The mean is 7
The median is the middle value, which is 7.
Mean Absolute Deviation: 2
How to solve for the mean absolute deviationStep 3: Find the absolute deviation of each value from the mean:
|4-7.067|, |5-7.067|, |8-7.067|, |12-7.067|, |10-7.067|, |6-7.067|, |7-7.067|, |9-7.067|, |8-7.067|, |8-7.067|, |6-7.067|, |6-7.067|, |4-7.067|, |3-7.067|, |9-7.067|
These absolute deviations are: 3.067, 2.067, 0.933, 4.933, 2.933, 1.067, 0.067, 1.933, 0.933, 0.933, 1.067, 1.067, 3.067, 4.067, 1.933.
Step 4: Find the mean of these absolute deviations to find the mean absolute deviation:
Mean Absolute Deviation = (3.067+2.067+0.933+4.933+2.933+1.067+0.067+1.933+0.933+0.933+1.067+1.067+3.067+4.067+1.933) / 15 = 2
Step 5: Find the absolute deviation of each value from the median:
|4-8|, |5-8|, |6-8|, |6-8|, |6-8|, |7-8|, |8-8|, |8-8|, |8-8|, |9-8|, |9-8|, |10-8|, |12-8|, |8-8|, |3-8|
These absolute deviations are: 4, 3, 2, 2, 2, 1, 0, 0, 0, 1, 1, 2, 4, 0, 5.
Therefore, the absolute deviation from the median is 5.
Read more on mean and median here:https://brainly.com/question/26177250
#SPJ1
ANEXO 2
Identifica los objetos con los que se mide la masa y el volumen, y escribe en donde corresponda.
Manómetro
VOLUMEN
MASA
Pipetas
Fórmula de densidad,
Probetas
Báscula.
Matraz
Balanzas
Fórmula volumen
Vaso de precipitación
The objects used to measure mass are Balances and Scales. The objects used to measure Volume are Manometer, Pipettes, Graduated cylinders, Flasks, Volumetric flasks and Beakers. Here Density formula can be used to measure both mass and volume.
The problem is asking to match different measuring tools with the measurements they are used for, i.e., mass or volume.
The first tool is a manometer. A manometer is used to measure pressure and not mass or volume, so it does not belong in either category.
The next set of tools are pipettes, graduated cylinders, and volumetric flasks. These tools are all used to measure volume, so they belong in the volume category.
The next set of tools are scales and balances. These tools are used to measure mass, so they belong in the mass category.
The formula for density can be used to calculate the mass of an object given its volume and density, or the volume of an object given its mass and density, so it belongs in both categories.
Finally, a beaker or a graduated cylinder can be used to measure volume, so it belongs in the volume category.
Therefore, the correct categorization of the measuring tools are as follows
Volume
Pipettes
Graduated cylinders
Volumetric flasks
Beaker or graduated cylinder
Mass
Scales
balances
Both
Formula for density
To know more about mass and volume:
https://brainly.com/question/18250402
#SPJ4
White shapes are black shapes are used in a game.
Some of the shapes are circles.
All the other shapes are squares.
The ratio of the number of white shapes to the number of black shapes is 7:3
The ratio of the number of white circles to the number of white squares is 2:7
The ratio of the number of black circles to the number of black squares is 1:2
Work out what fraction of all the shapes are circles.
Give your answer as a fraction in its simplest form.
a = 10 m, b = 6 m and c = 9 m for the triangle shown below.
Work out the value of x rounded to 1 d.p.
In the given diagram, the value of x in the right triangle is approximately 14.7
Solving right triangles: Calculating the value of xFrom the question, we are to calculate the value of x in the given diagram.
In the given diagram, we have two right triangles.
First, we will calculate the value of the side joining the two triangles.
Let the side joining the two triangles be d
Thus,
From the Pythagorean theorem, we can write that
d² = a² + b²
d² = 10² + 6²
d² = 100 + 36
d² = 136
Now, in the other triangle
Also, using the Pythagorean theorem, we can write that
x² = c² + d²
x² = 9² + 136
x² = 81 + 136
x² = 217
x = √217
x = 14.7309
x ≈ 14.7
Hence, the value of x is approximately 14.7
Learn more on Solving right triangles here: https://brainly.com/question/27165976
#SPJ1
Victor drew trapezoid PQRS on a
coordinate plane. The coordinates of each
vertex are:
P(8,4) Q(10, 4) R(13,-1) S(8,-1)
ion
What is the length, in units, of side PS?
A. 2
B. 3
C. 4
D. 5
The coordinates of each vertex are: P(8,4) Q(10, 4) R(13,-1) S(8,-1) then the length of side PS is 0 units.
Side PS is the bottom base of trapezoid PQRS. To find its length, we need to calculate the horizontal distance between the x-coordinates of points P and S.
