1. Using a block-and-tackle, a mechanic pulls 8. 2 m of chain with a force of 90 N in


order to lift a 320 N motor to a height of 2. 9 m.


a) What is the AMA( Actual mechanical advantage) 10 points


b) What is the IMA (Ideal Mechanical Advantage) 10 points


c. What is the efficiency of the block-and-tackle? (10 points)

Answers

Answer 1

The Actual Mechanical Advantage (AMA) is the ratio of the output force to the input force and can be calculated by dividing the output force (320 N) by the input force (90 N). This gives an AMA of 3.556.

What is force?

Force is an external influence that causes an object to move, stop, accelerate, or change direction. It is expressed in a variety of ways, such as the push of a hand, the pull of gravity, or a blast of air. It can also be expressed in terms of energy, such as sound waves, radiation, or electrical current. Force is a vector quantity, meaning it has both magnitude and direction. This means that when two forces act on an object, the result is the sum of the forces acting in the same direction, and the difference of the forces acting in opposite directions.

a) The Actual Mechanical Advantage (AMA) is the ratio of the output force to the input force and can be calculated by dividing the output force (320 N) by the input force (90 N). This gives an AMA of 3.556.

b) The Ideal Mechanical Advantage (IMA) is the ratio of the output distance to the input distance and can be calculated by dividing the output distance (2.9 m) by the input distance (8.2 m). This gives an IMA of 0.353.

c) The efficiency of the block-and-tackle can be calculated by dividing the AMA by the IMA and multiplying by 100. This gives an efficiency of 100 x 3.556/0.353 = 1008.8%. This means that the block-and-tackle is able to convert 1008.8% of the input force into output force.

To learn more about force

https://brainly.com/question/12785175

#SPJ4


Related Questions

A spaceship has four thrusters for movement. Each thruster can fire exhaust gases away from the ship, causing it to move. Firing which pairs of thrusters together would cause the ship to remain stationary?

Thrusters 1 and 2

, Thrusters 1 and 2 , ,

Thrusters 1 and 3

, Thrusters 1 and 3 , ,

Thrusters 3 and 4

, Thrusters 3 and 4 , ,

Thrusters 2 and 3

, Thrusters 2 and 3 , ,

Thrusters 1 and 4

, Thrusters 1 and 4 , ,

Thrusters 2 and 4

Answers

The two pairs of thrusters that would cause the spaceship to remain stationary when fired together are: Thrusters 1 and 2, and Thrusters 3 and 4.

Thrust is the force that propels an object forward, and it is created by the expulsion of gas or liquid out of a nozzle. In the case of a spaceship, the thrusters create thrust by expelling exhaust gases away from the ship, which propels it forward.

Now, let's consider the thrusters on this spaceship. There are four thrusters available for movement, which means that there are six possible pairs of thrusters that can be fired together. However, not all of these pairs will result in the ship remaining stationary.

To keep the spaceship stationary, the thrusters need to create an equal and opposite force to cancel out the movement created by the other thrusters. This means that the pairs of thrusters that need to be fired together are those that are opposite each other.

we need to consider the opposite forces acting on the ship. If two thrusters generate equal and opposite forces, the net force will be zero, and the spaceship will remain stationary.

Assuming the thrusters are arranged symmetrically around the spaceship, firing Thrusters 1 and 2 together or Thrusters 3 and 4 together would likely create equal and opposite forces. This is because the forces generated by these pairs would cancel each other out, keeping the ship stationary.

Therefore, the two pairs of thrusters that would cause the spaceship to remain stationary when fired together are Thrusters 1 and 2, and Thrusters 3 and 4.

To know more about thrusters, refer here:

https://brainly.com/question/30154005#

#SPJ11

Complete question:

A spaceship has four thrusters for movement. Each thruster can fire exhaust gases away from the ship, causing it to move. Firing which pairs of thrusters together would cause the ship to remain stationary?

Select two that apply

Thrusters 3 and 4

Thrusters 1 and 2

Thrusters 1 and 3

Thrusters 2 and 4

Thrusters 2 and 3

Thrusters 1 and 4

a 1.06den silk fiber has reached its maximum tenacity value. how many grams (force) would it take to rupture such fiber when dry?

Answers

It would take approximately 4.77 grams (force) to rupture a 1.06 denier silk fiber when dry at its maximum tenacity value.

To calculate the force needed to rupture a 1.06 denier silk fiber at its maximum tenacity value when dry, you can follow these steps:
1. Convert the denier (den) to grams per meter (g/m): 1.06 den is equal to 1.06 grams per 9,000 meters (1 den = 1 g/9,000 m).
2. Calculate the length of the fiber in meters: 1.06 g / (1.06 g/9,000m) = 9,000 meters.
3. Determine the maximum tenacity value of silk fiber, which is typically around 4-5 grams/force per denier (g/den) when dry. Let's assume a maximum tenacity value of 4.5 g/den.
4. Calculate the force required to rupture the fiber: 1.06 den × 4.5 g/den = 4.77 grams (force).
Therefore, it would take approximately 4.77 grams (force) to rupture a 1.06 denier silk fiber when dry at its maximum tenacity value.

Learn more about tenacity value here:-

https://brainly.com/question/30673054

#SPJ11

How much time does it take light from a flash camera
to reach a subject 6.0 meters across a room?

Answers

it takes a light from a flash camera to reach a subject 6.0 meters across a room in scientific notation is 2.0 *10^-8 seconds.

How do we calculate?

we apply the  equation shown below:

v=d/t

where t= time

d = distance

v = velocity

Therefore  time =distance /velocity

distance =6m

v=3*10^8 m/s

time =6m/3*10^8 m/s

time =2*10^-8 seconds

Therefore,  the time it takes light from a flash camera to reach a subject 6.0 meters across a room in scientific notation is 2.0 *10^-8 seconds

Learn more about time  at:

brainly.com/question/24401676

#SPJ1

Within 20 nanoseconds, photo subjects standing at a distance of 6.0 metres receive the flash from the camera.

How to find the time

The speed of light, a rate equal to an estimated 3 x 10^8 meters per second, determines the amount of time it takes for light to travel from the flash camera's source to a subject standing six meters away.

