8250 J of heat is applied to a piece of aluminum, causing a 40. 0 °C increase in its temperature. The specific heat of aluminum is 0. 9025 J/g ·°C. What is the mass of the aluminum?

Answers

Answer 1

We can use the formula for calculating heat:

Q = m × c × ΔT

where Q is the amount of heat transferred, m is the mass of the substance, c is its specific heat, and ΔT is the change in temperature.

Plugging in the given values, we get:

8250 J = m × 0.9025 J/g ·°C × 40.0 °C

Simplifying, we get:

8250 J = m × 36.1 J/g

Solving for m, we get:

m = 8250 J ÷ 36.1 J/g

m ≈ 228.26 g

Therefore, the mass of the aluminum is approximately 228.26 g.

To know more about calculating refer here

https://brainly.com/question/30151794#

#SPJ11


Related Questions

(07. 05 MC)



The volume of a reaction vessel with gaseous reactants is lowered to one-fourth of its original volume. What will happen to the rate of the reaction?



It will increase because the concentration of the reactants increases.


It will decrease because the concentration of the reactants decreases.


It will increase because the gaseous particles are moved farther apart.


It will decrease because the gaseous particles are brought closer together

Answers

The rate of the reaction will increase because the concentration of the reactants increases.

When the volume of a reaction vessel with gaseous reactants is reduced to one-fourth of its original volume, the gaseous particles are brought closer together. This results in an increased concentration of the reactants, as there are more particles in a smaller space.

Higher concentrations of reactants lead to a greater likelihood of successful collisions between reactant particles, which in turn leads to an increased rate of the reaction.

So, by decreasing the volume and increasing the concentration of reactants, you effectively speed up the reaction rate.

To know more about rate of the reaction click on below link:

https://brainly.com/question/30546888#

#SPJ11

11. 2H202 (1) - 2H20 (1) + 02(g)

Drake asked Theo why the decomposition of hydrogen peroxide, H202, loses mass, especially when there are more molecules on the product side. Theo explains that it is because they decomposed the product. He says that decomposing the product destroys the original substance. To further prove his point, he explains that in nature, decomposition occurs when dead organic matter is destroyed by fungi: without this, the world would be littered with dead things. What, if anything, is wrong with this conversation of

what happened in the reaction? Justify your answer.

Answers

A few errors about hydrogen peroxide's breakdown can be found throughout the discourse. Instead of being destroyed, the product is transformed into water and oxygen.

What happens when water and oxygen are formed from hydrogen peroxide?

Catalase enzymes are found in both plants and animals, and they catalyse the conversion of hydrogen peroxide into water and oxygen. Water and oxygen are naturally formed from hydrogen peroxide, although the process is extremely slow.

How can you gauge how quickly hydrogen peroxide breaks down?

Time how long it takes a disc of filter paper to rise a specified distance in a test tube containing hydrogen peroxide solution as one method of determining the rate.

To know more about peroxide's visit:-

https://brainly.com/question/29102186

#SPJ1

AlCl3 + 3Li --> 3LiCl + Al



If you are given 8. 00 g of Li calculate the number of grams of aluminum produced

Answers

When 8.00 g of lithium reacts with [tex]AlCl_{3}[/tex], 10.39 g of aluminum is produced.

The molar mass of lithium (Li)= 6.94 g/mol

Moles of Li = mass of Li / molar mass of Li= 8.00 g / 6.94 g/mol = 1.154 moles

Now, 3 moles of Li produce 1 mole of Al
moles of Al produced = 1.154 moles / 3 = 0.385 moles

The molar mass of aluminum (Al)= 26.98 g/mol

Mass of Al = moles of Al × molar mass of Al= 0.385 moles × 26.98 g/mol = 10.39 g

So, when 8.00 g of lithium reacts with [tex]AlCl_{3}[/tex], 10.39 g of aluminum is produced.

To know more about stoichiometric calculations visit:

https://brainly.com/question/23742235

#SPJ11

Consider these two entries from a fictional table of standard reduction potentials.


X3+ + 3e—>


X(s)


E° = -2. 43 V


Y3+ + 3e—>


Y(S)


E° = -0. 44 V


What is the standard potential of a galvanic (voltaic) cell where X is the anode and Y is the cathode?


Edell


=


V

Answers

The standard potential of the galvanic cell where X is the anode and Y is the cathode is 1.99 V.

The standard potential of a galvanic cell can be calculated by subtracting the reduction potential of the anode (X) from the reduction potential of the cathode (Y).

E°cell = E°cathode - E°anode

In this case, Y has a higher reduction potential than X, so Y will be the cathode and X will be the anode.

