4. Evaluate the surface integral S Sszéds, where S is the hemisphere given by x2 + y2 + x2 = 1 with z < 0.

Answers

Answer 1

The surface integral S Sszéds evaluated over the hemisphere[tex]x^2 + y^2 + z^2 = 1,[/tex] with z < 0, is equal to zero.

Since the function s(z) is equal to zero for z < 0, the integral over the hemisphere, where z < 0, will be zero. This is because the contribution from the negative z values cancels out the positive z values, resulting in a net sum of zero. Thus, the surface integral evaluates to zero for the given hemisphere.

Learn more about evaluated here:

https://brainly.com/question/14677373

#SPJ11


Related Questions

Although a line has infinitely points (solutions), what are the two intercept points of the line below? (The Importance is that we use intercept points to graph in standard form.)

Answers

The two intercept points of the line is (3, 0) and (0, -2).

We have a graph from a line.

Now, take two points from the graph as (3, 0) and (0, -2)

Now, we know that slope is the ratio of vertical change (Rise) to the Horizontal change (run)

So, slope= (change in y)/ Change in c)

slope = (-2-0)/ (0-3)

slope= -2 / (-3)

slope=2/3

Now, the equation of line is

y - 0 = 2/3 (x-3)

y= 2/3x - 3

Now, to find y intercept put x= 0

y= -3

Learn more about intercept here:

https://brainly.com/question/14180189

#SPJ1

State if the triangles in each pair are similar

Answers

Answer:

They are similar

Step-by-step explanation:

They are similar because angle MW connects and LV does to.

Find the marginal cost function. C(x) = 175+ 1.2x The marginal cost function is c'(x) =

Answers

The marginal cost function is c'(x) = 1.2, which means that the marginal cost remains constant at 1.2.

The marginal cost represents the rate of change of the cost function with respect to the quantity of output.

In this case, we are given the cost function C(x) = 175 + 1.2x, where x represents the quantity of output.

To find the marginal cost function, we need to take the derivative of the cost function with respect to x.

Taking the derivative of C(x) = 175 + 1.2x, the constant term 175 becomes 0 since its derivative is 0, and the derivative of 1.2x with respect to x is simply 1.2.

Therefore, the derivative or the marginal cost function c'(x) is equal to 1.2.

This means that for every unit increase in the quantity of output, the cost will increase by 1.2 units.

The marginal cost remains constant and does not depend on the quantity of output.

It indicates that the cost of producing an additional unit of output is always 1.2, regardless of the level of production.

So, the marginal cost function is c'(x) = 1.2.

Learn more about Derivative here:

brainly.com/question/30401596

#SPJ11

he method Lagrange Multipliers can be used to solve Non-Linear Programming (NLP) problems but only in particular cases. Construct the Lagrangian function for the following problem: f(x,y) = xy + 14 subject to : x2 + y2 = 18 1 mark e) Write down the system of equations resulting from the derivatives of the Lagrangian. 3 marks f) Solve the system of equations, evaluate and classify (without any further differentiation) the various points that can be potential extrema. 5 marks

Answers

To construct the Lagrangian function for the given problem, we introduce a Lagrange multiplier λ and form the Lagrangian L(x, y, λ) = xy + 14 - λ(x² + y² - 18).

To construct the Lagrangian function, we introduce a Lagrange multiplier λ and form the Lagrangian L(x, y, λ) = xy + 14 - λ(x² + y² - 18). The objective function f(x, y) = xy + 14 is subject to the constraint x² + y² = 18.

Taking the partial derivatives of the Lagrangian with respect to x, y, and λ, we obtain the following system of equations:

∂L/∂x = y - 2λx = 0

∂L/∂y = x - 2λy = 0

∂L/∂λ = x² + y² - 18 = 0

Solving this system of equations will yield the values of x, y, and λ that satisfy the necessary conditions for extrema. By substituting these values into the objective function and evaluating it, we can determine whether these points are potential maxima, minima, or saddle points.

It is important to note that further differentiation, such as the second derivative test, may be required to definitively classify these points as maxima, minima, or saddle points

Learn more about Lagrangian function here:

https://brainly.com/question/32555171

#SPJ11

use the law of sines to solve the triangle. round your answer to two decimal places. a = 145°, a = 28, b = 8

Answers

the solved triangle has:

Angle A = 145°

Angle B ≈ 25.95°

Angle C ≈ 9.05°

Side a = 28

Side b = 8

Side c ≈ 6.26.

What is Angle?

The inclination is the separation seen between planes or vectors that meet. Degrees are another way to indicate the slope. For a full rotation, the angle is 360 °.

To solve the triangle using the Law of Sines, we have the following given information:

Angle A = 145°

Side a = 28

Side b = 8

Let's denote the other angles as B and C, and the corresponding sides as a and c, respectively.

The Law of Sines states:

sin(A)/a = sin(B)/b = sin(C)/c

We are given angle A and sides a and b. We can use this information to find the value of angle B.

Using the Law of Sines, we have:

sin(A)/a = sin(B)/b

sin(145°)/28 = sin(B)/8

Now, we can solve for sin(B):

sin(B) = (sin(145°)/28) * 8

sin(B) ≈ 0.4366

To find angle B, we can take the inverse sine of sin(B):

B ≈ arcsin(0.4366)

B ≈ 25.95°

Now, to find angle C, we know that the sum of the angles in a triangle is 180°:

C = 180° - A - B

C = 180° - 145° - 25.95°

C ≈ 9.05°

Therefore, we have:

Angle B ≈ 25.95°

Angle C ≈ 9.05°

To find the value of side c, we can use the Law of Sines again:

sin(C)/c = sin(A)/a

sin(9.05°)/c = sin(145°)/28

Now, we can solve for c:

c = (sin(9.05°)/sin(145°)) * 28

c ≈ 0.2232 * 28

c ≈ 6.26

Rounded to two decimal places, side c ≈ 6.26.

Therefore, the solved triangle has:

Angle A = 145°

Angle B ≈ 25.95°

Angle C ≈ 9.05°

Side a = 28

Side b = 8

Side c ≈ 6.26.

To learn more about Angles from the given link

https://brainly.com/question/19549998

#SPJ4

Vector field + F: R³ R³, F(x, y, z)=(x- JF+ Find the (Jacobi matrix of F)< Y 2 Y 2 3 (3)

Answers

The Jacobian matrix of the vector field F(x, y, z) = (x - 2y, 2y, 2z + 3) is:

J(F) = [ 1 -2 0 ]

[ 0 2 0 ]

[ 0 0 2 ]

To find the Jacobian matrix of the vector field F(x, y, z) = (x - 2y, 2y, 2z + 3), we need to compute the partial derivatives of each component with respect to x, y, and z.