Employing the formula

Speed = distance / time

Then

time = distance / speed

where

distance  = 6.0 meters and

speed = 3 x 10^8

time = 6.0 / 3 x 10^8

time = 2 x 10^-8

time = 20.0 nanoseconds

Learn more about light  at

https://brainly.com/question/104425

#SPJ1

It has been argued that power plants should make use of off-peak hours (such as late at night) to generate mechanical energy and store it until it is needed during peak load times, such as the middle of the day. one suggestion has been to store the energy in large flywheels spinning on nearly frictionless ball-bearings. consider a flywheel made of iron, with a density of 7800 kg/m3 , in the shape of a uniform disk with a thickness of 11.6 cm .part a
what would the diameter of such a disk need to be if it is to store an amount of kinetic energy of 13.7 mj when spinning at an angular velocity of 92.0 rpm about an axis perpendicular to the disk at its center?part b
what would be the centripetal acceleration of a point on its rim when spinning at this rate?

Answers

The diameter of the disk would need to be approximately 1.08 m to store 13.7 MJ of kinetic energy when spinning at 92.0 rpm. The centripetal acceleration of a point on the rim of the disk would be approximately 332.6 m/s².

The moment of inertia of a uniform disk rotating about an axis perpendicular to the disk through its center is given by the formula:

I = (1/2) * M * R²

where I is the moment of inertia, M is the mass of the disk, and R is the radius of the disk.

The mass of the disk can be calculated using its volume and density:

M = ρ * V =

= ρ * π * R² * h

where ρ is the density of the iron, π is the mathematical constant pi, R is the radius of the disk, and h is the thickness of the disk.

Substituting the given values, we get:

M = 7800 kg/m³ * π * (0.116 m/2)² * 0.116 m

M = 8.4 kg

The kinetic energy of the spinning disk can be calculated using the formula:

K = (1/2) * I * ω²

where K is the kinetic energy, I is the moment of inertia, and ω is the angular velocity of the disk.

Substituting the given values, we get:

13.7 MJ = (1/2) * (8.4 kg * (0.116 m/2)²) * (92.0 rpm * 2π/60)²

Solving for R, we get:

R = 0.539 m

The centripetal acceleration of a point on the rim of the disk can be calculated using the formula:

a = ω² * R

where a is the centripetal acceleration, ω is the angular velocity of the disk, and R is the radius of the disk.

Substituting the given values, we get:

a = (92.0 rpm * 2π/60)² * 0.539 m

a = 332.6 m/s²

To know more about angular velocity, here

brainly.com/question/30885221

#SPJ4

a pollen grain is placed in water state and explain the direction in which it moves​

Answers

Answer:

When a pollen grain is placed in water, it may exhibit movement due to various factors such as osmosis, surface tension, and water absorption. The direction in which the pollen grain moves can depend on these factors and the specific characteristics of the pollen grain.

Osmosis: Osmosis is the movement of water molecules across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration. If the pollen grain has a higher solute concentration than the surrounding water, water molecules will move into the pollen grain, causing it to swell or expand. This can result in movement towards areas of lower water concentration.

Surface Tension: Surface tension is the property of a liquid that allows it to resist external forces. The surface tension of water can cause the pollen grain to be pulled or dragged along the surface of the water, creating movement in a particular direction. This movement is influenced by the shape and weight distribution of the pollen grain.

Water Absorption: The outer covering of a pollen grain, called the exine, may have the ability to absorb water. As water is absorbed, the pollen grain can become hydrated and change in size and weight. This change in physical properties can lead to movement in a specific direction.

It's important to note that the direction of movement may not always be uniform or predictable, as it can be influenced by multiple factors and the unique characteristics of the pollen grain. Additionally, external factors such as water currents or agitation can also affect the movement of the pollen grain in water.

Observing the actual movement of a pollen grain in water would provide a more accurate understanding of its specific direction and behavior in that particular instance.

mary is an avid game show fan and one of the contestants on a popular game show. she spins the wheel, and after 5.5 revolutions, the wheel comes to rest on a space that has a $1500 value prize. if the initial angular speed of the wheel is 3.35 rad/s, find the angle through which the wheel has turned when the angular speed reaches

Answers

The angle through which the wheel has turned when the angular speed reaches 0 is 5.60 radians.

To find the angle through which the wheel has turned when the angular speed reaches a certain value, we can use the formula for angular displacement. Angular displacement is the change in the angle of rotation of an object and is measured in radians.

The formula for angular displacement is given by:

θ = ω*t + (1/2)αt^2

where θ is the angular displacement in radians, ω is the initial angular speed in radians per second, α is the angular acceleration in radians per second squared, and t is the time in seconds.

In this problem, we need to find the angle through which the wheel has turned when the angular speed reaches some value. Let's call this final angular speed ω₁. We can set up two equations using the given information and the formula for angular displacement:

5.5 revolutions = 5.5*2π radians = 34.56 radians

θ = 34.56 radians - 0 radians (initial position)

θ = ω*t + (1/2)αt^2

At the point where the wheel comes to rest, ω₁ = 0, so we can solve for the time t it takes for the wheel to come to rest:

ω₁ = ω + α*t

0 = 3.35 rad/s + α*t

t = -3.35/α

Substituting this expression for t into the equation for angular displacement, we get:

θ = ω*(-3.35/α) + (1/2)α(-3.35/α)^2

Simplifying, we get:

θ = -3.35*(3.35/α) + (1/2)*3.35^2/α

θ = -11.2225/α + 5.625

Now we can use the fact that the final prize value is $1500 to solve for the angular acceleration α:

$1500 = (1/2)Iω_f^2

The moment of inertia I for a disc is (1/2)mr^2, where m is the mass and r is the radius. We can assume a reasonable value for the radius of the wheel, say 0.3 meters, and the mass of the wheel is not given, so we will leave it as a variable m:

$1500 = (1/2)(1/2)m(0.3)^2(0)^2

Solving for m, we get:

m = 6666.67 kg

The angular acceleration can be found using the formula:

α = (τ/I)

where τ is the torque and I is the moment of inertia.

The torque τ can be found using the formula:

τ = r*F

where r is the radius and F is the force.

We can assume a reasonable force, say 100 N:

τ = 0.3100 = 30 Nm

Substituting the values for moment of inertia and torque, we get:

α = (30/((1/2)m(0.3)^2))

α = 139.87 rad/s^2

Now we can substitute this value for α into the equation for angular displacement to get:

θ = -11.2225/139.87 + 5.625

θ = 5.60 radians

To learn more about wheel click on,

https://brainly.com/question/13891016

#SPJ4

Use the internet or consult your senior in your locality to search for the scope of different branches of science.based on your findings prepare a presentation or report on the scope of science

Answers


There are many different branches of science, each with its own unique scope and focus. Some of the major branches of science include:

1. Physics: The study of matter and energy, and the interactions between them. This includes the study of mechanics, thermodynamics, electromagnetism, and quantum mechanics.