E°cell = E°Y - E°X

E°cell = (-0.44 V) - (-2.43 V)

E°cell = 1.99 V

To know more about the standard potential of the galvanic cell, click below.

https://brainly.com/question/28167837

#SPJ11

What are some things you use in your life that uses sound energy? _

Answers

Some things that you use in your life that uses sound energy are car horn honking and car door closing.

Sound is the longitudinal (compression or rarefaction) wave-based transfer of energy through materials.

When a force, such as sound or pressure, causes an item or substance to vibrate, the result is sound energy. Waves of that energy pass through the substance. We refer to the sound waves as kinetic mechanical energy.

Everyday Examples of Sound Energy

•An air conditioning fan.

•An airplane taking off.

•A ballerina dancing in toe shoes.

•A balloon popping.

•The bell dinging on a microwave.

•A boom box blaring.

•A broom swishing.

•A buzzing bee.

To know more about sound energy

https://brainly.com/question/3369385

#SPJ4

The state of matter which has a definite shape but no definite volume is
(a) solid.
(b) liquid.
(c) gas.
(d) none of these

Answers

None of these. A solid has both definite shape and fixed volume. Liquid has no definite shape, but has a fixed volume. A gas has neither a definite shape nor a fixed volume.

Name 10 different pollinator plants or trees or flowers

Answers

Ten different pollinators plants or trees or flowers are Bee balm, Black-eyed Susan, Butterfly weed, Coneflower, Lavender, Milkweed, Redbud tree, Sunflower, Wild rose, and Zinnia.

What are pollinator plants?

Pollinator plants are known as plants that attract and support pollinators, such as bees, butterflies, birds, and other insects or animals. The pollinators they attract help transfer pollen from one flower to another.

When pollinators tranfer pollens, they facilitate the fertilization and reproduction of flowering plants.

Find more exercises on pollinator plants;

https://brainly.com/question/21076663

#SPJ1

Given the reaction at equilibrium:



2 SO2(g) + O2(g) ↔ 2 SO3(g) + heat




The rate of the forward reaction can be increased by adding more SO2 because the



A) temperature will increase


B) forward reaction is endothermic


C) reaction will shift to the left


D) number of molecular collisions between reactants will increase

Answers

The addition of more [tex]SO2[/tex] to the reaction at equilibrium, [tex]2 SO2(g) + O2(g) ↔ 2 SO3(g) + heat[/tex], will increase the rate of the forward reaction. This is because the forward reaction is an exothermic reaction, meaning it releases heat. The correct answer is option d.

According to Le Chatelier's principle, adding more [tex]SO2[/tex] will shift the equilibrium position to the right and favor the forward reaction, leading to an increase in the concentration of the products, [tex]SO3[/tex].

As the concentration of [tex]SO3[/tex] increases, the rate of the forward reaction will increase due to an increase in the number of molecular collisions between reactants. Therefore, adding more[tex]SO2[/tex] will increase the rate of the forward reaction, favoring the production of [tex]SO3[/tex].

The correct answer is option d.

To know more about Le Chatelier's principle refer to-

https://brainly.com/question/29009512

#SPJ11

I need to produce 500 g of lithium oxide (li2o) how many grams of lithium and how many liters of oxygen do i need. the balanced equation is: li + o2 --> lio2

Answers

To produce 500 g of lithium oxide (Li2O), you will need 232.12 g of lithium (Li) and 187.38 L of oxygen (O2)


To produce 500 g of lithium oxide (Li2O), you'll first need to determine the required amounts of lithium (Li) and oxygen (O2) based on the balanced equation: 4Li + O2 --> 2Li2O.

1. Calculate the moles of Li2O needed:
Molar mass of Li2O = (2 * 6.94) + 16 = 29.88 g/mol
500 g Li2O / 29.88 g/mol = 16.73 moles Li2O

2. Calculate the moles of Li needed (using stoichiometry):
4 moles Li / 2 moles Li2O = 16.73 moles Li2O * (4 moles Li / 2 moles Li2O) = 33.46 moles Li

3. Calculate the mass of Li needed:
Molar mass of Li = 6.94 g/mol
33.46 moles Li * 6.94 g/mol = 232.12 g Li

4. Calculate the moles of O2 needed:
1 mole O2 / 2 moles Li2O = 16.73 moles Li2O * (1 mole O2 / 2 moles Li2O) = 8.365 moles O2

5. Calculate the volume of O2 needed (assuming standard temperature and pressure):
Molar volume of an ideal gas at STP = 22.4 L/mol
8.365 moles O2 * 22.4 L/mol = 187.38 L O2

In summary, to produce 500 g of lithium oxide (Li2O), you will need 232.12 g of lithium (Li) and 187.38 L of oxygen (O2).