The Jacobian matrix of F is given by:

J(F) = [ ∂F₁/∂x ∂F₁/∂y ∂F₁/∂z ]

[ ∂F₂/∂x ∂F₂/∂y ∂F₂/∂z ]

[ ∂F₃/∂x ∂F₃/∂y ∂F₃/∂z ]

Let's calculate each partial derivative:

∂F₁/∂x = 1

∂F₁/∂y = -2

∂F₁/∂z = 0

∂F₂/∂x = 0

∂F₂/∂y = 2

∂F₂/∂z = 0

∂F₃/∂x = 0

∂F₃/∂y = 0

∂F₃/∂z = 2

Now we can assemble the Jacobian matrix:

J(F) = [ 1 -2 0 ]

[ 0 2 0 ]

[ 0 0 2 ]

Therefore, the Jacobian matrix of F is:

J(F) = [ 1 -2 0 ]

[ 0 2 0 ]

[ 0 0 2 ]

To learn more about Jacobian matrix visit : https://brainly.com/question/32236767

#SPJ11

Write down the two inequalities that describe the unshaded region in the diagram below.​

Answers

The two inequalities that describe the unshaded region are y ≤ 2x - 1 and y < -x + 6

How to determine the two inequalities that describe the unshaded region

From the question, we have the following parameters that can be used in our computation:

The graph

The lines are linear equations and they have the following equations

y = 2x - 1

y = -x + 6

When represented as inequalities, we have

y ≥ 2x - 1

y < -x + 6

Flip the inequalitues for the unshaded region

So, we have

y ≤ 2x - 1

y < -x + 6

Hence, the two inequalities that describe the unshaded region are y ≤ 2x - 1 and y < -x + 6

Read more about inequalities at

https://brainly.com/question/30390162

#SPJ1

Let U Be The Subspace Of Rº Defined By U = {(41, 22, 23, 24, 25) ER" : 21 = 22 And 23 = 2;}. (A) Find A Basis Of U

Answers

A basis for the subspace U in R⁵ is {(41, 22, 23, 24, 25)}.

To find a basis for the subspace U, we need to determine the linearly independent vectors that span U. The given condition for U is that 21 = 22 and 23 = 2. From this condition, we can see that the first entry of any vector in U is fixed at 41.

Therefore, a basis for U is {(41, 22, 23, 24, 25)}. This single vector is sufficient to span U since any vector in U can be represented as a scalar multiple of this basis vector. Additionally, this vector is linearly independent as there is no non-trivial scalar multiple that can be multiplied to obtain the zero vector. Hence, {(41, 22, 23, 24, 25)} forms a basis for the subspace U in R⁵.


To learn more about basis click here: brainly.com/question/31129920

#SPJ11

please show work and explain in detail!
sin e Using lim = 1 0+0 0 Find the limits in Exercises 23-46. sin vze 23. lim 2. 0-0 V20

Answers

We shall examine the supplied phrase step-by-step in order to determine its limit.23. As v gets closer to 0, we are given the formula lim (2 - 0) sin(vze).

We may first make the expression within the sine function simpler. Sin(vze) = sin(0) = 0 because e(0) = 1 and sin(0) = 0.

As v gets closer to 0, the expression changes to lim (2 - 0) * 0.

We have lim 0 as v gets closer to zero since multiplying 0 by any number results in 0.

As v gets closer to 0, the limit of 0 is 0.

In conclusion, when v approaches 0 the limit of the given statement lim (2 - 0) sin(vze) is equal to 0.

learn more about supplied  here :

https://brainly.com/question/28285610

#SPJ11


Calculate the volume under the elliptic paraboloid
z=3x2+5y2z=3x2+5y2 and over the rectangle
R=[−1,1]×[−1,1]R=[−1,1]×[−1,1].

Answers

The volume under the elliptic paraboloid over the rectangle R=[−1,1]×[−1,1] is 32/5 cubic units.

To calculate the volume under the elliptic paraboloid over the given rectangle, we need to set up a double integral. The volume can be calculated as the double integral of the function z=3x^2+5y^2 over the rectangle R=[−1,1]×[−1,1].

∫∫R (3x^2 + 5y^2) dA

Using the properties of double integrals, we can rewrite the integral as:

∫∫R 3x^2 + ∫∫R 5y^2 dA

The integration over each variable separately gives:

(3/3)x^3 + (5/3)y^3

Evaluating the above expression over the rectangle R=[−1,1]×[−1,1], we get:

[(3/3)(1^3 - (-1)^3)] + [(5/3)(1^3 - (-1)^3)]

Simplifying further:

(2/3) + (10/3)

Which equals 32/5 cubic units. Therefore, the volume under the elliptic paraboloid over the given rectangle is 32/5 cubic units.

To learn more about integral click here

brainly.com/question/31059545

#SPJ11

The complement of a graph G has an edge uv, where u and v are vertices in G, if and only if uv is not an edge in G. How many edges does the complement of K3,4 have? (A) 5 (B) 7 (C) 9 (D) 11"

Answers

The complement of K3,4 has 21 - 12 = 9 edges. Complement of a graph is the graph with the same vertices, but whose edges are the edges not in the original graph.

A graph G and its complement G' have the same number of vertices. If the graph G has vertices u and v but does not have an edge between u and v, then the graph G' has an edge between u and v, and vice versa. Therefore, if uv is an edge in G, then uv is not an edge in G'.Similarly, if uv is not an edge in G, then uv is an edge in G'.

The given graph is K3,4, which means it has three vertices on one side and four vertices on the other. A complete bipartite graph has an edge between every pair of vertices with different parts;

therefore, the number of edges in K3,4 is 3 x 4 = 12.

To obtain the complement of K3,4, the edges in K3,4 need to be removed.

Since there are 12 edges in K3,4, there are 12 edges not in K3,4.

Since each edge in the complement of K3,4 corresponds to an edge not in K3,4, the complement of K3,4 has 12 edges.

To get the correct answer, we need to subtract this value from the total number of edges in the complete graph on seven vertices.

The complete graph on seven vertices has (7 choose 2) = 21 edges.

