Given that the wheel stops after 5.3 full clockwise rotations, we know the final angular displacement is 10.6π radians (since one full rotation is 2π radians).

We can use the equation of motion for angular displacement:

θ = ω_i * t + (1/2) * α * t^2

Since the wheel stops, the final angular velocity (ω_f) is 0 rad/s. The initial angular velocity (ω_i) is given as 0.74 rad/s (clockwise).

Plugging in the values, we get:

10.6π = 0.74 * t + (1/2) * α * t^2 (Equation 1)

We also know that the angular acceleration (α) is constant.

To find the final angular velocity, we can use the equation:

ω_f = ω_i + α * t

Since ω_f is 0, we can solve for the time (t):

0 = 0.74 + α * t (Equation 2)

From Equation 2, we can express α in terms of t:

α = -0.74/t

Substituting this expression for α into Equation 1, we can solve for t:

10.6π = 0.74 * t + (1/2) * (-0.74/t) * t^2

Simplifying the equation, we get:

10.6π = 0.74 * t - 0.37t

Dividing both sides by 0.37, we have:

t^2 - 2.86t + 9.03 = 0

Solving this quadratic equation, we find two possible solutions for t: t = 0.51 s and t = 5.35 s. Since the wheel cannot stop immediately, we choose the positive value t = 5.35 s.

Now that we have the time, we can substitute it back into Equation 2 to find the angular acceleration:

0 = 0.74 + α * 5.35

Solving for α, we get:

α = -0.74/5.35 = -0.138 rad/s^2

Therefore, the wheel's final angular velocity is 0 rad/s, the angular acceleration is -0.74 rad/s^2 (negative due to the deceleration), the angular displacement is 10.6π rad (5.3 full rotations), and the elapsed time is 5.35 s.

The couple's initial tangential velocity is 9.35 m/s (clockwise), the final tangential velocity is 0 m/s, the tangential acceleration is -1.57 m/s^2 (negative due to deceleration), the centripetal acceleration is 1.57 m/s^2, and the magnitude of acceleration is 1.57 m/s^2.

The tangential velocity (v_t) is related to the angular velocity (ω) and the radius (r) by the equation:

v_t = ω * r

At the start, when the wheel is rotating at 0.74 rad/s clockwise, the radius (r) is given as 12 m. Substituting these values, we find the initial

To learn more about displacement,

brainly.com/question/11934397

#SPJ11

If an object experiences a 3.5 m/s acceleration, what is the mass of the object if the net force acting
on the object 111 N?

Answers

The mass of the object is approximately 31.7 kg

The acceleration of an object is directly proportional to the net force acting on it, and inversely proportional to the mass of the object. This relationship is described by Newton's second law of motion:

[tex]F_{net} = m*a[/tex]

where [tex]F_{net}[/tex] is the net force acting on the object, m is the mass of the object, and a is the acceleration of the object.

In this problem, we are given that the net force acting on the object is 111 N and the acceleration of the object is 3.5 m/s^2. We can use Newton's second law to find the mass of the object:

[tex]m = F_{net} / a[/tex]

Substituting the given values, we get:

m = 111 N / 3.5 m/s^2 ≈ 31.7 kg

Therefore, the mass of the object is approximately 31.7 kg. That means if an object with a mass of 31.7 kg experiences a net force of 111 N, it will accelerate at a rate of 3.5 m/s^2.

Learn more about "mass of the object" : https://brainly.com/question/2537310

#SPJ11

a) In the Friction experiment. Compare My to W Which is larger? Why so ? b) In the Collisions experiment. Was the collision Elastic or Inelastic? Explain. c) In the Conservation of Energy experiment. The total energy seems to decrease after every bounce. Does that mean energy is not conserved? Where did that energy go? d) In the Newton's 2nd Law for Rotation experiment, if you make an error in measuring the diameter of the Drum, such that your measurement is larger than the actual diameter, how will this affect your calculated value of the Inertia of the system? Will this error make the calculated Inertia larger or smaller than the actual? (circle one). Explain.

Answers

a) W is larger than My because weight is typically greater than frictional force.

b) It depends on the specific circumstances; without more information, the nature of the collision cannot be determined.

c) The decrease in total energy does not violate the conservation of energy; energy is lost through factors like friction and deformation.

d) The calculated inertia will be larger than the actual inertia due to the error in measuring the diameter.

a) In the Friction experiment, W (weight) is larger than My (frictional force). This is because weight is the force exerted by the gravitational pull on an object, which is typically larger than the frictional force experienced by the object due to surface contact.

b) In the Collisions experiment, the nature of the collision (elastic or inelastic) would depend on the specific circumstances of the experiment. Without further information, it is not possible to determine whether the collision was elastic or inelastic.

c) In the Conservation of Energy experiment, the decrease in total energy after every bounce does not imply a violation of the conservation of energy. Some energy is lost due to factors such as friction, air resistance, and deformation of the objects involved in the experiment. This energy is usually converted into other forms such as heat or sound.

d) In the Newton's 2nd Law for Rotation experiment, if the measured diameter of the drum is larger than the actual diameter, it would result in a larger calculated value of the inertia of the system. This is because the inertia of a rotating object is directly proportional to its mass and the square of its radius. A larger measured diameter would lead to a larger calculated radius, thereby increasing the inertia value.