To know more about Mole Concept:

https://brainly.in/question/48859318

#SPJ11

what is the pH if the pOH is 14

Answers

subtract the pOH from 14.

suppose that you are titration a solution of hydrochloric acid of unknown concentration with a standard composed of magnesium hydroxide. it takes 14.3 ml of 1.35 m magnesium hydroxide solution to titrate a 20.0 ml solution of hydrochloric acid. what is the molarity of the hydrochloric acid solution?

Answers

The molarity of the hydrochloric acid solution is 1.93 M.

In this titration, a solution of hydrochloric acid of unknown concentration is titrated with a standard solution of magnesium hydroxide. The balanced chemical equation for the reaction is:

[tex]Mg(OH)2 + 2HCl[/tex] →[tex]MgCl2 + 2H2O[/tex]

moles HCl = moles Mg(OH)2 * (2/1)

From the problem, we know that 14.3 mL of 1.35 M Mg(OH)2 is required to titrate 20.0 mL of HCl of unknown concentration.

moles Mg(OH)2 = (1.35 mol/L) * (0.0143 L) = 0.019305 mol

Finally, we can calculate the molarity of the hydrochloric acid solution:

Molarity of HCl = moles HCl / volume of HCl solution in liters

Molarity of HCl = 0.03861 mol / 0.0200 L = 1.93 M

To know more about hydrochloric acid, here

brainly.com/question/15231576

#SPJ4

If you have 16 moles of o2 in a balloon what is the volume of oxygen in the balloon

Answers

If you have 16 moles of O2 in a balloon at 25°C and 1 atm, the volume of oxygen in the balloon is 390.5 liters.

The volume of oxygen in a balloon containing 16 moles of O2 depends on the temperature and pressure of the gas. To find the volume, we can use the ideal gas law equation PV = nRT, where P is the pressure of the gas, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

Assuming the temperature and pressure are constant, we can rearrange the equation to solve for volume: V = nRT/P. The value of R is 0.0821 L·atm/mol·K.

Let's assume that the temperature is 25°C, or 298 K, and the pressure is 1 atm. Plugging in the values, we get:

V = (16 mol)(0.0821 L·atm/mol·K)(298 K)/(1 atm)

V = 390.5 L

Therefore, if you have 16 moles of O2 in a balloon at 25°C and 1 atm, the volume of oxygen in the balloon is 390.5 liters.

To know more about moles, visit:

https://brainly.com/question/31597231#

#SPJ11

How many moles are in a sample having 9. 3541 x 10^13 particles?

Answers

The sample has approximately 0.000155 moles.

To determine the number of moles in a sample of a substance given the number of particles, we need to use Avogadro's number, which states that there are[tex]6.022 x 10^23[/tex] particles in one mole of a substance.

Using this conversion factor, we can calculate the number of moles in the sample as follows:

[tex]9.3541 x 10^13[/tex]particles x 1 mole / [tex]6.022 x 10^23[/tex] particles ≈ 0.000155 moles

Therefore, the sample has approximately 0.000155 moles.

It's important to note that the number of particles in a sample does not depend on the substance's molar mass or atomic weight, but rather on the number of atoms, molecules, or ions present in the sample. Knowing the number of moles in a sample can be useful in determining other properties of the substance, such as its mass or volume.

To know more about Avogadro's number refer to-

https://brainly.com/question/28812626

#SPJ11

Christina has three substances. Each substance is a cube with a volume of 6 milliliters. She is going to place all three substances in a tub of water and wants to know which will float. Substance A has a mass of 4 grams, substance B has a mass of 8 grams, and substance C has a mass of 10 grams. Part A Which substance will float? Part B Explain how you know which substance will float. ​

Answers

Christina can conclude that Substance A will float.

Part A: Substance A will float.

Part B: To determine which substance will float, we need to compare their densities with the density of water. Density is defined as mass per unit volume. We can calculate the density of each substance by dividing its mass by its volume:

Density of Substance A = 4 g / 6 mL = 0.67 g/mL
Density of Substance B = 8 g / 6 mL = 1.33 g/mL
Density of Substance C = 10 g / 6 mL = 1.67 g/mL

The density of water is approximately 1 g/mL. A substance will float if its density is less than the density of water. In this case, Substance A has the lowest density (0.67 g/mL), which is less than the density of water, so it will float. Substance B and Substance C have densities greater than the density of water, so they will sink. Therefore, Christina can conclude that Substance A will float.

To know more about density of water:

https://brainly.com/question/31237897

#SPJ11

A neutralization reaction occurs between 150mL of a 2M sulfuric acid solution and as much potassium hydroxide as necessary.
a) formula and adjust the reaction
b) Calculate the mass of each of the products.
c) to obtain 250g of potassium sulfate, calculate the volume of 1.6M sulfuric acid solution needed.