To learn more about vertices click here https://brainly.com/question/30116773

#SPJ11

please show steps
Solve by Laplace transforms: y" - 2y + y = e' cos 21, y(0)=0, and y(0) = 1

Answers

I recommend using software or a symbolic math tool to perform the partial fraction decomposition and find the inverse laplace transform.

to solve the given second-order differential equation using laplace transforms, we'll follow these steps:

step 1: take the laplace transform of both sides of the equation.

step 2: solve for the laplace transform of y(t).

step 3: find the inverse laplace transform to obtain the solution y(t).

let's proceed with these steps:

step 1: taking the laplace transform of the given differential equation:

l[y"] - 2l[y] + l[y] = l[e⁽ᵗ⁾ * cos(2t)]

using the properties of laplace transforms and the derivatives property, we have:

s² y(s) - sy(0) - y'(0) - 2y(s) + y(s) = 1 / (s - 1)² + s / ((s - 21)² + 4)

since y(0) = 0 and y'(0) = 1, we can simplify further:

s² y(s) - 2y(s) - s = 1 / (s - 1)² + s / ((s - 21)² + 4)

step 2: solve for the laplace transform of y(t).

combining like terms and simplifying, we get:

y(s) * (s² - 2) - s - 1 / (s - 1)² - s / ((s - 21)² + 4) = 0

now, we can solve for y(s):

y(s) = (s + 1 / (s - 1)² + s / ((s - 21)² + 4)) / (s² - 2)

step 3: find the inverse laplace transform to obtain the solution y(t).

to find the inverse laplace transform, we can use partial fraction decomposition to simplify the expression. however, the calculations involved in this specific case are complex and difficult to present in a text-based format. this will give you the solution y(t) to the given differential equation.

if you have access to a symbolic math tool like matlab, mathematica, or an online tool, you can input the expression y(s) obtained in step 2 and calculate the inverse laplace transform to find the solution y(t).

Learn more about laplace here:

 https://brainly.com/question/30759963

#SPJ11

A triangle ABC with three different side lengths had the longest side AC and shortest AB. If the perimeter of ABC is 384 units, what is the greatest possible difference between AC-AB?

Answers

Hence, the greatest possible difference between AC and AB is -2 units.

Let's denote the lengths of the three sides of the triangle as AB, BC, and AC.

Given that AC is the longest side and AB is the shortest side, we can express the perimeter of the triangle as:

Perimeter = AB + BC + AC = 384 units

To find the greatest possible difference between AC and AB, we want to maximize the value of (AC - AB). Since AC is the longest side and AB is the shortest side, maximizing their difference is equivalent to maximizing the value of AC.

To find the maximum value of AC, we need to consider the remaining side, BC. Since the perimeter is fixed at 384 units, the sum of the lengths of the two shorter sides (AB and BC) must be greater than the length of the longest side (AC) for a valid triangle.

Let's assume that AB = x and BC = y, where x is the shortest side and y is the remaining side.

We have the following conditions:

AB + BC + AC = 384 (perimeter equation)

AC > AB + BC (triangle inequality)

Substituting the values:

x + y + AC = 384

AC > x + y

From these conditions, we can infer that AC must be less than half of the perimeter (384/2 = 192 units). If AC were equal to or greater than 192 units, the sum of AB and BC would be less than AC, violating the triangle inequality.

Therefore, to maximize AC, we can set AC = 191 units, which is less than half the perimeter. In this case, AB + BC = 384 - AC = 193 units.

The greatest possible difference between AC and AB is (AC - AB) = (191 - 193) = -2 units.

To know more about difference,

https://brainly.com/question/9418881

#SPJ11








7. Set up a triple integral in cylindrical coordinates to find the volume of the solid whose upper boundary is the paraboloid F(x, y) = 8-r? - y2 and whose lower boundary is the paraboloid F(x, y) = x

Answers

To find the volume of the solid bounded by the upper paraboloid F(x, y) = 8 - r^2 - y^2 and the lower paraboloid F(x, y) = x, a triple integral in cylindrical coordinates is set up as ∫[0 to 2π] ∫[0 to √(8 / (1 + sin^2(theta)))] ∫[ρ*cos(theta) to 8 - ρ^2] ρ dz dρ dθ.

To set up a triple integral in cylindrical coordinates to find the volume of the solid bounded by the two paraboloids, we need to express the equations of the paraboloids in terms of cylindrical coordinates and determine the limits of integration.

First, let's convert the Cartesian equations of the paraboloids to cylindrical coordinates:

Upper boundary paraboloid:

F(x, y) = 8 - r^2 - y^2

Using the conversion equations:

x = r*cos(theta)

y = r*sin(theta)

Substituting these expressions into the equation of the paraboloid:

8 - r^2 - (r*sin(theta))^2 = 0

8 - r^2 - r^2*sin^2(theta) = 0

8 - r^2(1 + sin^2(theta)) = 0

r^2(1 + sin^2(theta)) = 8

r^2 = 8 / (1 + sin^2(theta))

Lower boundary paraboloid:

F(x, y) = x

Substituting the cylindrical coordinate expressions:

r*cos(theta) = r*cos(theta)

This equation is satisfied for all values of r and theta, so it does not impose any restrictions on our integral.

Now, we can set up the triple integral to find the volume:

∫∫∫ ρ dρ dθ dz

The limits of integration will depend on the region in which the paraboloids intersect. To find these limits, we need to determine the range of ρ, θ, and z.

For ρ:

Since we want to find the volume between the two paraboloids, the limits of ρ will be determined by the two surfaces. The lower boundary is ρ = 0, and the upper boundary is given by the equation of the upper paraboloid:

ρ = √(8 / (1 + sin^2(theta)))

For θ:

The angle θ ranges from 0 to 2π to cover the entire circle.

For z:

The limits of z will be determined by the height of the solid. We need to find the difference between the z-coordinates of the upper and lower surfaces.

The upper surface z-coordinate is given by the equation of the upper paraboloid:

z = 8 - ρ^2

The lower surface z-coordinate is given by the equation of the lower paraboloid:

z = ρ*cos(theta)

Therefore, the limits of integration for z will be:

z = ρ*cos(theta) to z = 8 - ρ^2

Finally, the triple integral to find the volume is:

V = ∫[0 to 2π] ∫[0 to √(8 / (1 + sin^2(theta)))] ∫[ρ*cos(theta) to 8 - ρ^2] ρ dz dρ dθ

To learn more about triple integral click here: brainly.com/question/31315543


#SPJ11

Let u = 33 and A= -5 9 Is u in the plane in R spanned by the columns of A? Why or why not? 12 2 N Select the correct choice below and fill in the answer box to complete your choice (Type an intteger)

Answers

No, u is not in the plane in R spanned by the columns of A as u cannot be expressed as a linear combination of the columns of A.