Learn more about the Conservation of Energy:

https://brainly.com/question/166559

#SPJ11

A block with a mass m = 2.48 kg is pushed into an ideal spring whose spring constant is k = 5260 N/m. The spring is compressed x = 0.076 m and released. After losing contact with the spring, the block slides a distance of d = 1.72 m across the floor before coming to rest.
Part (a) Write an expression for the coefficient of kinetic friction between the block and the floor using the symbols given in the problem statement and g (the acceleration due to gravity). (Do not neglect the work done by friction while the block is still in contact with the spring.)
Part (b) What is the numerical value of the coefficient of kinetic friction between the block and the floor?

Answers

A block with a mass m = 2.48 kg is pushed into an ideal spring whose spring constant is k = 5260 N/m, the numerical value of the coefficient of kinetic friction between the block and the floor is approximately 0.247.

The spring's work when compressed and released is equal to the potential energy contained in the spring.

This potential energy is subsequently transformed into the block's kinetic energy, which is dissipated further by friction as the block slides over the floor.

Work_friction = μ * m * g * d

To calculate the coefficient of kinetic friction (), we must first compare the work done by friction to the initial potential energy stored in the spring:

Work_friction = 0.5 * k * [tex]x^2[/tex]

μ * m * g * d = 0.5 * k * [tex]x^2[/tex]

μ * 2.48 * 9.8 * 1.72 m = 0.5 * 5260 *[tex](0.076)^2[/tex]

Solving for μ:

μ ≈ (0.5 * 5260 * [tex](0.076)^2[/tex]) / (2.48 * 9.8 * 1.72)

μ ≈ 0.247

Therefore, the numerical value of the coefficient of kinetic friction between the block and the floor is approximately 0.247.

For more details regarding kinetic friction, visit:

https://brainly.com/question/30886698

#SPJ4

Part (a) The coefficient of kinetic friction between the block and the floor is f_k = (1/ d) (0.5 k x² - 0.5 m v²)

Part (b) The numerical value of the coefficient of kinetic friction between the block and the floor is 0.218.

Part (a), To derive an expression for the coefficient of kinetic friction between the block and the floor, we need to use the conservation of energy. The block is released from the spring's potential energy and it converts to kinetic energy of the block. Since the block slides on the floor, some amount of kinetic energy is converted to work done by friction on the block. When the block stops, all of its energy has been converted to work done by friction on it. Thus, we can use the conservation of energy as follows, initially the energy stored in the spring = Final energy of the block

0.5 k x² = 0.5 m v² + W_f

Where v is the speed of the block after it leaves the spring, and W_f is the work done by the friction force between the block and the floor. Now, we can solve for the final velocity of the block just after leaving the spring, v as follows,v² = k x²/m2.48 kg = (5260 N/m) (0.076 m)²/ 2.48 kg = 8.1248 m/s

Now, we can calculate the work done by friction W_f as follows: W_f = (f_k) * d * cosθThe angle between friction force and displacement is zero, so θ = 0°

Therefore, W_f = f_k d

and the equation becomes,0.5 k x² = 0.5 m v² + f_k d

We can rearrange it as,f_k = (1/ d) (0.5 k x² - 0.5 m v²)f_k = (1/1.72 m) (0.5 * 5260 N/m * 0.076 m² - 0.5 * 2.48 kg * 8.1248 m/s²)f_k = 0.218

Part (b), The numerical value of the coefficient of kinetic friction between the block and the floor is 0.218 (correct to three significant figures).

Learn more about coefficient of kinetic friction

https://brainly.com/question/19392943

#SPJ11

The largest tendon in the body, the Achilles tendon, connects the calf muscle to the heel bone of the foot. This tendon is typically 16.0 cm long, 5.00 mm in diameter, and has a Young's modulus of 1.65 x 10° Pa. If an athlete has stretched the tendon to a length of 17.1 cm, what is the tension 7, in newtons, in the tendon?

Answers

When the Achilles tendon is stretched to a length of 17.1 cm, the tension in the tendon is approximately 2.22 newtons. By multiplying the stress by the cross-sectional area of the tendon, we  determine the tension in the tendon.