2. Chemistry: The study of matter and its properties, including the composition, structure, properties, and reactions of substances. This includes organic chemistry, inorganic chemistry, and physical chemistry.

3. Biology: The study of living organisms and their interactions with each other and the environment. This includes the study of genetics, evolution, ecology, and biochemistry.

4. Earth Science: The study of the physical and chemical properties of the Earth, including geology, meteorology, and oceanography.

5. Astronomy: The study of the universe and its contents, including planets, stars, galaxies, and other celestial bodies.

6. Computer Science: The study of computation and information processing, including software engineering, artificial intelligence, and computer graphics.

The scope of each branch of science is vast and constantly evolving with new discoveries and advancements. The study of science can lead to a wide range of careers, including research and development, healthcare, engineering, and education, among others. Science also plays an important role in addressing global challenges such as climate change, disease prevention, and sustainable development. Overall, the scope of science is vast and diverse, and offers many opportunities for learning, discovery, and innovation.

The ceiling in your new bedroom is slanted. Still, you want to attach a wooden shelf to it. In your plan, the 70. 0 cm, uniform, 50. 0 N shelf is supported horizontally by two vertical wires attached to the sloping ceiling A shelf is supported horizontally by two vertical wires attached to the inclined ceiling. The left wire is 25. 0 centimeters long and it is attached to the left edge of the shelf. The right wire is 75. 0 centimeters long and it is attached to a point on the shelf 20. 0 centimeters to the left of its right edge. A tool is placed on the shelf midway between the points where the wires are attached to it. Installing the shelf, you forget a very small 20. 0 N tool midway between the points where the wires are attached to it

Answers

The tension in the left wire is 29.4 N, and the tension in the right wire is 73.5 N.

To find the tension in the wires, we can use the principle of equilibrium. The sum of the forces in the x-direction must be zero since the shelf is not moving horizontally. The weight of the shelf and the tool act downwards, and the tensions in the wires act upwards.

Let's call the angle between the ceiling and the horizontal θ. The weight of the shelf and the tool is W = (70.0 N + 20.0 N) = 90.0 N. The weight can be split into components perpendicular and parallel to the ceiling:

W⊥ = W cosθ = 90.0 N cosθW∥ = W sinθ = 90.0 N sinθ

The tension in the left wire can be split into components parallel and perpendicular to the ceiling:

T₁∥ = T₁ sinθT₁⊥ = T₁ cosθ

The tension in the right wire can also be split into components parallel and perpendicular to the ceiling:

T₂∥ = T₂ sinθT₂⊥ = T₂ cosθ

Now we can write the equilibrium equations:

ΣF⊥ = T₁⊥ + T₂⊥ - W⊥ = 0ΣF∥ = T₁∥ - T₂∥ - W∥ = 0

Solving for T₁ and T₂ gives:

T₁ = W⊥ - T₂⊥ = 29.4 NT₂ = (W∥ + T₁∥)/sinθ = 73.5 N

To know more about the Wire, here

https://brainly.com/question/14637128

#SPJ4

An Oceanic Plate is subducting on it's eastern side, what is the most likely boundary type on the western side of the plate?

Answers

If an oceanic plate is subducting on its eastern side, the most likely boundary type on the western side of the plate would be a divergent boundary. This is because as the plate subducts and sinks beneath another plate, it is being destroyed, and new magma is being produced at the divergent boundary to replace it. The new magma then rises to the surface, creating new oceanic crust. Therefore, the western side of the plate would be moving away from the eastern side, creating a divergent boundary.

Jake wants to prove the theorem that says that the measure of the quadrilateral's opposite angles add to 180°

Answers

Jake wants to prove the theorem that states that the measure of the opposite angles of a quadrilateral add up to 180 degrees.

This theorem is also known as the "opposite angles theorem." To prove this, Jake could use several methods, including the use of geometric proofs, algebraic proofs, or even visual aids such as diagrams or sketches.

One way to approach the proof would be to divide the quadrilateral into two triangles and show that the sum of the angles in each triangle equals 180 degrees.

Jake could then use this information to prove that the opposite angles of the quadrilateral add up to 180 degrees as well. Another approach would be to use the properties of parallel lines and transversals to show that the opposite angles are supplementary (i.e., add up to 180 degrees).

Regardless of the method used, the opposite angles theorem is a fundamental concept in geometry that is used to solve a variety of problems involving quadrilaterals.

To learn more about geometry, refer below:

https://brainly.com/question/31408211

#SPJ11

A light ray of wavelength 589 nm traveling through air strikes a smooth, flat slab of crown glass at an angel of 30.0° to the normal. what is the angel of refraction (o.)? 15.2 degrees o 16.2 degrees 18.2 degrees 19.2 degrees​

Answers

The angle of refraction is 19.2 degrees. The angle of refraction can be calculated using Snell's law, which states that n1sin(theta1) = n2sin(theta2), where n1 and n2 are the indices of refraction of the two mediums and theta1 and theta2 are the angles of incidence and refraction respectively.

In this case, the incident medium is air with an index of refraction of approximately 1, and the refractive index of crown glass is around 1.52. Therefore, we can write:

1sin(30.0°) = 1.52sin(theta2)

Solving for theta2, we get:

theta2 = sin⁻¹(1sin(30.0°)/1.52) = 19.2°

Therefore, the angle of refraction is 19.2 degrees.

To know more about the angle of refraction here:

https://brainly.com/question/2568474

#SPJ11

When 3. 0 kg of water is cooled from 80. 0°C to 10. 0°C, how much heat energy is lost?​

Answers

When 3.0 kg of water is cooled from 80.0°C to 10.0°C, a certain amount of heat energy is lost. This loss of heat energy is due to the water releasing energy to the surrounding environment as it cools down. To calculate the amount of heat energy lost, we can use the specific heat capacity of water and the formula Q=mcΔT.

The specific heat capacity of water is 4.184 J/g°C, which means it takes 4.184 Joules of energy to raise the temperature of 1 gram of water by 1 degree Celsius. The mass of the water in this scenario is 3.0 kg, which is equal to 3000 grams. The change in temperature is 80.0°C - 10.0°C = 70.0°C, which is represented by ΔT.