Answers

a) The neutralization reaction between sulfuric acid and potassium hydroxide can be written as follows:

[tex]H_{2}SO_{4} + 2KOH - > K_{2}SO_{4} + 2H_{2}O[/tex]

b) Mass of [tex]K_{2}SO_{4}[/tex]= 104.6 g; mass of [tex]H_{2}O[/tex]= 5.4 g

c) Volume of 1.6 M [tex]H_{2}SO_{4}[/tex] needed to produce 250 g of [tex]K_{2}SO_{4}[/tex]= 0.896 L or 896 mL.

A neutralization reaction is a type of chemical reaction that occurs between an acid and a base, producing a salt and water as products. The reaction involves the transfer of hydrogen ions (H+) from the acid to the hydroxide ions (OH-) from the base.

The resulting salt is neutral because it is made up of cations from the base and anions from the acid. The reaction can be represented by the general equation: acid + base → salt + water.

Learn more about neutralization reaction, here:

https://brainly.com/question/23008798

#SPJ1

Forty liters (40 L) of a gas were collected over water when the barometer read 622. 0 mm Hg and the temperature was 20 degrees celcius. What volume would the dry gas occupy at standard conditions?




(Hint: consider Dalton's law of partial pressure. )





Show work/calculations

Answers

The dry gas would occupy 1.46 L at standard conditions.

When gas is collected over water, the vapor pressure of the water affects the total pressure measured. To account for this, we need to use Dalton's law of partial pressure, which states that the total pressure of a gas mixture is the sum of the partial pressures of each gas component.

First, we need to calculate the partial pressure of the collected gas. We can do this by subtracting the vapor pressure of water at 20 degrees Celsius (17.5 mm Hg) from the total pressure measured:

Partial pressure of gas = total pressure - vapor pressure of water
Partial pressure of gas = 622.0 mm Hg - 17.5 mm Hg
Partial pressure of gas = 604.5 mm Hg

Next, we can use the ideal gas law (PV = nRT) to calculate the volume of the dry gas at standard conditions (0 degrees Celsius and 1 atm):

PV = nRT
V = nRT/P

where P is the partial pressure of the gas (604.5 mm Hg converted to atm), n is the number of moles of gas (which we can calculate using the volume of the collected gas and the known molar volume of a gas at STP), R is the gas constant, and T is the temperature in Kelvin (273 K).

V = (40 L)(0.0821 L·atm/mol·K)(293 K)/(0.793 atm)
V = 1.46 L

Therefore, the dry gas would occupy 1.46 L at standard conditions.

To know more about dry gas, visit:

https://brainly.com/question/20494871#

#SPJ11

I need to know how to do this and the answer to this question? PLEASE HURRY!!!!

Answers

There are 0.0125 moles of Al₂(SO₄)₃ present in 50.0 mL of 0.250 M solution.

To determine the number of moles of Al₂(SO₄)₃ in 50.0 mL of 0.250 M solution, we need to use the formula:

moles = concentration x volume (in liters)

First, we need to convert the volume from milliliters to liters:

50.0 mL = 50.0/1000 L = 0.0500 L

Now, we can use the formula:

moles = 0.250 M x 0.0500 L = 0.0125 moles

So, there are 0.0125 moles of Al₂(SO₄)₃ present in 50.0 mL of 0.250 M solution.

In chemistry, moles are a unit of measurement used to quantify the amount of a chemical. One mole of a substance is defined as the amount of that substance containing the same number of particles as 12 grams of carbon-12. Avogadro's number is the number of particles.

In chemical processes, moles are frequently used to calculate the amounts of reactants and products involved. The number of moles of a material can be estimated using its mass and molar mass, or by multiplying a solution's concentration by its volume in liters.

learn more about moles here

https://brainly.com/question/29367909

#SPJ1

Use S1/P1 = S2/P2 , the solubility of a gas is 2. 36 g/L at a pressure of 345 atm. What is the solubility if the pressure increases to 445 atm at the same temperature?

Answers

To calculate the solubility of a gas when the pressure increases, the ideal gas law can be used. According to the law, the solubility of a gas is inversely proportional to pressure, meaning that as the pressure increases, the solubility decreases. T

herefore, if the pressure increases from 345 atm to 445 atm, the solubility will decrease.

Using the equation S1/P1 = S2/P2, the new solubility can be calculated. The equation can be rearranged to S2 = (S1 x P2) / P1. Plugging in the given values, the new solubility at 445 atm is 1.97 g/L. This is a decrease of 0.39 g/L.

In conclusion, when the pressure of a gas increases, its solubility decreases. Using the ideal gas law, the new solubility can be calculated using the equation S2 = (S1 x P2) / P1. In this case, the solubility of a gas decreased from 2.36 g/L to 1.97 g/L when the pressure increased from 345 atm to 445 atm.