The strain (ε) in the tendon can be calculated using the formula ε = (ΔL / L), where ΔL is the change in length and L is the original length. In this case, the original length is 16.0 cm, and the change in length is 17.1 cm - 16.0 cm = 1.1 cm.

Using Hooke's Law, stress (σ) is related to strain by the equation σ = E * ε, where E is the Young's modulus of the material. In this case, the Young's modulus is given as 1.65 x 10^10 Pa.

To find the tension (F) in the tendon, we need to multiply the stress by the cross-sectional area (A) of the tendon. The cross-sectional area can be calculated using the formula A = π * (r^2), where r is the radius of the tendon. The diameter of the tendon is given as 5.00 mm, so the radius is 2.50 mm = 0.25 cm.

By plugging in the calculated values, we can determine the strain, stress, and ultimately the tension in the tendon.

Learn more about tendon here

https://brainly.com/question/31716179

#SPJ11

Light of two similar wavelengths from a single source shine on a diffraction grating producing an interference pattern on a screen. The two wavelengths are not quite resolved. How might one resolve the two wavelengths? Move the screen farther from the diffraction grating. Replace the diffraction grating by one with fewer lines per mm. Move the screen closer to the diffraction grating. Replace the diffraction grating by one with more lines per mm.

Answers

When two wavelengths from a single source shine on a diffraction grating, an interference pattern is produced on a screen. The two wavelengths are not quite resolved. One can resolve the two wavelengths by replacing the diffraction grating by one with more lines per mm.

A diffraction grating is an optical component that separates light into its constituent wavelengths or colors. A diffraction grating works by causing interference among the light waves that pass through the grating's small grooves. When two wavelengths of light are diffracted by a grating, they create an interference pattern on a screen.

A diffraction grating's resolving power is given by R = Nm, where R is the resolving power, N is the number of grooves per unit length of the grating, and m is the order of the diffraction maxima being examined. The resolving power of a grating can be improved in two ways: by increasing the number of lines per unit length, N, and by increasing the order, m. Therefore, one can resolve the two wavelengths by replacing the diffraction grating with more lines per mm.

To know more about wavelengths:

https://brainly.com/question/31143857


#SPJ11

2. A projectile is launched vertically from the surface of the earth at a speed of VagR, where R is the radius of the earth, g is the gravitational acceleration at the earth's surface and a is a constant which can be large. (a) Ignore atmospheric resistance and integrate Newton's second law of motion once in order to find the maximum height reached by the projectile in terms of R and a. (9) (b) Discuss the special case a = 2. (1)

Answers

The maximum height reached by a projectile launched vertically from the surface of the earth at a speed of VagR is R. In the special case a = 2, the projectile will escape the gravitational field of the earth and never return.

(a)The projectile's motion can be modeled by the following equation of motion:

      m*dv/dt = -mg

where, m is the mass of the projectile, v is its velocity, and g is the gravitational acceleration.

We can integrate this equation once to get:

      m*v = -mgh + C

where C is a constant of integration.

At the highest point of the projectile's trajectory, its velocity is zero. So we can set v = 0 in the equation above to get:

     0 = -mgh + C

This gives us the value of the constant of integration:

     C = mgh

The maximum height reached by the projectile is the height it reaches when its velocity is zero. So we can set v = 0 in the equation above to get:

     mgh = -mgh + mgh

This gives us the maximum height:

h = R

(b) In the special case a = 2, the projectile's initial velocity is equal to the escape velocity. This means that the projectile will escape the gravitational field of the earth and never return.

The escape velocity is given by:

∨e = √2gR

So in the case a = 2, the maximum height reached by the projectile is infinite.

To learn more about escape velocity click here; brainly.com/question/31201121

#SPJ11

113 ft3/min water is to be delivered through a 250 foot long smooth pipe with a pressure drop of 5.2 psi. Determine the required pipe diameter as outlined using the following steps: a) Use 3 inches as your initial guess for the diameter of the pipe and indicate what your next guess would be. b) During design, it is determined that the actual pipeline will include 7 standard elbows and two open globe valves. Show how your calculations for part a) would need to be modified to account for these fittings.

Answers

a) The next guess for the pipe diameter would be Y inches.

b) The modified calculations would include the equivalent lengths of the fittings to determine the required pipe diameter.

To determine the required pipe diameter, we can use the Darcy-Weisbach equation, which relates the pressure drop in a pipe to various parameters including flow rate, pipe length, pipe diameter, and friction factor. We can iteratively solve for the pipe diameter using an initial guess and adjusting it until the calculated pressure drop matches the desired value.

a) Using 3 inches as the initial guess for the pipe diameter, we can calculate the friction factor and the resulting pressure drop. If the calculated pressure drop is greater than the desired value of 5.2 psi, we need to increase the pipe diameter. Conversely, if the calculated pressure drop is lower, we need to decrease the diameter.

b) When accounting for fittings such as elbows and valves, additional pressure losses occur due to flow disruptions. Each fitting has an associated equivalent length, which is a measure of the additional length of straight pipe that would cause an equivalent pressure drop. We need to consider these additional pressure losses in our calculations.