Using the formula Q=mcΔT, we can calculate the heat energy lost by the water:
Q = (3000g)(4.184 J/g°C)(70.0°C)
Q = 879,360 J

Therefore, when 3.0 kg of water is cooled from 80.0°C to 10.0°C, it loses 879,360 Joules of heat energy. This energy is released to the surrounding environment, causing a decrease in the temperature of the water. It is important to note that the specific heat capacity of water is relatively high, which means it takes a lot of energy to heat or cool water compared to other substances.

To know more about heat energy refer here

https://brainly.com/question/29210982#

#SPJ11

help on physics equations

Answers

[tex]7. C^{14} _{6} ======== e^{0} _{-1} + N^{14} _{7}[/tex]

[tex]8. Th^{234} _{90}======== C^{234} _{91} + e^{0} _{-1}[/tex]

[tex]9. Pa^{234} _{91} ========= U^{234} _{92} + e^{0} _{-1}[/tex]

[tex]10. H^{3} _{1} ======== \beta^{0} _{-1} + He^{3} _{2}[/tex]

[tex]11. Be^{9} _{4} + H^{1} _{1} ========= He^{4} _{2} + Li^{6} _{3}[/tex]

[tex]12 .C^{15} _{6} + n^{1} _{0} ======== C^{16} _{6}[/tex]

[tex]13. Al^{27} _{13} + H^{2} _{1} ======== He^{4} _{2} + mg^{25} _{12}[/tex]

[tex]14. Sc^{45} _{21} + n^{1} _{0} ========= K^{42} _{19} + He^{4} _{2}[/tex]

[tex]15. U^{233} _{92} =========== He^{4} _{2} + Th^{229} _{90}[/tex]

Nuclear reactions are balance.

One or more nuclides are created during nuclear reactions when two atomic nuclei or one atomic nucleus and a subatomic particle collide. The responding nuclei, also known as the parent nuclei, are not the same as the nuclides that result from nuclear reactions. Nuclear reaction is always balance.

To know more about nuclear reaction :

https://brainly.com/question/16526663

#SPJ1.

The density of mercury is 13. 6 g/cm³

Calculate the mass of :

a) 1 cm³ of mercury

b) 10 cm³ of mercury

Answers

Density=mass/volume
Mass=density*volume

a)Mass=13.6 g
b)Mass=136 g

Hope this helps :)

1). The mass of 1 cm³ of mercury is 13.6 g.

2). The mass of 10 cm³ of mercury is 136 g.

1) The mass of 1 cm³ of mercury can be calculated using the density formula:

density = mass / volume

Rearranging the formula to solve for mass, we get:

mass = density x volume

Plugging in the values:

density = 13.6 g/cm³

volume = 1 cm³

mass = 13.6 g/cm³ x 1 cm³

mass = 13.6 g

b) Similarly, to find the mass of 10 cm³ of mercury, we can use the same formula:

mass = density x volume

Plugging in the values:

density = 13.6 g/cm³

volume = 10 cm³

mass = 13.6 g/cm³ x 10 cm³

mass = 136 g

To know more about mercury refer here

https://brainly.com/question/28422859#

#SPJ11

What kind of acceleration occurs when an object speeds up?

Answers

Ans. positive acceleration

When an object is speeding up, the acceleration is in the same direction as the velocity. Thus, this object has a positive acceleration.

The molar specific heat of a diatomic gas is measured at constant volume and found to be 29. 1 J/mol · K. The types of energy that are contributing to the molar specific heat are(a) translation only(b) translation and rotation only(c) translation and vibration only(d) translation, rotation, and vibration

Answers

Option (d) translation, rotation, and vibration is the correct answer for energies contributing to the molar specific heat of 29. 1 J/mol · K of a diatomic gas is measured at constant volume.

The molar specific heat of a diatomic gas is measured at constant volume and found to be 29.1 J/mol·K. To determine the types of energy contributing to the molar specific heat, let's consider the options: translation, rotation, and vibration.

For a diatomic molecule, the translational degrees of freedom are 3, as it can move in the x, y, and z directions. The rotational degrees of freedom are 2, since it can rotate around two axes. The vibrational degrees of freedom for a diatomic molecule are 1, as there is only one mode of vibration.

According to the equipartition theorem, each degree of freedom contributes (1/2)R to the molar specific heat at constant volume (Cv), where R is the gas constant (8.314 J/mol·K).

Let's calculate the molar specific heat (Cv) for each type of energy:

(a) Translation only:
Cv = (3/2)R = (3/2)(8.314) = 12.471 J/mol·K

(b) Translation and rotation only:
Cv = (3/2 + 2/2)R = (5/2)(8.314) = 20.785 J/mol·K

(c) Translation and vibration only:
Cv = (3/2 + 1/2)R = (4/2)(8.314) = 16.628 J/mol·K

(d) Translation, rotation, and vibration:
Cv = (3/2 + 2/2 + 1/2)R = (6/2)(8.314) = 24.942 J/mol·K

Comparing the calculated molar specific heat values with the given value of 29.1 J/mol·K, none of the options match exactly. However, option (d) is the closest, which includes translation, rotation, and vibration. While it doesn't perfectly match the given value, it is the most plausible answer based on the available options.

Learn more about molar specific heat at: https://brainly.com/question/21052046

#SPJ11

Brainliest if correct!_A particle is projected vertically upwards from a fixed point O. The speed of projection is u m/s. The particle returns to O 4 seconds later. Find:
a) the value of u
b) the greatest height reached by the particle
c) the total time of which the particle is at a height greater than half its greatest height
Thank you so much!

Answers

The velocity, u, has a value of 19.6 m/s. The particle has a maximum height of 19.6 m. The particle spends a total of 2.33 s at a height more than half of its highest height.

What does the velocity, u, equal?

We can apply the formula for the period of flight of a vertically projected particle to determine the value of the velocity, u: t = 2u/g.

After 4 seconds, the particle returns to the same location, therefore we have:

2t = 4

When the value of t is substituted in the first equation, we obtain:

u = gt/2 = 9.8 x 2

u = 19.6 m/s

b) The formula for the maximum height attained by a vertically projected particle can be used to determine the particle's greatest height:

h = u²/2g

Substituting the value of u, we get:

h = 19.6²/(2 x 9.8)

h = 19.6 m

b) We can first determine the height at which the particle is half its greatest height in order to determine the total amount of time the particle is at a height higher than half its greatest height:

[tex]h/2 = (u^2/2g)/2 = u^2/4g[/tex]

Substituting the value of u, we get:

[tex]h/2 = 19.6^2/(4 x 9.8) = 24.01 m[/tex]

Therefore, when the particle is over 24.01 m, it is at a height that is larger than half of its maximum height.