The x-coordinate of point P is 8, and the x-coordinate of point S is also 8. Therefore, the horizontal distance between these two points is 0. So, the length of side PS is 0 units.
The answer is (A) 2 is not correct because the length of side PS cannot be negative or less than zero, and the length of the other base of the trapezoid (QR) is 2 units, which is not equal to the length of side PS.
To learn more about “trapezoid” refer to the https://brainly.com/question/1410008
#SPJ11
Solve for x trigonometry
Step-by-step explanation:
We are given an angle opposite of the side length x and the hypotenuse 10.
Use SOHCAHTOA, use Sin
[tex] \sin( \alpha ) = \frac{o}{h} [/tex]
We the angle is 20
and the hypotenuse is 10 and the opposite is x.
[tex] \sin(20) = \frac{x}{10} [/tex]
[tex]10 \sin(20) = x[/tex]
And we get
[tex]x = 3.42[/tex]
Rosita is writing an explicit function for the geometric sequence:
80, 40, 20, 10, \dots80,40,20,10,…80, comma, 40, comma, 20, comma, 10, comma, dots
she comes up with t(n)=160\left( \dfrac12 \right)^nt(n)=160(
2
1
)
n
t, left parenthesis, n, right parenthesis, equals, 160, left parenthesis, start fraction, 1, divided by, 2, end fraction, right parenthesis, start superscript, n, end superscript.
what domain should rosita use for ttt so it generates the sequence?
The domain of the function is the set of all positive integers, since the sequence starts with the first term and continues indefinitely. Therefore, Rosita should use the domain of positive integers for her function to generate the given sequence.
An explicit function is a mathematical expression that directly relates an independent variable to a dependent variable. In the case of Rosita's function, t(n) represents the nth term in the geometric sequence and is dependent on the value of n, the term number.
The explicit function that Rosita came up with is t(n)=160(1/2)^n, which can be simplified to t(n)=80(1/2)^(n-1). This function represents the relationship between the term number and the corresponding value in the sequence.
To determine the domain of the function, we need to consider the values of n that generate the given sequence. Looking at the sequence, we can see that the first term is 80 and each subsequent term is half of the previous term. This means that the sequence is generated by multiplying 80 by (1/2) raised to a power. We can write this as:
80(1/2)^(n-1)
where n is the term number. The domain of the function is the set of all positive integers, since the sequence starts with the first term and continues indefinitely. Therefore, Rosita should use the domain of positive integers for her function to generate the given sequence.
To know more about positive integers, visit:
https://brainly.com/question/18380011#
#SPJ11
Ocala software systems operates a technical support center for its software customers. if customers have installation or use problems with ocala software products, they may telephone the technical support center and obtain free consultation. currently, ocala operates its support center with one consultant. if the consultant is busy when a new customer call arrives, the customer hears a recorded message stating that all consultants are currently busy with other customers. the customer is then asked to hold and is told that a consultant will provide assistance as soon as possible. the customer calls follow a poisson probability distribution, with an arrival rate of seven calls per hour. on average, it takes 8.5 minutes for a consultant to answer a customer's questions. the service time follows an exponential probability distribution. to improve customer service, ocala software systems wants to investigate the effect of using a second consultant at its technical support center. what is the probability that a customer will have to wait for one of the consultants
The probability that a customer has to wait for one of the consultants (Pw) is 0.9516.
To find the probability that a customer will have to wait for one of the consultants, we need to analyze the current system and compare it to the proposed system with two consultants. Here's a step-by-step explanation:
1. Identify the given parameters:
- Arrival rate (λ) = 7 calls per hour
- Service rate (µ) = 1 call per 8.5 minutes = 60 minutes / 8.5 minutes = 7.06 calls per hour (approximately)
2. Calculate the traffic intensity (ρ):
- ρ = λ / µ = 7 / 7.06 = 0.9915 (approximately)
3. Find the probability of 0 customers in the system (P0) for a 2-consultant system:
- P0 = 1 / (1 + (2 * ρ) + (ρ^2 / (1 - ρ))) = 1 / (1 + (2 * 0.9915) + (0.9915^2 / (1 - 0.9915))) ≈ 0.0086
4. Calculate the probability that a customer has to wait for one of the consultants (Pw):
- Pw = (ρ^2 / (2 * (1 - ρ))) * P0 = (0.9915^2 / (2 * (1 - 0.9915))) * 0.0086 ≈ 0.9516
So, there is approximately a 95.16% chance that a customer will have to wait for one of the consultants at Ocala Software Systems' technical support center when two consultants are employed.