To determine if vector u is in the plane spanned by the columns of matrix A, we need to check if there exists a solution to the equation Ax = u, where A is the matrix with columns formed by the vectors in the plane.

Given A = [-5 9; 12 2] and u = [33], we can write the equation as [-5 12; 9 2] * [x1; x2] = [33].

Solving this system of equations, we find that it does not have a solution. Therefore, u cannot be expressed as a linear combination of the columns of A, indicating that u is not in the plane spanned by the columns of A.

Hence, the correct choice is N (No).

Learn more about Linear combination here: brainly.com/question/30341410

#SPJ11

Question # 2
#2. (a) Estimate integral using a left-hand sum and a right-hand sum with the given value of n, S2(x2 – 1)dx, n = 4 where f(x) = x2 - 1 (b) Use calculator find (x2 – 1)dx (C) What is the total are

Answers

The total area estimated is LHS+RHS

To estimate the integral ∫(2(x^2 - 1))dx using a left-hand sum and a right-hand sum with n = 4, we need to divide the interval [a, b] into 4 subintervals of equal width.

The interval [a, b] is not specified, so let's assume it to be [0, 2] for this example.

(a) First, let's calculate (x^2 - 1)dx:

∫(x^2 - 1)dx = (1/3)x^3 - x + C

(b) Left-hand sum:

To calculate the left-hand sum, we use the left endpoint of each subinterval to evaluate the function.

Subinterval 1: [0, 0.5]

f(0) = (0^2 - 1) = -1

Subinterval 2: [0.5, 1]

f(0.5) = (0.5^2 - 1) = -0.75

Subinterval 3: [1, 1.5]

f(1) = (1^2 - 1) = 0

Subinterval 4: [1.5, 2]

f(1.5) = (1.5^2 - 1) = 1.25

The left-hand sum is calculated by summing the values of the function at each left endpoint and multiplying by the width of each subinterval:

LHS = (0.5 - 0) * (-1) + (1 - 0.5) * (-0.75) + (1.5 - 1) * 0 + (2 - 1.5) * 1.25

(c) Right-hand sum:

To calculate the right-hand sum, we use the right endpoint of each subinterval to evaluate the function.

Subinterval 1: [0, 0.5]

f(0.5) = (0.5^2 - 1) = -0.75

Subinterval 2: [0.5, 1]

f(1) = (1^2 - 1) = 0

Subinterval 3: [1, 1.5]

f(1.5) = (1.5^2 - 1) = 1.25

Subinterval 4: [1.5, 2]

f(2) = (2^2 - 1) = 3

The right-hand sum is calculated by summing the values of the function at each right endpoint and multiplying by the width of each subinterval:

RHS = (0.5 - 0) * (-0.75) + (1 - 0.5) * 0 + (1.5 - 1) * 1.25 + (2 - 1.5) * 3

The total area estimate is given by the sum of the left-hand sum and the right-hand sum:

Total area estimate ≈ LHS + RHS

To learn more about integral

https://brainly.com/question/22008756

#SPJ11

The complete question is  Estimate Integral Using A Left-Hand Sum And A Right-Hand Sum With The Given Value Of N, S2(X² – 1)Dx, N = 4 Where F(X)  = x²-1

d) Evaluate the following integrals 1 II. S6(x-11+ a)dx dx 7 7/8 IV. (1+0)2 ਰ dt /902 de 917 vo

Answers

The evaluated value of integrals = $200√(t + e) + (400/3) [tex](t+e)^{3/2}[/tex] + (200/5) [tex](t+e)^{5/2}[/tex] + C$[tex](t+e)^{5/2}[/tex]. 1)The substitute the value of u =$\frac{1}{3}(x²+1/x²)^{3/2} + C$. 2) The substitute the value of u =$\frac{1}{2}(x-11+ a)² + C$.

a) Evaluate the following integrals:

I. S4(x² + 1/x²)dxSolition:For the above problem, we will use the substitution method.

Let, u = x² + 1/x² => du/dx = 2x -2/x³ dx => dx = du/ (2x - 2/x³)

Integral will become, $∫S4(x²+1/x²)dx$=>$∫S4 (u du)/ (2√u)$

=> $∫S4 (√u)/2 du$=>$\frac{1}{2}∫S4   [tex](u)^{1/2}[/tex] du$

=>$\frac{1}{3} [tex](u)^{3/2}[/tex] + C$

Now, substitute the value of u we get,

$\frac{1}{3}(x²+1/x²)^{3/2} + C$

ii) II. S6(x-11+ a)dx  

Solition:For the above problem, we will use the substitution method.

Let, u = x-11+ a => du/dx = 1 dx => dx = du

Integral will become, $∫S6(x-11+ a)dx$=>$∫S6 u du$

=> $\frac{1}{2}u² + C$

Now, substitute the value of u we get,$\frac{1}{2}(x-11+ a)² + C$

iii) III. S7(t³+ 1/t³)dtSolition:For the above problem, we will use the substitution method.

Let, u = t³+ 1/t³ => du/dt = 3t² +3/t⁴ dt

=> dt = du/ (3t² +3/t⁴)

Integral will become, $∫S7(t³+ 1/t³)dt$

=>$∫S7 u du/ [tex](3u)^{2/3}[/tex] + [tex](3u)^{-2/3}[/tex])$

Now, we will use the substitution method. Let, v = [tex](u)^{1/3}[/tex] => dv/du =   [tex](1/3)^{-2/3}[/tex]

=> du = 3v² dvIntegral will become, $∫S7 u du/ (3u^(2/3) + 3u^(-2/3))$        [tex](3u)^{2/3}[/tex]

=>$∫S7 (v³) (3v² dv)/ (3v² + 3v^(-2))$

=>$∫S7 v dv$

=> $\frac{1}{2}u^{2/3} + C$

Now, substitute the value of u we get,$\frac{1}{2}[tex](t³+1/t³)^{2/3}[/tex] + C$

iv) IV. (1+0)²/√(t + e) dt /902 de 917 vo        

Solition:For the above problem, we will use the substitution method.