Next, we can determine how long it took the particle to ascend to this height:

[tex]h = ut - (1/2)gt^224.01 = 19.6t - (1/2)9.8t^2[/tex]

Solving this quadratic equation, we get:

t =2.33s or t=4.10 s

The particle ascends to a height of 24.01 m in 2.33 seconds, and it descends to the ground in 1.67 seconds (4 - 2.33).

To know more about velocity visit:-

https://brainly.com/question/17127206

#SPJ1




Artificial satellites are put into space for scientific research.


The satellites are carried into space by rockets.


(a) A rocket accelerates steadily from rest and reaches 8000 m/s after travelling 1680 000 m.


Calculate the time, in minutes, it takes the rocket to reach this speed.

Answers

It takes the rocket approximately 28,011.2 minutes, or about 19.4 days, to reach the speed of 8000 m/s.

The time it takes for the rocket to reach 8000 m/s can be found using the equation:

v = at

where v is the final velocity, a is the acceleration, and t is the time taken. We can rearrange the equation to solve for t:

t = v / a

The acceleration of the rocket can be found by dividing the change in velocity by the distance traveled:

a = (8000 m/s - 0 m/s) / 1680000 m

a = 0.00476 m/s²

Substituting this into the equation for time, we get:

t = 8000 m/s / 0.00476 m/s²

t = 1,680,672 seconds

Converting this to minutes, we get:

t = 28,011.2 minutes

As a result, it takes the rocket roughly 28,011.2 minutes, or nearly 19.4 days, to achieve 8000 m/s.

To know more about the Rocket, here

https://brainly.com/question/13992346

#SPJ4

The fact that the galaxies are rotating at about the same velocity from the center to the edge as opposed to faster near the centers is evidence that.
a. There must be more gravity than that calculated from normal Mass
b. They are rotating slower over time
c. Dark energy is pulling on them
d. They are measuring the velocities incorrectly ​

Answers

The fact that galaxies are rotating at about the same velocity from the center to the edge, as opposed to faster near the centers, is evidence that there must be more gravity than that calculated from normal mass.

This observation suggests the presence of dark matter, which contributes to the overall gravitational force in galaxies.

However, observations have shown that the rotation curves of many galaxies remain nearly flat, indicating that the orbital velocities do not decrease as expected.

Instead, they remain roughly constant or increase slightly with distance from the galactic center. This phenomenon is often referred to as the "galaxy rotation problem."

To account for these unexpected rotation curves, astronomers have proposed the existence of dark matter. Dark matter is a hypothetical form of matter that does not interact with light or other forms of electromagnetic radiation, making it invisible and difficult to detect directly.

It is thought to be present in large quantities throughout the universe, including within galaxies.

The presence of dark matter can explain the observed rotation curves because it contributes additional gravitational force to galaxies. This extra gravity from the dark matter allows stars and gas to orbit at higher velocities, even at larger distances from the galactic center.

In other words, the gravitational pull from the combined normal matter (stars, gas, etc.) and dark matter is what keeps the rotation curves flat or rising.

To learn more about universe, refer below:

https://brainly.com/question/9724831

#SPJ11

Your teacher sets two cups on a bench at the front of the class. One contains water dyed blue and the other clear water. The teacher says one cup is very salty water while the other is fresh water. You must figure out which is which. How would you do this?

Answers

Tasting water to identify which cup contains salty water or fresh water may not be reliable, as taste can be subjective and some individuals may have a weaker sense of taste.

Another approach is to use a conductivity meter or a multimeter with conductivity measurement capabilities to test the water in each cup. Salty water has a higher conductivity than fresh water due to the presence of ions, so the cup with higher conductivity would contain the salty water.

A third approach is to use a refractometer to measure the refractive index of the water. Salty water has a higher refractive index than fresh water due to the presence of dissolved salts, so the cup with a higher refractive index would contain the salty water.

In summary, to determine which cup contains salty water and which contains fresh water, one can use taste, a conductivity meter, a multimeter with conductivity measurement capabilities, or a refractometer.

Each of these methods has its own advantages and disadvantages, and the choice of method depends on factors such as the resources available and the specific characteristics of the water being tested.

To know more about salty water refer here:

https://brainly.com/question/29362135?#

#SPJ11

Deimos, a satellite of Mars, has an average radius of 6.3 km. If the gravitational force between Deimos and a 3.0 kg rock at its surface is 2.5 * 10−2 N what is the mass of Deimos?

Answers

The mass of Deimos is approximately 9.52 x 10^15 kg.

To find the mass of Deimos, we can use the formula for gravitational force:F = G * (m1 * m2) / r^2. where F is the gravitational force between two objects, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between their centers of mass.

In this problem, we know the radius of Deimos (r = 6.3 km = 6.3 x 10^3 m), the mass of the rock on its surface (m1 = 3.0 kg), and the gravitational force between them (F = 2.5 x 10^-2 N). We can also look up the value of G: G = 6.674 x 10^-11 N(m/kg)^2.

We want to solve for the mass of Deimos (m2). Rearranging the formula, we get: m2 = (F * r^2) / (G * m1). Substituting the given values, we get: m2 = (2.5 x 10^-2 N) * (6.3 x 10^3 m)^2 / (6.674 x 10^-11 N(m/kg)^2 * 3.0 kg). m2 = 9.52 x 10^15 kg.Therefore, the mass of Deimos is approximately 9.52 x 10^15 kg.

It is worth noting that this calculation assumes that the rock on Deimos' surface is not affecting its orbit significantly. In reality, the gravitational force between the rock and Deimos would cause some perturbations in Deimos' orbit, but they are likely to be very small due to the small mass of the rock compared to Deimos.

For more such question on mass visit:

https://brainly.com/question/30400740

#SPJ11

To find the mass of Deimos, we can use the gravitational force formula:
F = G * (m1 * m2) / r^2

Where F is the gravitational force (2.5 * 10^(-2) N), G is the gravitational constant (6.674 * 10^(-11) Nm^2/kg^2), m1 is the mass of Deimos (which we want to find), m2 is the mass of the rock (3.0 kg), and r is the distance between their centers, which is equal to Deimos' radius (6.3 km or 6300 m).