Learn more about probability,
https://brainly.com/question/24756209
#SPJ11
Instructors led an exercise class from a raised rectangular platform at the front of the room. The width of the platform is (x+4) meters long and the area of the rectangular platform is 3x^2+10x−8. Find the length of the platform
Length of the platform at the front of the room whose area is 3x² + 10x - 8 and width is (x+4) m is (3x - 2) m
Area of the rectangular platform = 3x² + 10x - 8
Width of the rectangular platform = x+4
Area = length × width
Length = area/width
Length = [tex]\frac{3x^{2} + 10x - 8}{x+4}[/tex]
By splitting the middle term we get
Length = [tex]\frac{3x^{2} + 12x -2x -8 }{x+4}[/tex]
By taking common we get
Length = [tex]\frac{3x(x+4) - 2(x+4)}{x+4}[/tex]
By taking x+4 common we get
Length = [tex]\frac{(3x-2)(x+4)}{x+4}[/tex]
Cutting the x+4 from denominator and numerator we get
Length = 3x-2
Length of the platform at the front of room is 3x-2
To know more about area click here :
https://brainly.com/question/27683633
#SPJ4
Which expressions are equivalent to 6\cdot6\cdot6\cdot6\cdot66⋅6⋅6⋅6⋅66, dot, 6, dot, 6, dot, 6, dot, 6 ?
The expressions equivalent to 6\cdot6\cdot6\cdot6\cdot66\cdot6\cdot6\cdot6\cdot66 are 1296\cdot396\cdot2376 and 839808\cdot36.
Find out which expression is equivalent to the given expressions?We can use the associative property of multiplication to group the factors in different ways while preserving their product. For example, we can group the first four 6's together and then multiply by the remaining 6 and 66:
6\cdot6\cdot6\cdot6\cdot66\cdot6\cdot6\cdot6\cdot66 = (6\cdot6\cdot6\cdot6)\cdot(6\cdot66)\cdot(6\cdot6\cdot66)
= 1296\cdot396\cdot2376
Alternatively, we can group the last two 6's together and then multiply by the remaining factors:
6\cdot6\cdot6\cdot6\cdot66\cdot6\cdot6\cdot6\cdot66 = (6\cdot6\cdot6\cdot6\cdot66)\cdot(6\cdot6)
= 839808\cdot36 is the equivalent expression.
Learn more about Equivalent
https://brainly.com/question/14323743
#SPJ11
What is the equation of a circle whose center is at the origin and whose radius is 16?x 2 + y 2 = 256x 2 + y 2 = 4x 2 + y 2 = 16
The equation of the circle with center at the origin and radius 16 is x^2 + y^2 = 256.
To find the equation of a circle with center at the origin and radius 16, we can use the general equation of a circle:
x^2 + y^2 = r^2
where (x, y) are the coordinates of any point on the circle, and r is the radius.
In this case, the center is at the origin, so the coordinates (x, y) are both 0. The radius is given as 16. Plugging these values into the equation, we have:
0^2 + 0^2 = 16^2
0 + 0 = 256
Thus, the equation of the circle is:
x^2 + y^2 = 256
So, the equation of the circle with center at the origin and radius 16 is x^2 + y^2 = 256.
To know more about radius, refer here :
https://brainly.com/question/31831831#
#SPJ11
The equation x^2+y^2=1156 represents the service that a cell phone tower provides. How far from the tower will you receive cell phone service?
The distance from the tower that you will receive the phone service is: 34 units
How to find the equation of the circle?The general form of the equation of a circle is:
(x – h)² + (y – k)² = r²
where:
(h, k) represents the location of the circle's center.
r represents the length of its radius.
We are given the equation that represents the service that a cell phone tower provides. The equation is:
x² + y² = 1156
Expressing in standard form of equation of a circle gives:
(x – 0)² + (y – 0)² = 34²
Thus, r = 34 will denote the distance from the tower that you will receive the phone service
Read more about Equation of Circle at: https://brainly.com/question/1506955
#SPJ4
PLEASE HELP SERIOUSLY!
1. The following is a set of 30 scores achieved by students on an exam:
18 23 23 33 38 38 38 42 51 55 56 57 63 65 66 68 68 68 68 76 80 81 82 85 89 92 93 93 95 97 100
Determine the percentile rank for each of the following scores. Remember to round all percentiles up to the next whole
number.
a) 80
b) 68
2. A total of 700 individuals take a government employment exam. Carmela scores 618 out of 800 marks. There are 520 individuals who score less than
618 marks.
a) Find Carmela's percent score
b) Find Carmela's percentile rank.
c) In order to get a job with the government an individual has be in the top 20% of people writing the exam. Will Carmela get a job? Explain.
The percentile rank for a score of 80 is 70%.
The percentile rank for a score of 68 is 57%.
Carmela's percent score is 77.25%.
Carmela's percentile rank is 75%.