To modify the calculations for part a), we would add the equivalent lengths of the seven standard elbows and two open globe valves to the total length of the pipe. This modified length would be used in the Darcy-Weisbach equation to recalculate the required pipe diameter.

Learn more about pipe diameter

brainly.com/question/29217739

#SPJ11

Current Attempt in Progress Visible light is incident perpendicularly on a diffraction grating of 208 rulings/mm. What are the (a) longest, (b) second longest, and (c) third longest wavelengths that can be associated with an intensity maximum at 0= 31.0°? (Show -1, if wavelengths are out of visible range.) (a) Number i Units (b) Number i Units (c) Number i Units

Answers

(a) The longest wavelength is approximately [sin(31.0°)]/(208 x [tex]10^{3}[/tex]) nm. (b) The second longest wavelength is approximately [sin(31.0°)]/(416 x [tex]10^{3}[/tex]) nm. (c) The third longest wavelength is approximately [sin(31.0°)]/(624 x [tex]10^{3}[/tex]) nm.

To find the longest, second longest, and third longest wavelengths associated with an intensity maximum at θ = 31.0°, we can use the grating equation, mλ = d sin(θ), where m represents the order of the maximum, λ is the wavelength, d is the grating spacing, and θ is the angle of diffraction.

Given the grating spacing of 208 rulings/mm, we convert it to mm and calculate the wavelengths associated with different orders of intensity maxima.

(a) For the longest wavelength (m = 1), we substitute m = 1 into the grating equation and find λ. (b) For the second longest wavelength (m = 2), we substitute m = 2 into the grating equation and find λ. (c) For the third longest wavelength (m = 3), we substitute m = 3 into the grating equation and find λ.

The final expressions for each wavelength contain the value of sin(31.0°) divided by the respective denominator. By evaluating these expressions, we can determine the numerical values for the longest, second longest, and third longest wavelengths.

To learn more about wavelength click here:

brainly.com/question/16051869

#SPJ11

A circular plate (radius 2) with a circular hole (radius )has a mass . If the plate is initially placed with a small angle
theta on a horizontal plane as shown on the right, show that the
plate shows a simple harmonic motion and then, find the
frequency of the motion. The plate is rolling without sliding on
the plane

Answers

The frequency of the simple harmonic motion of the rolling plate is[tex]\sqrt{(2 * g) / r)[/tex] / (2π).

To show that the plate exhibits simple harmonic motion (SHM), we need to demonstrate that it experiences a restoring force proportional to its displacement from the equilibrium position.

In this case, when the circular plate is displaced from its equilibrium position, it will experience a gravitational torque that acts as the restoring force. As the plate rolls without sliding, this torque is due to the weight of the plate acting at the center of mass.

The gravitational torque is given by:

τ = r * mg * sin(θ)

Where:

r = Radius of the circular plate

m = Mass of the plate

g = Acceleration due to gravity

θ = Angular displacement from the equilibrium position

For small angles (θ), we can approximate sin(θ) ≈ θ (in radians). Therefore, the torque can be written as:

τ = r * mg * θ

The torque is directly proportional to the angular displacement, which satisfies the requirement for SHM.

To find the frequency of the motion, we can use the formula for the angular frequency (ω) of an object in SHM:

ω = [tex]\sqrt{k / I}[/tex]

Where:

k = Spring constant (in this case, related to the torque)

I = Moment of inertia of the plate

For a circular plate rolling without sliding, the moment of inertia is given by:

I = (1/2) * m * r²

The spring constant (k) can be related to the torque (τ) through Hooke's Law:

τ = -k * θ

Comparing this equation to the equation for the torque above, we find that k = r * mg.

Substituting the values of k and I into the angular frequency formula, we get:

ω = √((r * mg) / ((1/2) * m * r²))

  = √((2 * g) / r)

The frequency (f) of the motion can be calculated as:

f = ω / (2π)

Substituting the value of ω, we obtain:

f = (√((2 * g) / r)) / (2π)

Therefore, the frequency of the simple harmonic motion for the rolling plate is (√((2 * g) / r)) / (2π).

To know more about simple harmonic motion refer here

https://brainly.com/question/2195012#

#SPJ11

Two simple clutch disks of equal mass 6.3 kg are initially separate. They also have equal radii of R=0.45 m. One of the disks is accelerated to 5.4 rad/s in time Δt = 1.8 s. They are then brought in contact and both start to sping together. Calculate the angular velocity of the two disks together.