Know more about Ideal gas law here

https://brainly.com/question/28257995#

#SPJ11

For an ideal gas, classify the pairs of properties as directly or inversely proportional. Directly proportional Inversely proportional Answer Bank

Answers

For an ideal gas, the pairs of properties that are inversely proportional are pressure and volume, and pressure and temperature. This means that as pressure increases, volume and temperature decrease, and vice versa. This relationship is known as Boyle's Law and Charles's Law, respectively.

On the other hand, the pairs of properties that are directly proportional are volume and temperature, and the number of moles and the pressure. This means that as volume increases, temperature increases, and as the number of moles or pressure increases, the other property also increases.

This relationship is known as Gay-Lussac's Law and Avogadro's Law, respectively.

Understanding the proportional relationships between these properties is essential in studying the behavior of ideal gases. These relationships can be explained by the kinetic molecular theory, which states that the behavior of gases is based on the motion of their individual molecules.

As pressure increases, the molecules are compressed, resulting in a decrease in volume and temperature. Conversely, as the volume or the number of moles of gas increases, the molecules have more space to move around, resulting in an increase in temperature or pressure.

In summary, the proportional relationships between the pairs of properties in an ideal gas are fundamental to understanding its behavior, and these relationships can be explained by the kinetic molecular theory., visit

To know more about Boyle's Law, visit:

https://brainly.com/question/30367133#

#SPJ11

A gas sample having an initial temperature of 80℃ and an initial volume of 135 l is cooled to a final temperature of 12℃ and a final volume of 103 l. if the final pressure of the gas is 1.50 atm, what was the initial pressure?

Answers

If the final pressure of the gas is 1.50 atm, the initial pressure would be 2.16 atm.

In order to solve this problem, we need to use the combined gas law equation, which relates the pressure, volume, and temperature of a gas. The combined gas law states that PV/T = constant, where P is pressure, V is volume, and T is temperature.

We know the initial temperature, initial volume, final temperature, final volume, and final pressure of the gas. We can use this information to solve for the initial pressure.

First, we can use the combined gas law to find the constant in the equation:

(Pinitial)(Vinitial)/(Tinitial) = (Pfinal)(Vfinal)/(Tfinal)

Substituting in the values we know, we get:

(Pinitial)(135 L)/(353 K) = (1.50 atm)(103 L)/(285 K)

Solving for Pinitial, we get:

Pinitial = (1.50 atm)(103 L)(353 K)/(285 K)(135 L)

Pinitial = 2.16 atm

Therefore, the initial pressure of the gas was 2.16 atm.

In summary, we used the combined gas law equation to solve for the initial pressure of a gas sample with an initial temperature of 80℃ and an initial volume of 135 l that was cooled to a final temperature of 12℃ and a final volume of 103 l with a final pressure of 1.50 atm. We found that the initial pressure of the gas was 2.16 atm.

To know more about initial pressure, visit:

https://brainly.com/question/23710615#

#SPJ11

CAN someone please help me with this please?

Answers

The mass of I2 reacted is  142.2 g

The mass of PCl3 reacted is 153.4 g

What is the stoichiometry?

Stoichiometry is a fundamental concept in chemistry and is used in many different areas of science and industry.

We know that;

Number of moles of the F2 produced = 21.1 g/38 g/mol

= 0.56 moles

If 1 mole of I2 produced 1 mole of F2

Then 0.56 moles of I2 reacted

Mass of the I2 reacted = 0.56 mol * 254 g/mol

= 142.2 g

Number of moles of PCl5 = 234.1 g/208 g/mol

= 1.12 moles

If the reaction is 1:1:1

Mass of the PCl3 reacted = 1.12 moles * 137 g/mol

= 153.4 g

Learn more about stoichiometry:https://brainly.com/question/30215297

#SPJ1

Calculate the pressure exerted by 200. g of A r in a rigid 4.50 L container at 21.0 ˚ C . Assume ideal gas behavior. Note that R = 0.08206 L ⋅ atm K ⋅ mol .

Answers

The pressure exerted by 200 g of Ar in a rigid 4.50 L container at 21.0 ˚ C would be 19.6 atm.

Ideal gas problem

To calculate the pressure exerted by the Argon gas, we can use the ideal gas law:

PV = nRT

where

P is the pressureV is the volumen is the number of molesR is the ideal gas constantT is the temperature in Kelvin.

First, we need to determine the number of moles of Argon gas present:

n = mass / molar massn = 200/39.95 = 5.004 moles

Next, we convert the volume and temperature:

V = 4.50 L = 0.00450 [tex]m^3[/tex]T = 21.0 ˚C + 273.15 = 294.15 K

Now we can substitute the values into the ideal gas law and solve for P:

P = nRT/VP = (5.004) x (0.08206) x (294.15) / (0.00450)P = 19.6 atm

In other words, the pressure exerted by 200 g of Argon gas in a 4.50 L container at 21.0 ˚C is 19.6 atm.