Carmela is eligible for a job with the government.
What is the percentile rank?a) For a score of 80, there are 21 out of 30 scores that are equal to or less than 80
Therefore, the percentile rank for a score of 80 is (21/30) x 100% = 70%.
b) For a score of 68, there are 17 out of 30 scores that are equal to or less than 68.
Therefore, the percentile rank for a score of 68 is (17/30) x 100% = 57%.
2a) Carmela's percent score is (618/800) x 100% = 77.25%.
b) Carmela's percentile rank:
520 individuals scored less than Carmela's score of 618.
Therefore, her percentile rank is (520/700) x 100%
Carmela's percentile rank = 75%.
c) To be in the top 20% of individuals writing the exam, Carmela's score needs to be greater than or equal to the score of the 80th percentile.
The score of the 80th percentile is 0.8 * 700 = 560.
Therefore, the top 20% of individuals scored 560 or higher.
Carmela's score of 618 places her in the top 20% of individuals and makes her eligible for a job with the government.
Learn more about percentile rank at: https://brainly.com/question/28839672
#SPJ1
he gift box is shaped like a rectangular prism. The box is 8.5 inches wide, 5 inches long, 5.1 inches tall. What is the volume of the box in cubic inches?
The volume of the gift box shaped like a rectangular prism whose dimensions are 8.5 in wide, 5 in long, and 5.1 in tall is 216.75 in³ .
The volume of rectangular prism = L × W × H
L = Length of the rectangular prism
W = Width of the rectangular prism
H = Height of the rectangular prism
Here, L = 5 in , W = 8.5 in , H = 5.1 in
The volume of rectangular prism = 5 × 8.5 × 5.1
The volume of rectangular prism = 216.75 in³
The volume of gift box shaped like a rectangular prism is 216.75 in³ .
To know more about volume click here :
https://brainly.com/question/1578538
#SPJ1
which statement is true about the mean of the data set?
Step-by-step explanation:
Mean is less than 8
(1 + 1 + 6*8 + 10 ) / 9 = mean = 6.7
Answer:
A: The mean in less than 8
Step-by-step explanation:
Mean: Average
How to find the mean?
1. Add ALL the numbers given
1: has 2 dots 8: has 6 dots 10: has 1 dot
so 2+6+1= 9
2. divide the result of point 1. by the amount of numbers given.
9/3= 3
3.
Numbers:
1-2-3-4-5-6-7-8-9 3 is before 8 so it means it's less than 8.
A ramp at a dog park is made of three sections. The incline and decline pieces are the same length, 13√37 inches. The center is 10√41 inches long. What is the total length of the ramp? Give your answer as a radical expression.
The total length of the ramp is 222.18 inches
How to find the total length?Let's denote the length of the incline and decline pieces by x, and use the given information to form an equation in terms of x:
Length of incline + length of decline = 2(13√37) inches
= 26√37 inches
The total length of the ramp is the sum of the lengths of all three sections:
Total length = Length of incline + Length of center + Length of decline
Total length = 26√37 inches + 10√41 inches
Total length = 222.18 inches
Therefore, the total length of the ramp is 222.18 inches
Read more about Total Length at: https://brainly.com/question/2217700
#SPJ1
A triangle has an area of 52 in², what would the area be if the base was one half as long and the height was twice as long?
If the base was one half as long and the height was twice as long, then the area of the triangle will be 52 in².
To find the area of a triangle, we use the formula: area = (base × height) / 2. Given that the original triangle has an area of 52 square inches, we can represent this as: 52 = (base × height) / 2.
Now, let's consider the new triangle, where the base is half as long and the height is twice as long. This can be represented as base' = base / 2 and height' = height × 2.
Using the formula for the area of the new triangle, we have: area' = (base' × height') / 2 = ((base / 2) × (height × 2)) / 2.
By simplifying the equation, we see that the factors of 2 cancel out, leaving us with: area' = (base × height) / 2.
As we know that the area of the original triangle is 52 square inches, we can conclude that the area of the new triangle will also be 52 square inches. This is because the changes to the base and height essentially cancel each other out, resulting in the same overall area.