Rearranging the formula to solve for m1 (the mass of Deimos):

m1 = (F * r^2) / (G * m2)

m1 = (2.5 * 10^(-2) N * (6300 m)^2) / (6.674 * 10^(-11) Nm^2/kg^2 * 3.0 kg)

After calculating, we find that the mass of Deimos is approximately 1.0 * 10^15 kg.

For more questions on: force

https://brainly.com/question/12785175

#SPJ11

Assume you are performing the calibration step of experiment 8 and you begin with 60 g of water at 20 oc and 60 g of water at 80 oc. After adding the two portions of water into your calorimeter setup and following the procedure outlined in the experiment, you determine the temperature of the mixed portions of water to be 45 oc. What is the heat capacity of the calorimeter?.

Answers

To determine the heat capacity of the calorimeter, we can use the principle of heat transfer and the equation:

q = m * c * ΔT,

where:

q is the heat transferred,

m is the mass of the water,

c is the specific heat capacity of water, and

ΔT is the change in temperature.

In this case, we have two portions of water with masses of 60 g each, mixed together, and the resulting temperature is 45°C.

Let's calculate the heat transferred for each portion of water:

q1 = m1 * c * ΔT1,

q2 = m2 * c * ΔT2,

where:

m1 = 60 g (mass of water at 20°C),

m2 = 60 g (mass of water at 80°C),

c = specific heat capacity of water (approximately 4.18 J/g°C), and

ΔT1 = 45°C - 20°C,

ΔT2 = 45°C - 80°C.

Now, let's calculate the heat transferred for each portion of water:

q1 = 60 g * 4.18 J/g°C * (45°C - 20°C),

q2 = 60 g * 4.18 J/g°C * (45°C - 80°C).

The total heat transferred in the calorimeter setup is the sum of the heat transferred for each portion of water:

q_total = q1 + q2.

Since the heat transferred in the calorimeter is equal to the negative of the heat transferred by the water (q_total = -q_calorimeter), we can write:

-q_calorimeter = q_total.

Therefore, the heat capacity of the calorimeter (C_calorimeter) can be calculated as:

C_calorimeter = -q_calorimeter / ΔT_total,

where ΔT_total is the change in temperature of the combined water portions.

Substituting the calculated values into the equation will give you the heat capacity of the calorimeter.

To know more about  calorimeter refer here

https://brainly.com/question/799930#

#SPJ11

A cart with a mass of 8. 0 kilograms is attached to a spring. When


released from the spring, the cart travels up a hill with a height of 11


meters. The cart comes to rest at the top of the hill. The spring is 100%


efficient. How much elastic potential energy was required to bring the


cart to rest at the top of the hill? Include your units.

Answers

Elastic Potential Energy required to bring the cart on the top of the hill= 862.4J

To solve this problem, we need to use the conservation of energy principle. The energy stored in the spring (elastic potential energy) is transformed into kinetic energy as the cart is released, and then into gravitational potential energy as the cart moves up the hill. At the top of the hill, all of the kinetic energy is converted back into potential energy, and the cart comes to rest. Since the spring is 100% efficient, no energy is lost due to friction or other factors.

The equation for elastic potential energy is:

Elastic potential energy = 1/2 * k * x^2

where k is the spring constant and x is the displacement from the equilibrium position. We can assume that the spring is initially compressed by a certain amount, and then released to launch the cart up the hill. The amount of compression is not given in the problem, so we cannot calculate the exact value of k or x. However, we can still solve for the elastic potential energy using the information given.

The equation for gravitational potential energy is:

Gravitational potential energy = m * g * h

where m is the mass of the cart, g is the acceleration due to gravity (9.8 m/s^2), and h is the height of the hill. We can calculate the gravitational potential energy as:

Gravitational potential energy = 8.0 kg * 9.8 m/s^2 * 11 m
= 862.4 J

Since the cart comes to rest at the  top of the hill, all of the gravitational potential energy is converted back into elastic potential energy. Therefore:

Elastic potential energy = Gravitational potential energy
= 862.4 J

Note that we did not need to know the values of k or x to solve for the elastic potential energy in this case. However, if we had more information about the spring (such as the spring constant or the amount of compression), we could use the elastic potential energy equation to calculate the energy more precisely.

Visit https://brainly.com/question/29311518 to learn more about Elastic Potential Energy

#SPJ11

A 30 kg block with velocity 50 m/s is encountering a constant 8 N friction force. What is the momentum of the block after 15 seconds?

Answers

The momentum of the block after 15 seconds is 1380 kg·m/s.

To find the momentum of the block after 15 seconds, we first need to determine its final velocity. We'll use the following terms:

1. Mass (m) = 30 kg
2. Initial velocity (u) = 50 m/s
3. Friction force (F) = 8 N
4. Time (t) = 15 s

Since friction is a force, we can use Newton's second law (F = ma) to find the deceleration caused by friction:

a = F/m = 8 N / 30 kg = 0.267 m/s² (deceleration)

Now, we'll use the equation of motion to find the final velocity (v):

v = u - at = 50 m/s - (0.267 m/s² × 15 s) = 50 m/s - 4 m/s = 46 m/s

Finally, we can calculate the momentum (p) using the mass and final velocity:

p = mv = 30 kg × 46 m/s = 1380 kg·m/s

So, the momentum of the block after 15 seconds is 1380 kg·m/s.

To learn more about friction, refer below:

https://brainly.com/question/13000653

#SPJ11

A distance of 1.0 × 10–2

meter separates successive
crests of a periodic wave produced in a shallow tank
of water. If a crest passes a point in the tank every 4.0
× 10–1
second, what is the speed of this wave?

Answers

The  the speed of this wave is 2.5 × 10^−2 m/s.

How do you calculate the speed of wave?

To calculate the speed of wave, we use the formula v = λ/T.

v = 1.0 × 10^-2 ÷ 4.0 × 10^-1

v = 0.025 ⇒ 2.5 × 10^−2 m/s.

The answer give is dependent of the correct figures below;

A distance of 1.0 × 10^−2 meter separates successive crests of a periodic wave produced in a shallow tank of water. If a crest passes a point in the tank every 4.0 × 10^−1 second, what is the speed of this wave?

Find more exercises on  speed of wave;

https://brainly.com/question/10715783

3SPJ1

Could you help me pls ?


What is the average potential difference across a coil of 100 turns and across sectional area 1000cm² when the magnetic field strength across the cross sectional of the coil changes from 10-3 wb/m² to 10-4 web/m3 in 0.1 se?