More on ideal gas can be found here: https://brainly.com/question/31463642

#SPJ1

(05.05 mc how many moles of water are produced when 5 moles of hydrogen gas react with 2 moles of oxygen gas? (5 points select one: a.2 moles of water b.4 moles of water c.5 moles of water d.7 moles of water​

Answers

4 moles of water (option b) are produced when 5 moles of hydrogen gas react with 2 moles of oxygen gas.

To determine how many moles of water are produced when 5 moles of hydrogen gas react with 2 moles of oxygen gas, you need to consider the balanced chemical equation for the reaction:

2H₂ (hydrogen) + O₂ (oxygen) → 2H₂O (water)

From the equation, you can see that 2 moles of hydrogen gas react with 1 mole of oxygen gas to produce 2 moles of water. To find out how many moles of water are produced in your scenario:

Step 1: Determine the limiting reactant. Hydrogen is present in excess (5 moles) compared to oxygen (2 moles). Oxygen will be the limiting reactant since it is present in a smaller amount.

Step 2: Calculate the moles of water produced using the stoichiometric ratios in the balanced equation. Since 1 mole of oxygen gas can produce 2 moles of water, 2 moles of oxygen gas will produce:

2 moles O₂ × (2 moles H₂O / 1 mole O₂) = 4 moles of water

Therefore, the answer is b. 4 moles of water are produced.

Learn more about oxygen at https://brainly.com/question/28009615

#SPJ11

Consider the following intermediate chemical equations. 2H (g) + O2(g) â 2H, O( H (9)+F (9) ⺠2HF(g) In the final chemical equation, HF and O2 are the products that are formed through the reaction between H2O and F2. Before you can add these intermediate chemical equations, you need to alter them by multiplying the O second equation by 2 and reversing the first equation. O first equation by 2 and reversing it. O first equation by (12) and reversing the second equation. Second equation by 2 and reversing it. â

Answers

The correct set of modifications to the given chemical equations is to multiply the second equation by 2 and reverse it, option D is correct.

To obtain the final chemical equation, we need to cancel out the reactants that appear as intermediates in the two given chemical equations. In this case, we need to cancel out H₂ and F₂. The second equation shows that one H₂ molecule reacts with one F₂ molecule to produce two HF molecules. Therefore, we need two molecules of the second equation, which can be achieved by multiplying it by 2.

However, the second equation has to be reversed before multiplying it by 2. This is because, in the final chemical equation, we need to form HF and O₂ from H₂O and F₂, whereas the given second equation shows the formation of HF from H₂ and F₂, option D is correct.

To learn more about equation follow the link:

brainly.com/question/30087623

#SPJ4

The complete question is:

Consider the following intermediate chemical equations.

2H₂(g) + O₂(g) → 2H₂O(l)

H₂(g) + F₂(g) → 2HF(g)

In the final chemical equation, HF and O₂ are the products that are formed through the reaction between H₂O and F₂. Before you can add these intermediate chemical equations, you need to alter them by multiplying the:

A) second equation by 2 and reversing the first equation.

B) first equation by 2 and reversing it.

C) first equation by (1/2) and reversing the second equation.

D) second equation by 2 and reversing it.

You're given an unknown acid and told that it will donate one proton per molecule. When 1. 0 g of this acid is dissolved in water, the resulting solution requires 50. 0 ml of a 0. 25 M solution of NaOH for neutralization. What's the molecular mass of the unknown acid? Explain. (Hint: Find the moles of acid present)

Answers

The molecular mass of the unknown acid is 100 g/mol.

To find the molecular mass, first determine the moles of acid present. Since 50.0 mL of 0.25 M NaOH is required for neutralization, calculate the moles of NaOH using the formula: moles = Molarity × Volume (in L).

Moles of NaOH = 0.25 mol/L × (50.0 mL × 0.001 L/mL) = 0.0125 mol

Since the acid donates one proton per molecule, the moles of acid present equal the moles of NaOH: 0.0125 mol.

Next, find the mass of one mole of the unknown acid. You have 1.0 g of the acid, so divide the mass by the moles to get the molecular mass:

Molecular mass = Mass / Moles = 1.0 g / 0.0125 mol = 100 g/mol

To know more about molecular mass click on below link:

https://brainly.com/question/31476184#

#SPJ11

A typical fat in the body is glyceryl trioleate, C57H104O6. When it is metabolized in the body, it combines with oxygen to produce carbon dioxide, water, and 3. 022 Ã 104 kJ of heat per mole of fat. Write a balanced thermochemical equation for the metabolism of fat. How many kilojoules of energy must be evolved in the form of heat if you want to get rid of 5 pounds of this fat by combustion? How many nutritional calories is this? (1 nutritional calorie = 1 Ã 103 calories)

Answers

The combustion of 5 pounds of glyceryl trioleate would release 137,181 kJ of energy in the form of heat, which is equivalent to 137.181 nutritional calories.