Learn more about area here: https://brainly.com/question/23353279
#SPJ11
Under which
transformation would AA'B'C', the wen 2.
image of AABC, not be congruent to AABC?
a. reflection over the y-axis
b.
rotation of 90° clockwise about the origin
c. translation of 3 units right and 2 units down
d. dilation with a scale factor of 2 centered at
the origin
Assuming that the daily wages for
workers in a particular industry
averages Birr 11. 90 per day and the
standard deviation is Birr 0. 40. If the
wages are assumed to be normally
distributed, determine what percentage
of workers receive wages
A. Between Birr 10. 90 and Birr 11. 90
B. Between Birr 10. 80 and Birr 12. 40
C. Between Birr 12. 20 and Birr 13. 10
D. Less than Birr 11. 00
E. More than Birr 12. 95
Using statistics, we can calculate the following percentages:
A. The percentage of workers who receive wages between Birr 10.90 and Birr 11.90 is approximately 49.38%.
B. The percentage of workers who receive wages between Birr 10.80 and Birr 12.40 is approximately 89.15%.
C. The percentage of workers who receive wages between Birr 12.20 and Birr 13.10 is approximately 22.53%.
D. The percentage of workers who receive wages less than Birr 11.00 is approximately 1.22%.
E. The percentage of workers who receive wages more than Birr 12.95 is approximately 0.47%.
These percentages are obtained by calculating the areas under the normal distribution curve using z-scores and the standard normal distribution table.
We are given that the daily wages in a particular industry are normally distributed with a mean of Birr 11.90 and a standard deviation of Birr 0.40.
A. To find the percentage of workers who receive wages between Birr 10.90 and Birr 11.90, we need to calculate the z-scores for both values and use the standard normal distribution table.
z1 = (10.90 - 11.90) / 0.40 = -2.50
z2 = (11.90 - 11.90) / 0.40 = 0
From the standard normal distribution table, the area to the left of z = -2.50 is 0.0062, and the area to the left of z = 0 is 0.5000. Therefore, the percentage of workers who receive wages between Birr 10.90 and Birr 11.90 is:
0.5000 - 0.0062 = 0.4938, or approximately 49.38%.
B. To find the percentage of workers who receive wages between Birr 10.80 and Birr 12.40, we need to calculate the z-scores for both values.
z1 = (10.80 - 11.90) / 0.40 = -2.75
z2 = (12.40 - 11.90) / 0.40 = 1.25
From the standard normal distribution table, the area to the left of z = -2.75 is 0.0029, and the area to the left of z = 1.25 is 0.8944.
Therefore, the percentage of workers who receive wages between Birr 10.80 and Birr 12.40 is:
0.8944 - 0.0029 = 0.8915, or approximately 89.15%.
C. To find the percentage of workers who receive wages between Birr 12.20 and Birr 13.10, we need to calculate the z-scores for both values.
z1 = (12.20 - 11.90) / 0.40 = 0.75
z2 = (13.10 - 11.90) / 0.40 = 3.00
From the standard normal distribution table, the area to the left of z = 0.75 is 0.7734, and the area to the left of z = 3.00 is 0.9987. Therefore, the percentage of workers who receive wages between Birr 12.20 and Birr 13.10 is:
0.9987 - 0.7734 = 0.2253, or approximately 22.53%.
D. To find the percentage of workers who receive wages less than Birr 11.00, we need to calculate the z-score for this value.
z = (11.00 - 11.90) / 0.40 = -2.25
From the standard normal distribution table, the area to the left of z = -2.25 is 0.0122. Therefore, the percentage of workers who receive wages less than Birr 11.00 is approximately:
0.0122, or approximately 1.22%.
E. To find the percentage of workers who receive wages more than Birr 12.95, we need to calculate the z-score for this value.
z = (12.95 - 11.90) / 0.40 = 2.63
From the standard normal distribution table, the area to the left of z = 2.
To know more about statistics refer here:
https://brainly.com/question/29821285?#
SPJ11
Lisandra was the center a towel bar on her door that is 29 inches wide she determines that the better distance from each of the towel bar to the end of the door is 7. 75 inches write and solve an equation to find the length of the towel bar.
The length of the towel bar is 13.5 inches.
Let's use the given information to write and solve an equation for the length of the towel bar.
We know that the door is 29 inches wide and that there is a 7.75-inch distance from each end of the towel bar to the respective end of the door. Let's denote the length of the towel bar as x.
So, the total width of the door can be expressed as the sum of the two distances and the length of the towel bar:
29 = 7.75 + x + 7.75
Now, let's solve for x:
29 = 15.5 + x
x = 29 - 15.5
x = 13.5 inches
Therefore, the length of the towel bar is 13.5 inches.
To learn more about distance, refer below:
https://brainly.com/question/15172156
#SPJ11
An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. a) if a sample of 30 bulbs has an average life of 780 hours, find a 96% confidence interval for the population mean of all bulbs produced by this firm. a) how large a sample is needed if we wish to be 96% confident that our sample mean will be within 10 hours of the true mean
The 96% confidence interval for the population mean is (764.34, 795.66) and a sample size of at least 123 bulbs is needed to be 96% confident that the sample mean will be within 10 hours of the true mean.
a) To find the 96% confidence interval for the population mean, we can use the formula:
CI = x ± z* (σ/√n)
where x is the sample mean, σ is the population standard deviation, n represents the sample size, and z* represents the critical value for the desired level of confidence.