Answers

To solve this problem, we can apply the principle of conservation of angular momentum. The angular momentum of the accelerated disk (L1) can be calculated by multiplying the moment of inertia and the initial angular velocity. The angular velocity of the two disks together after they are brought in contact is 2.70 rad/s.

where I1 is the moment of inertia of one disk and ω1 is the initial angular velocity of the accelerated disk.

Given that the mass of each disk is 6.3 kg and the radius is 0.45 m, the moment of inertia of each disk can be calculated as:

I1 = (1/2) * m * R^2

Substituting the values, we have:

I1 = (1/2) * 6.3 kg * (0.45 m)^2 = 0.635 kg·m^2

The angular momentum of the accelerated disk (L1) can be calculated by multiplying the moment of inertia and the initial angular velocity:

L1 = I1 * ω1 = 0.635 kg·m^2 * 5.4 rad/s = 3.429 kg·m^2/s

Since angular momentum is conserved, the total angular momentum of the two disks together after they are brought in contact will be equal to L1. Let's denote the final angular velocity of the two disks together as ωf.

The total moment of inertia of the two disks together can be calculated as the sum of the individual moments of inertia:

I_total = 2 * I1

Substituting the value of I1, we get:

I_total = 2 * 0.635 kg·m^2 = 1.27 kg·m^2

Using the conservation of angular momentum, we can write:

L1 = I_total * ωf

Solving for ωf, we have:

ωf = L1 / I_total = 3.429 kg·m^2/s / 1.27 kg·m^2 = 2.70 rad/s

Therefore, the angular velocity of the two disks together after they are brought in contact is 2.70 rad/s

To learn more about, angular momentum, click here, https://brainly.com/question/29897173

#SPJ11

QUESTION 3 What is the mutual inductance in nk of these two loops of wire? Loop 1 Leop 44 20 Both loops are rectangles, but the length of the horizontal components of loop 1 are infinite compared to the size of loop 2 The distance d-5 cm and the system is in vacuum

Answers

Mutual inductance is an electromagnetic quantity that describes the induction of one coil in response to a variation of current in another nearby coil.

Mutual inductance is denoted by M and is measured in units of Henrys (H).Given that both loops are rectangles, the length of the horizontal components of loop 1 are infinite compared to the size of loop 2. The distance d-5 cm and the system is in vacuum, we are to calculate the mutual inductance of both loops.

The formula for calculating mutual inductance is given as:

[tex]M = (µ₀ N₁N₂A)/L, whereµ₀ = 4π × 10−7 H/m[/tex] (permeability of vacuum)

N₁ = number of turns of coil

1N₂ = number of turns of coil 2A = area of overlap between the two coilsL = length of the coilLoop 1,Leop 44,20 has a rectangular shape with dimensions 44 cm and 20 cm, thus its area

[tex]A1 is: A1 = 44 x 20 = 880 cm² = 0.088 m²[/tex].

Loop 2, on the other hand, has a rectangular shape with dimensions 5 cm and 20 cm, thus its area A2 is:

[tex]A2 = 5 x 20 = 100 cm² = 0.01 m².[/tex]

To know more about electromagnetic visit:

https://brainly.com/question/23727978

#SPJ11

A proton is released from rest between two charged plates where
the electric field has a strength of 300 N/C. When the proton moves
1.5 cm toward the negative plate, what is its speed?

Answers

The speed of the proton, when it moves 1.5 cm toward the negative plate, is approximately 2.25 x 10^7 m/s.

The speed of the proton can be determined using the principles of electrostatics and motion under constant acceleration.

Electric field strength (E) = 300 N/C

Distance moved by the proton (d) = 1.5 cm = 0.015 m (since it moves towards the negative plate, it moves opposite to the electric field)

Initial velocity (u) = 0 m/s (released from rest)

We can calculate the acceleration experienced by the proton using the equation:

Acceleration (a) = E / m

Where:

m is the mass of the proton (approximately 1.67 x 10^-27 kg)

Substituting the given values:

a = 300 N/C / (1.67 x 10^-27 kg)

Now, we can use the equations of motion to find the final velocity (v) of the proton.

v² = u² + 2ad

Since the proton starts from rest (u = 0), the equation simplifies to:

v² = 2ad

Substituting the known values:

v² = 2 * a * d

Calculating the values:

a = 300 N/C / (1.67 x 10^-27 kg)

v² = 2 * (300 N/C / (1.67 x 10^-27 kg)) * 0.015 m

v ≈ 2.25 x 10^7 m/s

Therefore, the speed of the proton, when it moves 1.5 cm toward the negative plate, is approximately 2.25 x 10^7 m/s.

learn more about "proton":- https://brainly.com/question/1481324

#SPJ11

9 (10 points) A planet orbits a star. The period of the rotation of 400 (earth) days. The mass of the star is 6.00 * 1030 kg. The mass of the planet is 8.00*1022 kg What is the orbital radius?