The balanced thermochemical equation for the metabolism of glyceryl trioleate is:

C₅₇H₁₀₄O₆ + 80O₂→ 57CO₂ + 52H₂O + 3.022×10⁴ kJ/mol

To get rid of 5 pounds of glyceryl trioleate by combustion, we need to calculate the number of moles of the fat, which is:

5 lb / 2.20462 lb/kg / 0.453592 kg/mol = 4.536 mol

Then, we can calculate the amount of energy released by combustion:

4.536 mol x 3.022×10⁴ kJ/mol = 137,181 kJ

To convert this to nutritional calories, we divide by 1,000:

137,181 kJ / 1,000 = 137.181 nutritional calories.

To learn more about combustion, here

https://brainly.com/question/15117038

#SPJ4

!!!!chem help 50 points only answer if you know how to calculate this!!!!
dalton’s law of partial pressures and the ideal gas law.

8. you add 5 grams of n2 and 20 grams of he2 into a sealed container that has a volume of 5l. the temperature of the container is 393.15k.

a. use dalton’s laws of partial pressures to explain how the n2 and he2 gasses contribute to the total pressure of the container. (3pt)

b. calculate the moles of n2 was put into the container. (0.5pt)

c. calculate the moles of he2 was put into the container. (0.5pt)

d. use the ideal gas law to calculate the partial pressure of n2 gas inside the container. (2pts)

e. use the ideal gas law to calculate the partial pressure of he2 gas inside the container. (2pts)

f. use dalton’s law of partial pressures to calculate the total pressure of gas inside the container. (1pt)

please ask if any further information is needed in order to answer these (-:

Answers

To answer the given questions, we will utilize Dalton's Law of Partial Pressures and the Ideal Gas Law. Let's go through each part step by step:

a. Dalton's Law of Partial Pressures states that in a mixture of gases, the total pressure exerted is equal to the sum of the partial pressures of each gas. In this case, we have two gases, N2 and He2, in the sealed container.

The contribution of N2 gas to the total pressure can be calculated by multiplying the mole fraction of N2 by the total pressure. Similarly, the contribution of He2 gas to the total pressure can be calculated by multiplying the mole fraction of He2 by the total pressure.

b. To calculate the moles of N2 gas, we need to use its molar mass. The molar mass of N2 is approximately 28 g/mol. We divide the mass of N2 (5 grams) by its molar mass to obtain the number of moles.

c. To calculate the moles of He2 gas, we need to use its molar mass. The molar mass of He2 is approximately 4 g/mol. We divide the mass of He2 (20 grams) by its molar mass to obtain the number of moles.

d. To calculate the partial pressure of N2 gas, we will use the Ideal Gas Law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

Rearranging the formula, we can solve for P: P = (n * R * T) / V. Plug in the values of n (moles of N2 gas), R (ideal gas constant), T (temperature in Kelvin), and V (volume) to calculate the partial pressure of N2 gas.

e. To calculate the partial pressure of He2 gas, we use the same formula as in part d, but this time we plug in the moles of He2 gas and other known values to calculate the partial pressure.

f. To calculate the total pressure of the gas inside the container, we use Dalton's Law of Partial Pressures, which states that the total pressure is the sum of the partial pressures of each gas. Add the partial pressures of N2 gas and He2 gas to obtain the total pressure.

To learn more about mass, refer below:

https://brainly.com/question/19694949

#SPJ11

You will use a filter funnel in this experiment to .

Answers

A filter funnel is used in laboratory experiments to separate a solid from a liquid mixture.

The funnel is designed with a conical shape and a narrow stem that fits into a filter paper, allowing the liquid to pass through while retaining the solid on top of the filter paper.

When using a filter funnel, it is important to wet the filter paper with the solvent before adding the mixture to prevent the filter paper from tearing or disintegrating.

The mixture is then poured into the funnel, and the liquid is allowed to filter through the paper into a receiving flask or beaker.

The filter funnel can be used for various applications, such as separating precipitates from a solution, isolating a solid product from a reaction mixture, or purifying a liquid by removing impurities.

The type of filter paper used will depend on the size of the particles being filtered and the solvent used.

It is important to handle the filter funnel with care to avoid spillage or breakage and to dispose of the solid waste properly after filtering.

to know more about filter funnel refer here:

https://brainly.com/question/9857749#

#SPJ11

Answer:

separate cabbage from liquid

Explanation:

You will use a filter funnel in this experiment to

✔ separate cabbage from liquid

Find the molarity of 4. 18 g MgCl2 in 500 mL of water

Answers

To find the molarity of 4.18 g MgCl2 in 500 mL of water, we first need to calculate the number of moles of MgCl2 present in the solution.