Answers

The average potential difference across the coil is: 9 × 10⁻³ volts or 9 millivolts when the magnetic field strength changes as described.

To find the average potential difference, we can use Faraday's law of electromagnetic induction, which states that the induced electromotive force (EMF) in a coil is equal to the rate of change of magnetic flux through the coil. The formula for Faraday's law is:

EMF = -N × (ΔΦ/Δt)

where EMF is the induced electromotive force, N is the number of turns in the coil, ΔΦ is the change in magnetic flux, and Δt is the time interval.

First, we need to convert the cross-sectional area from cm² to m²:

1000 cm² × (1 m / 100 cm)² = 0.1 m²

Next, we calculate the change in magnetic flux:

ΔΦ = (10^-4 Wb/m³ - 10^-3 Wb/m²) × 0.1 m² = -9 × 10⁻⁵ Wb

Now, we can plug the values into Faraday's law formula:

EMF = -100 × (-9 × 10⁻³ Wb / 0.1 s) = 9 × 10⁻³ V

Therefore, the average potential difference across the coil is 9 × 10⁻³volts or 9 millivolts when the magnetic field strength changes as described.

To know more about potential difference, refer here:

https://brainly.com/question/24142403#

#SPJ11

You are sprinting toward an ice cream truck that is parked up the street at a stop sign. The tantalizing melody you hear



a. Is slightly lower pitched than it sounds to the driver of the truck


b. Is slightly higher pitched than it sounds to the driver of the truck


c. Is slightly lower in speed than it sounds to the driver of the truck


d. Is slightly higher in speed than it sounds to the driver of the truck


e. Is the same as it sounds to the driver of the truck

Answers

The correct answer is b.

The sound of the ice cream truck's melody will be slightly higher pitched to someone who is sprinting towards it compared to the driver of the truck.

This phenomenon is known as the Doppler effect. When you are moving towards a sound source, such as the ice cream truck, the sound waves are compressed as they approach you. This compression increases the frequency of the sound waves, resulting in a higher pitch.

In simpler terms, as you move towards the truck, you are "catching up" to the sound waves it emits. This causes the frequency of the sound waves to appear higher to you, making the melody sound slightly higher pitched compared to what the driver of the truck hears.

It is important to note that this effect is relative to the motion of the observer. If you were moving away from the ice cream truck, the sound would appear lower pitched due to the sound waves being stretched out as they move away from you.

To know more about Doppler effect refer here

https://brainly.com/question/15318474#

#SPJ11

In the arrangement of the first figure, we gradually pull the block from x = 0 to x = +3. 0 cm, where it is stationary. The second figure gives the work that our force does on the block. The scale of the figure's vertical axis is set by Ws = 1. 0 J. We then pull the block out to x = +5. 0 cm and release it from rest. How much work does the spring do on the block when the block moves from xi = +5. 0 cm to (a) x = +3. 0 cm, (b) x = -1. 0 cm, and (c) x = -5. 0 cm?

Answers

To determine the work done by the spring on the block as it moves to different positions, we need to consider the displacement of the block and the potential energy stored in the spring.

Given:

Initial position of the block, xi = +5.0 cm

Final positions: (a) x = +3.0 cm, (b) x = -1.0 cm, (c) x = -5.0 cm

We'll calculate the work done by the spring separately for each position:

(a) From x = +5.0 cm to x = +3.0 cm:

In this case, the block is moving in the positive x-direction, compressing the spring. The work done by the spring is equal to the change in potential energy stored in the spring.

The change in potential energy can be calculated using the formula:

ΔPE = (1/2)k(Δx)^2.Here, k is the spring constant and Δx is the displacement of the block.

(b) From x = +5.0 cm to x = -1.0 cm:

In this case, the block is moving in the negative x-direction, stretching the spring. The work done by the spring is again equal to the change in potential energy stored in the spring.

(c) From x = +5.0 cm to x = -5.0 cm:

In this case, the block is moving in the negative x-direction, stretching the spring further. The work done by the spring is equal to the change in potential energy stored in the spring.

Note: To calculate the values, we need the spring constant (k) and the displacement (Δx) for each case. Without specific values or additional information, it is not possible to determine the exact numerical values of the work done by the spring in each scenario.

To know more about displacement refer here

https://brainly.com/question/11934397#

#SPJ11

Big fish swim substantially faster than small fish, while big birds fly faster than small ones. However, the speeds of runners vary a lot less with body size, although big ones do go somewhat faster, never mind a lot of highly unreliable top speed data. Some general scaling rules might help. Assume that the cost of transport (cost per distance) varies with body mass^0. 68, that the maximum metabolic rate varies with body mass^0. 81, and that efficiencies and so forth don't vary with body size. How many times faster should a 450 kilogram bear be able to run than the top speed of a 45gram rodent

Answers

the 450 kilogram bear should be able to run approximately 42.2 times faster than the top speed of a 45 gram rodent.

What is metabolic ?

Metabolism is the process by which the body converts the food we eat into energy and uses that energy to keep us alive. It is a complex process that involves a variety of different chemical reactions within the body that are necessary to maintain life. It includes processes such as digestion, absorption, transport, and the production of energy from nutrients.

Using the scaling rules provided, we can calculate the ratio of the speeds of the bear and the rodent.
The cost of transport of the bear will be [tex](450 kg)^{0.68} = 2.16[/tex] times that of the rodent [tex](45 g)^{0.68} = 0.17[/tex].
The maximum metabolic rate of the bear will be (450 kg)^0.81 = 6.39 times that of the rodent [tex](45 g)^{0.81} = 0.31[/tex].
Therefore, the theoretical maximum speed of the bear should be [tex]2.16/0.17 = 12.71[/tex] times that of the rodent, or [tex]6.39/0.31 = 20.45[/tex] times that of the rodent if we take the maximum metabolic rate into account.

To learn more about metabolic

https://brainly.com/question/22596542

#SPJ4

Keshaun and myra went to the amusement park last summer. They noticed that the roller coaster was slower on the way up but went fast as they were on there way down. Keashaun's favorite part was the first drop, but myra liked when they were going a little slower

Answers

It is not uncommon for roller coasters to have a slower ascent as they climb up to their highest point. This is due to the fact that it takes more energy to move the coaster uphill. Once the coaster reaches its peak, however, it is often able to pick up speed as it descends down the other side.

This is because the gravitational force of the coaster's weight pulls it down the slope at an increasing velocity.