Answers

The orbital radius of the planet is approximately 2.46 x 10^11 meters. To find the orbital radius of the planet, we can use Kepler's Third Law of Planetary Motion, which relates the orbital period, mass of the central star, and the orbital radius of a planet.

Kepler's Third Law states:

T² = (4π² / G * (M₁ + M₂)) * r³

Where:

T is the orbital period of the planet (in seconds)

G is the gravitational constant (approximately 6.67430 x 10^-11 m³ kg^-1 s^-2)

M₁ is the mass of the star (in kg)

M₂ is the mass of the planet (in kg)

r is the orbital radius of the planet (in meters)

Orbital period, T = 400 Earth days = 400 * 24 * 60 * 60 seconds

Mass of the star, M₁ = 6.00 * 10^30 kg

Mass of the planet, M₂ = 8.00 * 10^22 kg

Substituting the given values into Kepler's Third Law equation:

(400 * 24 * 60 * 60)² = (4π² / (6.67430 x 10^-11)) * (6.00 * 10^30 + 8.00 * 10^22) * r³

Simplifying the equation:

r³ = ((400 * 24 * 60 * 60)² * (6.67430 x 10^-11)) / (4π² * (6.00 * 10^30 + 8.00 * 10^22))

Taking the cube root of both sides:

r = ∛(((400 * 24 * 60 * 60)² * (6.67430 x 10^-11)) / (4π² * (6.00 * 10^30 + 8.00 * 10^22)))

= 2.46 x 10^11 metres

Therefore, the orbital radius of the planet is approximately 2.46 x 10^11 meters.

Learn more about orbital radius here:

https://brainly.com/question/14832572

#SPJ11

Object A, which has been charged to +13.96 nC, is at the origin.
Object B, which has been charged to -25.35 nC, is at x=0 and y=1.42
cm. What is the magnitude of the electric force on object A?

Answers

the magnitude of the electric force on Object A is 0.0426 N.

Given data:Object A charge = +13.96 nC.Object B charge = -25.35 nC.Object B location = (0, 1.42) cm.The formula used to find the magnitude of the electric force is:

F = k * q1 * q2 / r^2 where k is Coulomb's constant which is equal to 9 x 10^9 Nm^2/C^2.q1 and q2 are the charges of object A and object B, respectively.r is the distance between the objects.

To find the distance between Object A and Object B, we use the distance formula which is:d = sqrt((x2 - x1)^2 + (y2 - y1)^2)where x1 and y1 are the coordinates of Object A (which is at the origin) and x2 and y2 are the coordinates of Object B.Using the given data, we can calculate:d = sqrt((0 - 0)^2 + (1.42 - 0)^2)d = 1.42 cm = 0.0142 m

Now we can substitute all the values into the formula:F = k * q1 * q2 / r^2F = (9 x 10^9 Nm^2/C^2) * (13.96 x 10^-9 C) * (-25.35 x 10^-9 C) / (0.0142 m)^2F = -4.26 x 10^-2 N = 0.0426 N (to three significant figures)

Therefore, the magnitude of the electric force on Object A is 0.0426 N.

For further information on Electric force visit :

https://brainly.com/question/13099698

#SPJ11

The magnitude of the electric force on object A is 8.10×10⁻² N.

The electric force between two charges can be determined using Coulomb's Law which is defined as F = k q1 q2 / r², where F is the force exerted by two charges, q1 and q2, k is the Coulomb constant, and r is the distance between the two charges.

Coulomb's Law states that the electric force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

The electric force between object A and object B is given as F = k(q1q2 / r²)

Here, q1 = 13.96 nC and q2 = -25.35 nC.

Therefore, the electric force between object A and object B is given as F = k q1 q2 / r²

F = 9 x 10⁹ (13.96 x 10⁻⁹) (25.35 x 10⁻⁹) / (0.0142)²

F = 8.10 x 10⁻² N.

Thus, the magnitude of the electric force on object A is 8.10×10⁻² N.

Learn more about Coulomb's Law:

https://brainly.com/question/506926

#SPJ11

A small sphere of charge q = +68 MC and mass m = 5.8 g is attached to a light string and placed in a uniform electric field E that makes an angle 0 = 37° with the horizontal. The opposite end of the string is attached to a wall and the sphere is in static equilibrium when the string is horizontal as in Fig-
ure P15.22. (a) Construct a free body diagram for the sphere. Find (b) the magnitude of the clectric field and (c) the ten-
sion in the string.