Let, u = t + e => du/dt = 1 dt => dt = du

Integral will become, $\frac{(10)²}{√(t + e)} dt$=> $100∫(1+u)²/√u du$

Now, we will use the substitution method. Let, v = √u => dv/du = 1/(2√u) => du = 2v dv

Integral will become, $100∫(1+u)²/√u du$

=>$200∫(1+v²)² dv$

=>$200∫(1 + 2v² + v⁴)dv$

=>$200v+ (400/3)v³ + (200/5)v⁵ + C$

Now, substitute the value of v we get,$200√(t + e) + (400/3) [tex](t+e)^{3/2}[/tex] + (200/5)   [tex](t+e)^{5/2}[/tex] + C$

Hence, the evaluated value of integrals is given by:

S4(x² + 1/x²)dx = $\frac{1}{3}[tex](x²+1/x²)^{3/2}[/tex] + C$S6(x-11+ a)dx        

= $\frac{1}{2}(x-11+ a)² + C$S7(t³+ 1/t³)dt    

= $\frac{1}{2}(t³+ 1/t³)^{2/3} + C$S7(1+0)²/√(t + e) dt /902 de 917 vo

= $200√(t + e) + (400/3) [tex](t+e)^{3/2}[/tex] + (200/5) [tex](t+e)^{5/2}[/tex] + C$[tex](t+e)^{5/2}[/tex]

To know more about integrals

https://brainly.com/question/30094386

#SPJ11

Problem 12(27 points). Compute the following Laplace transforms: (a) L{3t+4t² - 6t+8} (b) L{4e-3-sin 5t)} (c) L{6t2e2t - et sin t}. (You may use the formulas provided below.).

Answers

The Laplace transforms of the given functions is given by

(a) L{3t + 4t² - 6t + 8} = -3/s^2 + 16/s.

(b) L{4e^-3 - sin(5t)} = 4/(s + 3) - 5/(s^2 + 25).

(c) L{6t^2e^(2t) - e^t sin(t)} = 12/(s - 2)^3 - 1/(s - 1)^2 + 1.

To compute the Laplace transforms of the given functions, we can use the basic formulas of Laplace transforms. Let's calculate each case:

(a) L{3t + 4t² - 6t + 8}:

Using the linearity property of Laplace transforms:

L{3t} + L{4t²} - L{6t} + L{8}

Applying the formulas:

3 * (1/s^2) + 4 * (2!/s^3) - 6 * (1/s^2) + 8/s

Simplifying the expression:

3/s^2 + 8/s - 6/s^2 + 8/s

= (3 - 6)/s^2 + (8 + 8)/s

= -3/s^2 + 16/s

Therefore, L{3t + 4t² - 6t + 8} = -3/s^2 + 16/s.

(b) L{4e^-3 - sin(5t)}:

Using the property L{e^at} = 1/(s - a) and L{sin(bt)} = b/(s^2 + b^2):

4 * 1/(s + 3) - 5/(s^2 + 25)

Therefore, L{4e^-3 - sin(5t)} = 4/(s + 3) - 5/(s^2 + 25).

(c) L{6t^2e^(2t) - e^t sin(t)}:

Using the properties L{t^n} = n!/(s^(n+1)) and L{e^at sin(bt)} = b/( (s - a)^2 + b^2):

6 * 2!/(s - 2)^3 - 1/( (s - 1)^2 + 1^2)

Simplifying the expression:

12/(s - 2)^3 - 1/(s - 1)^2 + 1

Therefore, L{6t^2e^(2t) - e^t sin(t)} = 12/(s - 2)^3 - 1/(s - 1)^2 + 1.

These are the Laplace transforms of the given functions.

Learn more about "Laplace transforms":

https://brainly.com/question/28167434

#SPJ11

Consider the power series
∑=1[infinity](−6)√(x+5).∑n=1[infinity](−6)nn(x+5)n.
Find the radius of convergence .R. If it is infinite, type
"infinity" or "inf".
Answer: =R= What

Answers

To find the radius of convergence, we can use the ratio test for power series. Let's apply the ratio test to the given power series:

[tex]lim┬(n→∞)⁡|(-6)(n+1)(x+5)^(n+1) / (-6)(n)(x+5)^[/tex]n|Taking the absolute value and simplifying, we have:lim┬(n→∞)⁡|x+5| / |n|The limit of |x + 5| / |n| as n approaches infinity depends on the value of x.If |x + 5| / |n| approaches zero as n approaches infinity, the series converges for all values of x, and the radius of convergence is infinite (R = infinity).If |x + 5| / |n| approaches a non-zero value or infinity as n approaches infinity, we need to find the value of x for which the limit equals 1, indicating the boundary of convergence.Since |x + 5| / |n| depends on x, we cannot determine the exact value of x for which the limit equals 1 without more information. Therefore, the radius of convergence is undefined (R = inf) or depends on the specific value of x.

To learn more about  radius click on the link below:

brainly.com/question/32614452

#SPJ11

Consider the surface y2z + 3xz2 + 3xyz=7. If Ay+ 6x +Bz=D is an equation of the tangent plane to the given surface at (1,1,1). Then the value of A+B+D=

Answers

Solving equation of the tangent plane to the given surface at (1,1,1). Value of A + B + D = 6 + 5 + 17 is equal to 28.

To find the equation of the tangent plane to the surface at the point (1, 1, 1), we need to compute the partial derivatives of the surface equation with respect to x, y, and z.

Given surface equation: y^2z + 3xz^2 + 3xyz = 7

Partial derivative with respect to x:

∂/∂x(y^2z + 3xz^2 + 3xyz) = 3z^2 + 3yz

Partial derivative with respect to y:

∂/∂y(y^2z + 3xz^2 + 3xyz) = 2yz + 3xz

Partial derivative with respect to z:

∂/∂z(y^2z + 3xz^2 + 3xyz) = y^2 + 6xz + 3xy

Now, substitute the coordinates of the given point (1, 1, 1) into the partial derivatives:

∂/∂x(y^2z + 3xz^2 + 3xyz) = 3(1)^2 + 3(1)(1) = 6

∂/∂y(y^2z + 3xz^2 + 3xyz) = 2(1)(1) + 3(1)(1) = 5

∂/∂z(y^2z + 3xz^2 + 3xyz) = (1)^2 + 6(1)(1) + 3(1)(1) = 10

These values represent the direction vector of the normal to the tangent plane. So, the normal vector to the tangent plane is (6, 5, 10).

Now, substitute the coordinates of the given point (1, 1, 1) into the equation of the tangent plane: Ay + 6x + Bz = D.

A(1) + 6(1) + B(1) = D

A + 6 + B = D

We know that the normal vector to the plane is (6, 5, 10). This means that the coefficients of x, y, and z in the equation of the plane are proportional to the components of the normal vector. Therefore, A = 6, B = 5.

Substituting these values into the equation, we have:

6 + 6 + 5 = D

17 = D

So, A + B + D = 6 + 5 + 17 = 28.

To know more about tangent plane refer to this link

https://brainly.com/question/30565764#

#SPJ11

write a recursive function evenzeros to check if a list of integers ; contains an even number of zeros.