From the given information, we have x = 780, σ = 40, n = 30, and we can find the critical value using a standard normal distribution table or a calculator. For a 96% confidence level, the critical value is 1.750.
When these values are entered into the formula, we get:
CI = 780 ± 1.750 * (40/√30)
CI = 780 ± 15.66
Therefore, the 96% confidence interval for the population mean is (764.34, 795.66).
b) To determine the sample size needed to be 96% confident that our sample mean will be within 10 hours of the true mean, we can use the formula:
n =[tex](z* \sigma / E)^2[/tex]
where z* is the crucial value for the desired level of confidence, standard deviation is the population standard deviation , E is the maximum error or margin of error, and n is the sample size.
From the given information, we have z* = 1.750, σ = 40, and E = 10. When these values are entered into the formula, we get:
[tex]n = (1.750 * 40 / 10)^2[/tex]
n = 122.5
Therefore, we need a sample size of at least 123 bulbs to be 96% confident that our sample mean will be within 10 hours of the true mean.
Learn more about Standard deviation:
brainly.com/question/18562832
#SPJ4
Toby created a sculpture for art class using different-sized cubes. the smallest cube is 1.5 inches along each edge. the largest cube is 7.5 inches along each edge. how many of the smallest cubes would it take to fill the largest cube
It would take approximately 125 of the smallest cubes to fill the largest cube.
To determine the number of the smallest cubes that would fit inside the largest cube, we need to calculate the volume of both cubes.
The volume of a cube can be calculated by multiplying the length of one side by itself three times (since a cube has three equal sides). So, the volume of the smallest cube would be 1.5 x 1.5 x 1.5 = 3.375 cubic inches.
The volume of the largest cube can be calculated in the same way. The length of one side is 7.5 inches, so the volume would be 7.5 x 7.5 x 7.5 = 421.875 cubic inches.
To determine how many of the smallest cubes would fit inside the largest cube, we need to divide the volume of the largest cube by the volume of the smallest cube. So, 421.875 divided by 3.375 equals approximately 125.
To learn more about cube click on,
https://brainly.com/question/29596119
#SPJ4
Your name is Galileo Galilei, and you toss a weight upward at 16 feet per second from the top of the Leaning Tower of Pisa (height 186 ft). (a) Neglecting air resistance, find the weight's velocity as a function of time t in seconds. v(t) = Correct: Your answer is correct. ft/s (b) Find the height (in feet) of the weight above the ground as a function of time. s(t) =
(a) The weight's velocity as a function of time t in seconds is v(t) = 16 - 32.2t
(b) The height (in feet) of the weight above the ground as a function of time is s(t) = 186 + 16t - (1/2)(32.2)t^2
To find the weight's velocity and height as a function of time:
(a) The equation for velocity as a function of time is v(t) = v0 - gt,
where v0 is the initial velocity (in this case, 16 ft/s) and g is the acceleration due to gravity (32.2 ft/s^2).
Using this equation, we can find the weight's velocity as it travels upward:
v(t) = 16 - 32.2t
(b) The equation for height as a function of time is s(t) = s0 + v0t - (1/2)gt^2,
where s0 is the initial height (in this case, 186 ft).
Using this equation, we can find the height of the weight above the ground at any point in time:
s(t) = 186 + 16t - (1/2)(32.2)t^2
To know more about Velocity:
https://brainly.com/question/2594502
#SPJ11
A motorboat is headed due east, directly across a river at 5 m/s. the current of the river is 2 m/s downstream (due south). find the following: a) the resulting true speed of the boat; b) the compass direction of the boat; and c) the distance downstream the boat will land on the shore if the river is 800 meters wide.
a) The resulting true speed of the boat is approximately 5.39 m/s.
b) The compass direction of the boat is 21.8° south of east.
c) The distance downstream the boat will land on the shore if the river is 800 meters wide is 320 meters.
a) To find the true speed of the boat, we can use the Pythagorean theorem. Since the boat's speed is 5 m/s due east and the current's speed is 2 m/s due south, we can treat these as perpendicular vectors. The true speed can be found using the formula:
True Speed = √((5 m/s)² + (2 m/s)²) = √(25 + 4) = √29 ≈ 5.39 m/s
b) To find the compass direction of the boat, we can use the inverse tangent function. The angle θ can be calculated using:
θ = arctan(opposite/adjacent) = arctan(2 m/s / 5 m/s) ≈ 21.8°
Since the boat is headed east and the current is pushing it south, the true direction is 21.8° south of east.
c) To find the distance downstream where the boat will land, we first need to calculate the time it takes to cross the river. The boat's speed across the river (due east) is 5 m/s and the width of the river is 800 meters. The time taken to cross the river is:
Time = Distance / Speed = 800 m / 5 m/s = 160 seconds
Now, we can use the time to find the distance downstream by multiplying the current's speed (2 m/s) by the time:
Distance downstream = 2 m/s × 160 s = 320 meters
So, the boat will land 320 meters downstream from its starting point on the opposite shore.