Answers

The electric field is 8.53 × 10^-13 N/C, and the tension in the string is 2.68 mN.

(a) Free body diagram of the sphere is shown below.

(b)The electric force on the sphere is given by: F_el=qE[downward direction]

And, The gravitational force on the sphere is given by: F_gravity=mg[upward direction]

At equilibrium, the net force on the sphere is zero.

Therefore, F_el=F_gravityq

E=mg

=>E=mg/q

=5.8×10^-3/(68×10^6)C

=8.53×10^-13NC-1

(c)The tension in the string is equal in magnitude to the net force on the sphere in the vertical direction.

Tension= F_vertical= F_gravity- F_el

Since the sphere is in equilibrium, the magnitude of the tension must be equal to the vertical component of the gravitational force.

Hence,

Tension= F_gravity

sinθ= mg

sinθ=5.8×10^-3×9.

81×sin37°=2.68×10^-3N

=2.68 mN

Therefore,The electric field is 8.53 × 10^-13 N/C, and the tension in the string is 2.68 mN.

To learn more about electric visit;

https://brainly.com/question/31173598

#SPJ11

The resolving power of a refracting telescope increases with the diameter of the spherical objective lens. In reality, it is impractical to increase the diameter of the objective lens beyond approximately 1 m. Why?
a. If the objective lens is too large, it is difficult to keep it clean.
b. The resulting increase in light scattering from the surface of the objective lens will blur the image.
c. The spherical objective lens should be replaced by a paraboloidal objective lens beyond a 1-m diameter.
d. The increasing size of the objective lens will cause chromatic aberration to grow worse than spherical aberration.
e. The resultant sagging of the mirror will cause spherical aberration.

Answers

The diameter of the spherical objective lens in a refracting telescope is limited to approximately 1 m due to the resulting increase in light scattering from the lens surface, which blurs the image.

Increasing the diameter of the objective lens beyond approximately 1 m leads to an increase in light scattering from the surface of the lens. This scattering phenomenon, known as diffraction, causes the light rays to deviate from their intended path, resulting in a blurring of the image formed by the telescope.

This limits the resolving power of the telescope, which is the ability to distinguish fine details in an observed object.

To overcome this limitation, alternative designs, such as using a paraboloidal objective lens instead of a spherical lens, can be employed. Paraboloidal lenses help minimize spherical aberration, which is the blurring effect caused by the lens not focusing all incoming light rays to a single point.

Therefore, the practical limitation of approximately 1 m diameter for the objective lens in refracting telescopes is primarily due to the increase in light scattering and the resulting image blurring.

Learn more about refracting telescope here: brainly.com/question/1135506

#SPJ11

A 14 lb weight stretches a spring 2 feet. The weight hangs vertically from the spring and a damping force numerically equal to 7/2 ​ times the instantaneous velocity acts on the system. The weight is released from 1 feet above the equilibrium position with a downward velocity of 7ft/s. (a) Determine the time (in seconds) at which the mass passes through the equilibrium position. (b) Find the time (in seconds) at which the mass attains its extreme displacement from the equilibrium position. Round your answer to 4 decimals.

Answers

To solve this problem, we can use the equation of motion for a damped harmonic oscillator:

m * y'' + b * y' + k * y = 0

where m is the mass, y is the displacement from the equilibrium position, b is the damping coefficient, and k is the spring constant.

Given:

Weight = 14 lb = 6.35 kg (approx.)

Spring displacement = 2 ft = 0.61 m (approx.)

Damping coefficient = (7/2) * velocity

Let's solve part (a) first:

(a) Determine the time (in seconds) at which the mass passes through the equilibrium position.

To find this time, we need to solve the equation of motion. The initial conditions are:

y(0) = 1 ft = 0.305 m (approx.)

y'(0) = -7 ft/s = -2.134 m/s (approx.)

Since the damping force is numerically equal to (7/2) times the instantaneous velocity, we can write:

b * y' = (7/2) * y'

Plugging in the values:

b * (-2.134 m/s) = (7/2) * (-2.134 m/s)

Simplifying:

b = 7

Now we can solve the differential equation:

m * y'' + b * y' + k * y = 0

6.35 kg * y'' + 7 * (-2.134 m/s) + k * y = 0

Simplifying:

6.35 y'' + 14.938 y' + k * y = 0

Since the weight hangs vertically from the spring, we can write:

k = mg

k = 6.35 kg * 9.8 m/s^2

Simplifying:

k = 62.23 N/m

Now we have the complete differential equation:

6.35 y'' + 14.938 y' + 62.23 y = 0

We can solve this equation to find the time at which the mass passes through the equilibrium position.

However, solving this equation analytically can be quite complex. Alternatively, we can use numerical methods or simulation software to solve this differential equation and find the time at which the mass passes through the equilibrium position.