Answers

The  recursive function called evenzeros that checks if a list of integers contains an even number of zeros is given below.

python

def evenzeros(lst):

   if len(lst) == 0:

       return True  # Base case: an empty list has an even number of zeros

   if lst[0] == 0:

       return not evenzeros(lst[1:])  # Recursive case: negate the result for the rest of the list

   else:

       return evenzeros(lst[1:])  # Recursive case: check the rest of the list

# Example usage:

my_list = [1, 0, 2, 0, 3, 0]

print(evenzeros(my_list))  # Output: True

my_list = [1, 0, 2, 3, 0, 4]

print(evenzeros(my_list))  # Output: False

What is recursive function

In the function evenzeros, one can see that  the initial condition where the list has a length of zero. In this scenario, we deem it as true as a list that is devoid of elements is regarded as having an even number of zeros.

The recursive process persists until it either encounters the base case or depletes the list. If the function discovers that there are an even number of zeroes present, it will yield a True output, thereby implying that the list comprises an even number of zeroes. If not, it will give a response of False.

Learn more about  recursive function from

https://brainly.com/question/489759

#SPJ4


pls answer both
Evaluate the integral. (Use C for the constant of integration.) sred 1 Srer/2 dr
Evaluate the integral. (Use C for the constant of integration.) sred 1 Srer/2 dr

Answers

The integral ∫(1/√(2r))dr can be evaluated using basic integral rules. The result is √(2r) + C, where C represents the constant of integration.

To evaluate the integral ∫(1 / √(2r)) dr, we can use the power rule for integration. The power rule states that ∫x^n dx = (x^(n+1)) / (n+1) + C, where C is the constant of integration. In this case, we have x = 2r and n = -1/2.

Applying the power rule, we have:

∫(1 / √(2r)) dr = ∫((2r)^(-1/2)) dr

To integrate, we add 1 to the exponent and divide by the new exponent:

= (2r)^(1/2) / (1/2) + C

Simplifying further, we can rewrite (2r)^(1/2) as √(2r) and (1/2) as 2:

= 2√(2r) + C

So, the final result of the integral is √(2r) + C, where C is the constant of integration.

Learn more about exponent here:

https://brainly.com/question/26296886

#SPJ11

Find the coordinates of the point of tangency for circle x+2^2+y-3^2=8. Where the tangents slope is -1

Answers

The two points of tangency on the circle are (0, 5) and (-4, 1).

To find the coordinates of the point of tangency for the given circle with the tangent slope of -1, we need to use a few mathematical concepts and formulas.

Let's break it down:

The equation of the circle is given as [tex](x + 2)^2 + (y - 3)^2 = 8.[/tex]

To determine the point of tangency, we need to find the tangent line that has a slope of -1.

First, we need to find the derivative of the circle equation.

Differentiating both sides of the equation with respect to x, we obtain:

2(x + 2) + 2(y - 3)(dy/dx) = 0.

Next, we substitute the given slope of -1 into the derived equation:

2(x + 2) + 2(y - 3)(-1) = 0.

Simplifying the equation, we have:

2x + 4 - 2y + 6 = 0,

2x - 2y + 10 = 0,

x - y + 5 = 0.

This equation represents the line that is tangent to the circle.

To find the point of tangency, we need to solve the system of equations formed by the circle equation and the tangent line equation:

[tex](x + 2)^2 + (y - 3)^2 = 8, (1)[/tex]

x - y + 5 = 0. (2)

Solving equation (2) for x, we get:

x = y - 5.

Substituting this expression for x in equation (1), we have:

[tex](y - 5 + 2)^2 + (y - 3)^2 = 8,[/tex]

[tex](y - 3)^2 + (y - 3)^2 = 8,[/tex]

[tex]2(y - 3)^2 = 8,[/tex]

[tex](y - 3)^2 = 4,[/tex]

y - 3 = ±2.

Solving for y, we find two possible values:

y - 3 = 2, y - 3 = -2.

Solving each equation separately, we get:

y = 5, y = 1.

Substituting these values of y back into equation (2), we find the corresponding x-coordinates:

x = 5 - 5 = 0, x = 1 - 5 = -4.

For similar question on tangency.

https://brainly.com/question/30385886

#SPJ8

what is the formula to find the volume of 5ft radius and 8ft height​

Answers

To find the volume of a cylinder, you can use the formula:

Volume = π * radius^2 * height

Given that the radius is 5ft and the height is 8ft, we can substitute these values into the formula:

Volume = π * (5ft)^2 * 8ft

First, let's calculate the value of the radius squared:

radius^2 = 5ft * 5ft = 25ft^2

Now we can substitute the values into the formula and calculate the volume:

Volume = π * 25ft^2 * 8ft

Using an approximate value of π as 3.14159, we can simplify the equation:

Volume ≈ 3.14159 * 25ft^2 * 8ft

Volume ≈ 628.3185ft^2 * 8ft

Volume ≈ 5026.548ft^3

Therefore, the volume of a cylinder with a radius of 5ft and a height of 8ft is approximately 5026.548 cubic feet.

The formula to find the volume of a cylinder is given by:

Volume = π * radius^2 * height

In this case, you have a cylinder with a radius of 5 feet and a height of 8 feet. Plugging these values into the formula, we get:

Volume = π * (5 ft)^2 * 8 ft

Simplifying further:

Volume = π * 25 ft^2 * 8 ftVolume = 200π ft^3

Thence, the volume of the cylinder with a radius of 5 feet and a height of 8 feet is 200π cubic feet.

Find a vector a with representation given by the directed line segment AB. | A(0, 3,3), 8(5,3,-2) Draw AB and the equivalent representation starting at the origin. A(0, 3, 3) A(0, 3, 3] -- B15, 3,-2)

Answers

The vector a with the required representation is equal to [15, 0, -5].

A vector that has a representation given by the directed line segment AB is given by _[(15-0),(3-3),(-2-3)]_, which reduces to [15, 0, -5]. It is the difference between coordinates of A and B.

Hence, the vector a is equal to [15, 0, -5].To find a vector a with representation given by the directed line segment AB, follow the steps below:

Firstly, draw the directed line segment AB as shown below: [15, 3, -2] ---- B A ----> [0, 3, 3]

Now, to find the vector a equivalent to the representation given by the directed line segment AB and starting at the origin, calculate the difference between the coordinates of point A and point B.

This can be expressed as follows: vector AB = [15 - 0, 3 - 3, -2 - 3]vector AB = [15, 0, -5]

Therefore, the vector a with the required representation is equal to [15, 0, -5].