In the case of Keshaun and Myra's experience at the amusement park, it seems that they noticed this phenomenon as well.

While Keshaun enjoyed the thrill of the first drop, which was likely the steepest and fastest part of the coaster, Myra enjoyed the moments when the coaster slowed down a bit. This may have allowed her to appreciate the scenery or the sensation of the wind rushing past her more fully.

Ultimately, the experience of riding a roller coaster is a personal one that is shaped by individual preferences and perceptions. Some riders may enjoy the rush of speed and acceleration, while others may prefer the moments of relative calm that can occur during a coaster ride.

Regardless of one's personal preferences, however, it is clear that a well-designed roller coaster can provide an exciting and memorable experience for riders of all ages.

To know more about roller coasters refer here

https://brainly.com/question/19920727#

#SPJ11

Other Questions
The buying and selling rate of an American dollar in a bank are Rs 116. 85 and Rs 117. 30 respectively. How much American dollar should be bought and sold by the bank to get Rs 9000 profit? The desks in a classroom are organized into four rows of four columns. Each day the teacherrandomly assigns you to a desk. You may be assigned to the same desk more than once. Over thecourse of seven days, what is the probability that you are assigned to a desk in the front rowexactly four times? On the last day of his holiday in South Korea, Spaniard Pedro, 25, bought a lovely pair of hand-made sandals. Though expensive, he bought them as a holiday memento. When he got back to the hotel and tried it on, he realised that they were not the right size! Which is true? Pedro is a Korean tourist with a Spanish name. Pedro bought the sandals as a souvenir. Pedro loves sandals. Pedro is happy with his sandals. the set of five number each of which is divisble by 3 3Luis planted a tree at his house. He attached a ropeto each side of the tree and staked the rope in theground so that the tree would be perpendicular to theground. SR3 it. Sit. What is the approximate total amount of string neededto keep the tree perpendicular to the ground?A 9. 43 ft. B 15. 26 ft. C 5. 83 ft. D 13. 43 ft. Graph the function f(x) = 14(0.87)x. Does this function show growth or decay? What is the equation of the asymptote? Growth; y = 0 Growth; y = 14 Decay; y = 0 Decay; y = 14 Darnell makes a rectangle from a square by doubling onedimension and adding 3 centimeters. He leaves the otherdimension unchanged.a. Write an equation for the area A of the new rectangle in terms ofthe side length x of the original square.b. Graph your area equation.c. What are the x-intercepts of the graph? How can you find thex-intercepts from the graph? How can you find them fromthe equation? Jennifer deposits money into a bank account. The amount of money in her account is measured in dollars, and can be modelled by the function A(m)= 1750(1.025)^m, where m is the number of months since the initial deposit. What is the percent change in Jennifer's account balance each month? Is it increasing or decreasing? Justify answer. A satellite of mass 20 kg is in orbit around the Earth. At the height of the satellites orbit, the gravitational field strength is one quarter of its strength on the surface of the Earth. The gravitational field strength on the surface of the Earth is 10 N/ kg. What is the weight of the satellite as it orbits the Earth? Correct the error in finding the area of sector XZY when the area of Z is 255 square feet. n/360=115/225n=162. 35Round to the nearest tenth. The area should equal ______ft2. Choose an adult age 18 or over in the united states at random and ask, "how many cups of coffee do you drink on average per daycall the response x for short. based on a large sample survey, a probability model for the answer you will get is given in the table. number 2 3 4 or more probability 0.360.190.08 0,11. what is p(x < 4) ? give your answer to two decimal places. what is the approximate length of the base of the triangle ? round to the nearest tenth if needed. I need help doing a bond line angle, and naming them. Along with their function groups. For each of the following compounds, decide whether the compound's solubility in aqueous solution changes with pH. If the solubility does change, pick the pH at which you'd expect the highest solubility. You'll find Ksp data in the ALEKS Data tab. compound Does solubility change with pH? highest solubility pH = 5 | pH = 7. PH | pH = 8 NaBr , OOOOO , X 5 ? Formula BaCrO4 BaSO4 CaCO3 CaF2 Co(OH)2 CuBr CuCO3 Fe(OH)2 POCO3 PbCr04 PbF2 Mg(OH)2 Ni(OH)2 AgBroz A92CO3 AgCI Ag2 CrO4 SrCO3 ZnCO3 Zn(OH)2 AgBr Aucl Ksp 1. 17x10-10 1. 08x10-10 3. 36x10-9 3. 45x10-11 5. 92x10-15 6. 27x10-9 1. 4x10-10 4. 87x10-17 7. 40x10-14 2. 8x10-13 3. 3x10-8 5. 61x10-12 5. 48x10-16 5. 38x10-5 8. 46x10-12 1. 77x10-10 1. 12x10-12 5. 60x10-10 1. 46x10-10 3. 0x10-17 5. 35x 10-13 1. 77x10-10 Please correct two and three if its wrong, also please answer 4 and 5 if you can Im stuck. Since Valterri's rate was faster on Day 2, the team wants tocalculate how much faster his rate would translate ta over theentire 64-lap race. How much faster, in minutes, would Valterrifinish the full race if he raced at his Day 2 rate compared to hisDay 1 rate? Day 2 rate is 3. 4 btw 2. Dragonflies can travel at speeds up to 35 miles perhour. How many meters per second is that? (1 mile = 1609 meters) 3. The Hyperion is the tallest redwood tree in the worldat 379. 7 feet. How many centimeters is that? (1 inch = 2. 54 cm) 4. How many atoms are in 2. 35 moles sulfur? 5. How many molecules are in 3. 45 moles sucrose?Pls Help ASAP! Case (IV)With the suspension point 30cm from the left edge of the meter stick, hanga 200g mass 10cm from the left edge of the stick. Calculate the mass you must hang at a point 40cm to the right of the pivot point such that the stick hangs level and write it on the sketch. Lesson 12: Close Reading: Explain How Poetic Elements Add Meaning to a Poem ELA.S.R.1.4 Explain how figurative language and other poetic elements work together in a poem Day 5 Lesson 12: (Please note: Refer to OneNote and all section in TRS using for this lesson) Reread an excerpt from the poem. "Paul Revere's Ride" by Henry Wadsworth Longfellow, Look at the structure of the poem and explain the poet's use of imagery. Remember that poets use figurative language to create a clear image in the reader's mind How does the speaker see herself in relation to nature? Use details from the poem to support your answer