For part (b), we need to find the time at which the mass attains its extreme displacement from the equilibrium position. This can be found by analyzing the oscillatory behavior of the system. The period of oscillation can be determined using the values of mass and spring constant, and then the time at which the mass attains its extreme displacement can be calculated.

Unfortunately, without the numerical values for mass, damping coefficient, and spring constant, it is not possible to provide an accurate numerical answer for part (b).

To know more about damped harmonic oscillator click this link -

brainly.com/question/13152216

#SPJ11

Other Questions
According to evolutionary theory, the main reason that men and women have different approaches when it comes to dating and mating is that ______ a.men are more visually-oriented than women. b.women are physically weaker and more prone to diseases, including sexually- transmitted diseases. c.men can have many more offspring than women in their lifetimes, with minimal Question 6 [10 points]Let S be the subspace of R consisting of the solutions to the following system of equations4x2+8x3-4x40x1-3x2-6x3+6x4 = 0-3x2-6x3+3x4=0Give a basis for S. A radio station transmits isotropic Car in all directions) eletromagnetic radiation at fresurney 928 M Hz. At a certain distance from the caulio station the chave intensity I = 0.335 W/m IS a) what will be the intensity of the wave at half distance from the radio station? b) What is the mave length of the transmitted signale c) If the power of the antenna is 6 MHz, At what distance from the source will the intenste p ve be O. 168 W/m ? of the d) And, what will be the absorption pressure exerted by the wave at that distance? e) And what will be the effectue electric field. crins) exerted by the by the wave at that distance? Characterization is the process by which the writer reveals the personality of a character. This week you will read a section of a story from the book Esperanza Rising. The section titled House on Mango Street (pages 145-146) is narrated by Esperanza. After reading this section analyze the narrator of the story (Esperanza) by answering the following questions:How would you describe Esperanza?Describe Esperanzas family's social-economic condition. Brittany invests $1000 into a savings account with an annual simple interest rate of 3%. Her bank charges no annual fees. How much will Suzy have after 5 years? Show your work. 4. . In What Way Is The Underwriting Process Different For Surety Bonding And Fire Insurance?5. Describe The Two Broad Categories Of Financial Guaranty Insurance.6. Describe the business activities of financial guarantors that created their financial difficulty in 2007 and 2008 Please give final answer of both parts that which oneis true or it in 20 minutes please... I'll give you upthumb definitely19. Financial innovations were the primary cause for the financial crisis of \( 2007-2009 \). 20. Bank managers should always seek the highest return possible on their assets. note the number of weeks of gestational age. is this babypremature? Consider the block-spring-surface system in part (B) of Example 8.6.(a) Using an energy approach, find the position x of the block at which its speed is a maximum. Raja's is 200cm tall. His friend Anjum is 250cmtall. what is the ratio of their heights in it'sSimplest from form. Worth a 100 points!The question is in the attachment below. whyis this both true and false about colonists came to tbe new worldfor freedom of religion? 5. Given a term structure of 6.4%,7.0%,7.5%,8.2%, and 8.6% for 1 to 5 years T-bonds, what is the forward rate of interest on a three-year security two years from today (i.e., for the third year, or the expected 3-year interest rate for the third year, E( 3r3),? Two uncharged conducting spheres are separated by a distance d. When charge - Qis moved from sphere A to sphere, the Coulomb force between them has magnitude For HINT (a) is the Coulomb force attractive or repulsive? attractive repulsive (b) an additional charge ou moved from A to , what is the ratio of the new Coulomb force to the original Cowomb force, Chane (If shere is neutralized so it has no net charge, what is the ratio of the new to the original Coulomb forbe, Need Holo how import is our social development? What happens when we are not socialized appropriately, i.e. we don't learn acceptable social norms, rules, and cues? What are the consequences of those who are socialized to believe delinquency and criminality are the norm?please type short like 200-300 The net operating income of a property is a good measure for comparing the ability of a property to create value since it does not take into account the capital structure of the property. The capital structure of a property refers to how the property is being financed.True/False Which of the following hormones helps to prepare the breasts for lactation? Thrombopoietin Human chorionic gonadotropin Human placental lactogeni ANP 4. A rescue plane wants to drop supplies to isolated mountain climbers on a rocky ridge 347.67 m below. Assume the plane is travelling horizontally with a speed of 79.247 m/s. The speed (m/s) of the supplies as it reaches the mountain climbers is: Inflating your expenses for a companysponsored conference that discredits the profession is a violation of what ethical standard? In the United States, in recent years, most women who have abortions are in their 20 s, get the abortion during the first twelve weeks of pregnancy, and say that they are seeking an abortion because having a child would interfere with other aspects of their lives. 1) True 2) False Steam Workshop Downloader