To know more about vector, visit:

https://brainly.com/question/30958460#

#SPJ11

Find the absolute maximum and absolute minimum values of f on the given interval. Give exact answers using radicals, as necessary. f(t) = t − 3 t , [−1, 5]

Answers

The absolute maximum value of the function f(t) is 2 and the absolute minimum value of the function f(t) is -10 at t = -1 and t = 5 respectively.

Given function: The given capability can be communicated as: f(t) = t  3t, [1, 5]. f(t) = t (1 - 3) = - 2tWe must determine the given capability's greatest and absolute smallest benefits. To determine the maximum and minimum values of the given function, the following steps must be taken: Step 1: Step 2: Within the allotted time, identify the function's critical numbers or points. Step 3: At the critical numbers and the ends of the interval, evaluate the function. To decide the capability's outright most extreme and outright least qualities inside the given interval1, analyze these numbers. Assuming we partition f(t) by t, we get f′(t) = - 2.

The basic focuses are those places where the subsidiary is either unclear or equivalent to nothing. Because the subordinate is characterized throughout the situation, there are no fundamental focuses within the allotted time.2. How about we find the worth of the capability toward the finish of the span, which is f(- 1) and f(5): f(-1) = -2(-1) = 2f(5) = -2(5) = -10. This implies that irrefutably the greatest worth of the capability f(t) is 2 and unquestionably the base worth of the capability f(t) is - 10 at t = - 1 and t = 5, individually. " The response that is required is "The absolute maximum value of the function f(t) is 2 and the absolute minimum value of the function f(t) is -10 at t = -1 and t = 5 respectively."

To know more about function refer to

https://brainly.com/question/30721594

#SPJ11

urn a has 11 white and 14 red balls. urn b has 6 white and 5 red balls. we flip a fair coin. if the outcome is heads, then a ball from urn a is selected, whereas if the outcome is tails, then a ball from urn b is selected. suppose that a red ball is selected. what is the probability that the coin landed heads?

Answers

To determine the probability that the coin landed heads given that a red ball was selected, we can use Bayes' theorem. The probability that the coin landed heads is approximately 0.55.

According to Bayes' theorem, we can calculate this probability using the formula:

P(H|R) = (P(H) * P(R|H)) / P(R

P(R|H) is the probability of selecting a red ball given that the coin landed heads. In this case, a red ball can be chosen from urn A, which has 14 red balls out of 25 total balls. Therefore, P(R|H) = 14/25.

P(R) is the probability of selecting a red ball, which can be calculated by considering both possibilities: selecting from urn A and selecting from urn B. The overall probability can be calculated as (P(R|H) * P(H)) + (P(R|T) * P(T)), where P(T) is the probability of the coin landing tails (0.5). In this case, P(R) = (14/25 * 0.5) + (5/11 * 0.5) ≈ 0.416.

Plugging the values into the formula:

P(H|R) = (0.5 * (14/25)) / 0.416 ≈ 0.55.

Therefore, the probability that the coin landed heads given that a red ball was selected is approximately 0.55.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Find the directional derivative of the function f F(x, y) = xe that the point (10) in the direction of the vector i j

Answers

The directional derivative of the function f(x, y) = xe at the point (1,0) in the direction of the vector i j is [tex]e/\sqrt{2}[/tex].

To find the directional derivative of the function f(x, y) = xe at the point (1,0) in the direction of the vector i j, we need to compute the dot product of the gradient of f with the unit vector in the direction of the vector i j.

The gradient of f is given by:

∇f = (∂f/∂x) i + (∂f/∂y) j

First, let's calculate the partial derivative of f with respect to x (∂f/∂x):

∂f/∂x = e

Next, let's calculate the partial derivative of f with respect to y (∂f/∂y):

∂f/∂y = 0

Therefore, the gradient of f is:

∇f = e i + 0 j = e i

To find the unit vector in the direction of the vector i j, we normalize the vector i j by dividing it by its magnitude:

| i j | = [tex]\sqrt{(i^2 + j^2)} = \sqrt{(1^2 + 1^2)} = \sqrt{2}[/tex]

The unit vector in the direction of i j is:

u = (i j) / | i j | = (1/√2) i + (1/√2) j

Finally, we calculate the directional derivative by taking the dot product of ∇f and the unit vector u:

Directional derivative = ∇f · u

= (e i) · ((1/√2) i + (1/√2) j)

= e(1/√2) + 0

= e/√2

Therefore, the directional derivative of the function f(x, y) = xe at the point (1,0) in the direction of the vector i j is e/√2.

To know more about directional vector visit:-

brainly.com/question/12002625

#SPJ4

8 + 3u LO) du vu 9. DETAILS SCALCET9 5.4.037.0/1 Submissions Used Evaluate the definite integral. 1/3 (7 sec?(y)) dy J/6 10. DETAILS SCALCET9 5.5.001. 0/1 Submissions Used Evaluate the integral by making the given substitution. (Use C for the constant of integration.) cos(7x) dx, u = 7x

Answers

the definite integral ∫(1/3) sec²(y) dy from J/6 to 10, after making the substitution u = 7x, evaluates to [(1/21) sin(70)] - [(1/21) sin(7J/6)] with the constant of integration (C).

To evaluate the definite integral ∫(1/3) sec²(y) dy from J/6 to 10, we can make the substitution u = 7x. Let's proceed with the explanation.

We start by substituting the given expression with the substitution u = 7x:

∫(1/3) cos(7x) dx

Since u = 7x, we can solve for dx and substitute it back into the integral:

du = 7 dx

dx = (1/7) du

Now, we can rewrite the integral with the new variable:

∫(1/3) cos(u) (1/7) du

Simplifying the expression, we have:

(1/21) ∫cos(u) du

Integrating cos(u), we get:

(1/21) sin(u) + C

Substituting back the value of u:

(1/21) sin(7x) + C

To evaluate the definite integral from J/6 to 10, we substitute the upper and lower limits into the antiderivative:

[(1/21) sin(7(10))] - [(1/21) sin(7(J/6))]

Simplifying further:

[(1/21) sin(70)] - [(1/21) sin(7J/6)]

Learn more about definite integral  here:

https://brainly.com/question/30772555

#SPJ11

Find (fog)(x) and (gof)(x) and the domain of each f(x) = x + 1, g(x) = 6x - 5x - 1 (fog)(x) = (Simplify your answer) The domain of (fºg)(x)is (Type your answer in interval notation.) (gof)(x) = (Simp

Answers

(fog)(x) simplifies to x, (gof)(x) simplifies to x, and the domain of both (fog)(x) and (gof)(x) is the set of all real numbers.