To know more about speed, refer to the link below:
https://brainly.com/question/13583010#
#SPJ11
Neptune is approximately 5 x 10^4 kilometers in diameter. Mars is approximately 7 x 10^3 kilometers in diameter. Which is an accurate comparison of the diameters of these two planets? A. The diameter of Neptune is more than 7 times greater than the diameter of Mars. B. The diameter of Mars is more than 7 times greater than the diameter of Neptune. C. The diameter of Neptune is about 1. 4 times greater than the diameter of Mars. D. The diameter of Mars is about 1. 4 times greater than the diameter of Neptune.
The accurate comparison of diameters of the given planets is 7, under the given condition that Neptune is 5 x 10⁴ kilometers in diameter. Mars is 7 x 10³ kilometers in diameter.
Therefore the correct answer for the given question is Option A
The diameter of Neptune is approximately counted to be 50,000km while the diameter of Mars is approximately counted to be 7,000 km.
The ratio of the diameters of Neptune and Mars is given as:
diameter of Neptune / diameter of Mars
= 50,000km / 7,000km
= 7.14
≈ 7 times
The Neptune diameter is 7 times greater Mars diameter.
To learn more about diameter
https://brainly.com/question/30959895
#SPJ4
The complete question is
Neptune is approximately 5 x 10⁴ kilometers in diameter. Mars is approximately 7 x 10³ kilometers in diameter. Which is an accurate comparison of the diameters of these two planets?
A. The diameter of Neptune is more than 7 times greater than the diameter of Mars.
B. The diameter of Mars is more than 7 times greater than the diameter of Neptune.
C. The diameter of Neptune is about 1.4 times greater than the diameter of Mars.
D. The diameter of Mars is about 1.4 times greater than the diameter of Neptune.
What is the approximate distance between the points (–9, –9) and (1, 3)?
Answer: 15.6 units
Step-by-step explanation:
WILL GIVE BRAINLIEST!!!
A team of scientists is studying the animals at a nature reserve. They capture the animals, mark them so they can identify each animal, and then release them back into the park. The table gives the number of animals they’ve identified. Use this information to complete the two tasks that follow.
Animal Total in Park Number Marked
elk 5,625 225
wolf 928 232
cougar 865 173
bear 1,940 679
mountain goat 328 164
deer 350 105
moose 215 86
What is the probability of the next elk caught in the park being unmarked? Write the probability as a fraction, a decimal number, and a percentage
The probability of the next elk caught in the park being unmarked can be calculated as follows:
There are a total of 5,625 elks in the park, out of which 225 have been marked.This means that the number of unmarked elks is 5,625 - 225 = 5,400.Therefore, the probability of the next elk caught in the park being unmarked is 5,400/5,625 = 0.96 or 96%.What is the probability of capturing an unmarked elk at the park?The probability of capturing an unmarked elk in a nature reserve park can be calculated by dividing the number of unmarked elks by the total number of elks.
In this case, the number of unmarked elks is 5,400 out of a total of 5,625 elks. This gives a probability of 96% or 0.96 in decimal form. Marking and tracking animals is a common method used by scientists to study animal populations in nature reserves.
This data is crucial for designing conservation strategies that promote the survival of endangered species. Nature reserves play a crucial role in preserving and protecting wildlife and their habitats, given the significant threats they face from habitat loss, poaching, and climate change.
Learn more about probability
brainly.com/question/30034780
#SPJ11
how long does it take light to travel to earth from sun ? the sun is 9.3 x 10 ^7mi from earth , and the light travels 1.86 x 10^5mi/s
.
It takes approximately 500 seconds for light to travel from the Sun to Earth.
To calculate the time it takes for light to travel from the Sun to Earth, we can use the formula:
time = distance / speed
Given:
Distance from the Sun to Earth = 9.3 x 10^7 miles
Speed of light = 1.86 x 10^5 miles per second
Plugging in the values into the formula, we have:
time = (9.3 x 10^7 miles) / (1.86 x 10^5 miles per second)
To simplify, we can divide the numerator and denominator by 10^5 to cancel out the units:
time = (9.3 x 10^7) / (1.86 x 10^5) seconds
Next, we can divide the numbers in scientific notation:
time = (9.3 / 1.86) x (10^7 / 10^5) seconds
Simplifying further:
time = 5 x 10^2 seconds
Therefore, light takes approximately 500 seconds to travel from the Sun to Earth.
To learn more about distance time
https://brainly.com/question/13388824
#SPJ11
1. 20% of the items manufactured by a certain process are known to be defective. 18 items are chosen at random. a. how many would you expect to be defective? explain briefly what this means. b. find the probability that at least 4 are defective. give a numerical answer.
The expected number of defective items and the probability of at least 4 are defective is equal to 3.6 and 0.370 or 37.0%.
Total number of items 'n' = 18
Probability of an item being defective 'p' =20%
= 0.2
Expected number of defective items,
Use the formula for the expected value of a binomial distribution,
E(X) = np
where X is the number of defective items.
Plug in the values we have,
E(X) = 18 x 0.2
= 3.6
Expect average items out of 18 to be defective = 3.6 .
Probability that at least 4 items are defective,
Calculate the probability of 4, 5, 6, ..., 18 defective items
Use the complement rule to simplify it,
P(at least 4 defective)
= 1 - P(less than 4 defective)
Using the CDF function,
'binomcdf' is the binomial cumulative distribution function.
18 is the number of trials,
0.2 is the probability of success,
And 3 is the maximum number of successes
P(less than 4 defective)
= binomcdf (18, 0.2, 3)
= P(X <= 3)
=[tex]\sum_{x=0}^{3}[/tex] ¹⁸Cₓ × (0.2)^x × (0.8)^(18-x)
= ¹⁸C₀× (0.2)^0 × (0.8)^(18-0) + ¹⁸C₁× (0.2)^1 × (0.8)^(18-1) + ¹⁸C₂× (0.2)^2 × (0.8)^(18-2) + ¹⁸C₃× (0.2)^3 × (0.8)^(18-3)
= (0.8)^(18) + 18× (0.2) × (0.8)^(17) + 153 × (0.04) × (0.8)^(16) + 1632× (0.008) × (0.8)^(15)
= 0.630
Plug in the values,
P(at least 4 defective)
= 1 - 0.630
= 0.370
Therefore, the expected items to be defective and probability that at least 4 items out of 18 are defective is equal to 3.6 and 0.370 or 37.0%.
Learn more about probability here
brainly.com/question/15299221
#SPJ4
What do you think causes the percent of filers to jump so dramatically between the under-18 group and the 18-26 group?
The significant increase in the percent of filers between the under-18 group and the 18-26 group can be attributed to various factors, including age, income, and financial independence.
Firstly, individuals under the age of 18 are typically considered minors and are often dependent on their parents or guardians for financial support. As a result, they may not have any significant income that requires them to file taxes, and their income might be included in their parent's or guardian's tax return. This leads to a lower percentage of filers in the under-18 group.
On the other hand, the 18-26 age group marks the transition into adulthood, where individuals begin to gain financial independence. Many start working full-time jobs or attend college, where they may earn income through part-time jobs or internships. This increased income leads to a higher percentage of filers in the 18-26 group, as they are now responsible for filing their own tax returns.
Furthermore, the age range of 18-26 also coincides with the period where individuals are more likely to have various income sources. This includes scholarships, grants, and student loans for those attending college. These additional income sources may also contribute to the increased percentage of filers in this age group.
Lastly, as individuals become more financially independent, they may become more aware of tax benefits and deductions available to them, such as educational credits or deductions for student loan interest. This newfound awareness could encourage more people within the 18-26 age group to file taxes, leading to a higher percentage of filers.
In conclusion, the dramatic jump in the percent of filers between the under-18 group and the 18-26 group can be attributed to factors such as increased financial independence, diverse income sources, and greater awareness of tax benefits and deductions.
To know more about filers refer here:
https://brainly.com/question/29614278#
#SPJ11
Mr. Ali has 15. 8 litres of juice. He fills equal numbers of 400 ml and 1 litre juice bottles to sell. If Mr. Ali has 3200 ml of juice left,how many equal numbers of juice bottles did he fill?
Mr. Ali filled 6 of the 400 ml juice bottles and 8 of the 1 liter juice bottles.
First, convert 15.8 liters to milliliters:
15.8 L = 15,800 mL
Let x be the number of 400 ml juice bottles filled, and let y be the number of 1 liter juice bottles filled.
The total amount of juice filled can be represented as:
400 ml/bottle * x + 1000 ml/bottle * y = 15,800 ml
Simplifying, we get:
4x + 10y = 158
We also know that there are 3200 ml of juice left:
400 ml/bottle * (x - 3200/400) + 1000 ml/bottle * y = 0
Simplifying, we get:
x + 2.5y = 28
We now have two equations with two variables. Solving for x and y, we get:
x = 6
y = 8
Therefore, Mr. Ali filled 6 of the 400 ml juice bottles and 8 of the 1 liter juice bottles.
To learn more about variables here
https://brainly.com/question/29583350
#SPJ4