To find (fog)(x) and (gof)(x), we need to substitute the functions f(x) = x + 1 and g(x) = 6x - 5x - 1 into the composition formulas. (fog)(x) represents the composition of functions f and g, which is f(g(x)). Substituting g(x) into f(x), we have:

(fog)(x) = f(g(x)) = f(6x - 5x - 1) = f(x - 1) = (x - 1) + 1 = x.

Therefore, (fog)(x) simplifies to x.

(gof)(x) represents the composition of functions g and f, which is g(f(x)). Substituting f(x) into g(x), we have: (gof)(x) = g(f(x)) = g(x + 1) = 6(x + 1) - 5(x + 1) - 1.

Simplifying, we have:

(gof)(x) = 6x + 6 - 5x - 5 - 1 = x.

Therefore, (gof)(x) also simplifies to x.

Now, let's determine the domain of each composition. For (fog)(x), the domain is the set of all real numbers since the composition results in a linear function. For (gof)(x), the domain is also the set of all real numbers since the composition involves linear functions without any restrictions.

Learn more about  composition of functions here: brainly.com/question/30660139

#SPJ11

Other Questions
In which of the following tools would a normal or bell-shaped curve be expected if no special conditions are occurring? (x3)a. flow chartb. cause and effect diagramc. check sheetd. histogram An investment project provides cash inflows of $10,800 in year 1; $9,560 in year 2; $10,820 in year 3; $7,380 in year 4 and $9,230 in year 5. What is the project payback period if the initial cost is $23,500? The most tectonically active (earthquakes and volcanoes) area in North and South America is found ____________. Group of answer choices a. In the middle of the continent b. On the southern Coast c. On the east Coast d. On the west Coast 20Select the correct answer.What is the purpose of this excerpt from a speech about science fiction?When it comes to literature, most people do not take science fiction seriously. They equate science fiction with fantastical stories about aliens,zombies, time travel, or other futuristic inventions. This dismissal is a serious mistake. Science fiction is actually a fertile breeding ground forhypotheses, or educated guesses, about the future of mankind.If this claim sounds a little grandiose, you should consider the fact that almost a hundred years before the first astronauts landed on the moon, awriter named Jules Verne described a lunar voyage and actually got a lot of the scientific details right. In addition, roughly 30 years before theinvention of the atom bomb, author H.G. Wells' The World Set Free described how atomic power could be harnessed to create an explosivedevice. Additionally, long before DNA testing was invented, Arthur C. Clarke wrote about how DNA studies would allow doctors to establish whothe father of a child was. What do all of these writers have in common? They are all science-fiction writers!O A to entertain the audience by describing the plots of science fiction novelsB.to persuade the audience to add science fiction novels to their reading listsO C.to inform the audience about the scientific knowledge of science-fiction writersto convince the audience that science fiction is the highest-quality form of fictionO D.ResetNext the header and footer sections include a . group of answer choicesa.left and right section b.center section c.only top and bottom sectiond.left, right, and center section Part C: Thinking Skills 1. Determine the coordinates of the local extreme points for f(x) = xe- 0.5%. IT daniel is talking to his little sister and trying to explain how home insulation works. his sister is in the 3rd grade, so daniel knows he needs to compare insulation to something she will understand. what real-life example of insulation would be best for daniel to use so his sister can understand its function? Subject Econometric Discuss com be used how dummy (6) change to test (a) in variable change slope and in intercept 6 (0) changes and slope. in both intercept You decided to upgrade your PC with a faster processor. To do this, you ordered a new motherboard over the Internet that supports the processor you want to use.When it arrives, you discover that the motherboard uses the Mini-ATX form factor. Your current case is an ATX mid-tower with a standard ATX motherboard inside.What should you do? Superficial muscles that position or stabilize an organ are extrinsic; muscles located entirely within the extrinsic organ are intrinsic. Structure, Size, and Shape Some muscles are named after distinctive structural features The point TL TT in the spherical coordinate system represents the point TC in the cylindrical coordinate system. Select one: True False Find the volume of the solid obtained by rotating the region in the first quadrant bounded by y = 25, y=1, and the y-axis around the x-axis. Volume = Find the volume of the solid obtained by rotatin sharon, a forensic accountant working for the fbi, was charged with investigating a riverboat casino for money laundering. her investigation originally found nothing of interest, and her bosses were about to close the case. but the night before she closed it, sharon took ambien and had a bizarre dream. in the dream, she saw the head of the casino accessing a secret offshore account to launder money from. the next day, using only the information she got from her dream, sharon investigated that specific account and found definitive evidence of money-laundering. sharon's belief about the money-laundering account was: true and justified. true and unjustified. false and justified. false and unjustified The income statement of Coronado Company is shown below.CORONADO COMPANYINCOME STATEMENTFOR THE YEAR ENDED DECEMBER 31, 2017Sales revenue$7,360,000Cost of goods soldBeginning Inventory$2,000,000Purchase4,260,000Goods available for sale6,260,000Ending inventory1,680,000Cost of goods sold4,590,000Gross profit2,790,00OOperating expensesSelling expenses460,000Administrative expenses690,0001,150,000Net income$1,630,000Additional information:1. Accounts receivable decreased $270,000 during the year.2. Prepaid expenses increased $160,000 during the year.3. Accounts payable to suppliers of merchandise decreased $300,000 during the year.4. Accrued expenses payable decreased $130,000 during the year.5. Administrative expenses include depreciation expense of $60,000.Prepare the operating activities section of the statement of cash flows for the year ended December 31, 2017, or Coronado Company using the indirect method. In 2018, a company reported inventory of $9.816 billion and annual sales of $147.049 billion. Assume 365 days per year and round your answer to one decimal place. What were the days of supply? ____ days I need help with integration of this and whichintegration method you used. thanks.integral ylny dy Find the derivative of the following function. Factor fully and simplify your answer so no negative or fractional exponents appear in your final answer. y= (2 2)3(2+1)4 The cube root of 64 is 4. How much larger is the cube root of 64.6? Estimate using the Linear Approximation. (Give your answer to five decimal places.) 5. SKETCH the area D between the lines x = 0, y = 3-3x, and y = 3x - 3. Set up and integrate the iterated double integral for 1120 x dA. 6. (DO NOT INTEGRATE) Change the order of integration in the employees who are having computer problems go to jane rather than the it department, because jane is known as being efficient, very helpful, and extremely knowledgeable. jane has power. Steam Workshop Downloader