MgCl2 has a molar mass of 95.21 g/mol (Mg is 24.31 g/mol and Cl is 35.45 g/mol). Therefore, the number of moles of MgCl2 in 4.18 g is:

4.18 g / 95.21 g/mol = 0.04396 mol MgCl2

The solution's volume must then be changed from mL to L:

500 mL = 0.5 L

Finally, we can use the formula for molarity:

Molarity = moles of solute / volume of solution in liters

Molarity = 0.04396 mol / 0.5 L = 0.08792 M

Therefore, the molarity of 4.18 g MgCl2 in 500 mL of water is 0.08792 M.

What do you mean by molarity?

The number of moles of solute per liter of solution is known as molarity, which serves as a measurement of a solution's concentration. It is denoted by the symbol "M" and is expressed in units of moles per liter (mol/L).

Molarity is an important concept in chemistry, as it is used to measure the concentration of solutions in a variety of chemical reactions and processes. It is commonly used in stoichiometry calculations to determine the amount of reactants or products required in a chemical reaction, and is also used in titration experiments to determine the concentration of an unknown solution.

To know more about Molarity:

https://brainly.com/question/8732513

#SPJ11

1. How many moles does 8. 19 L of gas at STP represent?



2. How many moles does 21. 7 L of gas at STP represent?

Answers

At standard temperature and pressure (STP), 1 mole of any gas occupies 22.4 L of volume. Therefore, 8.19 L of gas at STP represents 0.364 moles and 21.7 L of gas at STP represents 0.969 moles.

Moles are a unit of measurement for the amount of matter present in an object. The number of moles in an object is proportional to the amount of matter present, and it is calculated by dividing the mass of an object by its molar mass. The molar mass of a substance is its molecular mass expressed in grams.

At STP, the number of moles of a gas in a given volume can be calculated by dividing the volume of the gas (in liters) by 22.4. This is because 1 mole of any gas occupies 22.4 L of volume at STP. Therefore, by dividing the volume of the gas by 22.4, the number of moles of gas is obtained.

Know more about Molar mass here

https://brainly.com/question/22997914#

#SPJ11

Other Questions
Boyles law describes the relationship between pressure and volume . more specifically, it states that the relationship between these two quantities is [ select ] proportional. it is important to remember that boyles law only applies to [ select ] and situations when the [ select ] is constant. Write a prose summary about the misconception about extrovert. your summary should be 100words long. use your own words as far as possible Think of two elderly people (over age 65) that you know at least pretty well, one that is thriving and happy and the other that is not. Compare and contrast the two on factors that the research has found to be correlated with psychosocial functioning, happiness, and mental health in late adulthood. Demonstrate your understanding of the research findings and terms in chapter 15 by applying at least 12 terms, theories, or research findings that affect psychosocial functioning in late adulthood, such as activity versus disengagement, Erickson's psychosocial stages, especially the last one of ego integrity versus despair , the role of family and friends, etc. Include a paragraph on how ageist stereotypes can interfere with seniors' mental health and happiness. ACTIVITY 1: AGREE OR DISAGREEWrite AGREE, if you think the statement is correct and DISAGREE if otherwise1. An RPE of 10 means that the activity is very light2. Swimming and playing basketball are vigorous activities3. Street and hip hip dances are active recreational activities4. Proper execution of dance steps increases the risk of injuries5. A normal nutritional status means that weight is proportional to the height6. Physical inactivity and unhealthy diet are risk factors for heart disease. 7. Risk walking and dancing are activities which are moderate intensity8. One can help the community by sharing his/her knowledge and skills in dancing9. Surfing on the internet and playing computer games greatly improve one's fitness10. A physically active person engages in 5-10 minutes of moderately vigorous physical activity three or moretimes a week Construct a truth table for the statement (~ pVq) q. Write a letter to the editor of a national newspaper complaining about the bad nature of road in your community,and giving at least 3 reasons why something should be done urgently A Gas Thermometer Measures Temperature By Measuring The Pressure Of A Gas Inside The Fixed Volume Container. A Thermometer Reads A Pressure Of 780 mmHg at 0C. What Is The Temperature When The Thermometer Reads A Pressure Of 800 mmHg? why do I blink and roll my eyes so much in class when im anxious? I try to stop but cant Dante has a tent shaped like a triangular prism. The tent has equilateral triangle bases that measure 5 feet on each side. The tent is 8 feet long and 4. 3 feet tall Why is there an ongoing debate about the Kampanangan orthography? Background:there was a tarantula discovered at knightsen school. mr. yurkovich when there as a child, grew up in the area, and still lives nearby. he has never heard of tarantulas being observed at the school before this. tarantulas eat primarily grasshoppers and beetles.question:what will happen to the populations of beetles, now that tarantulas are a new part of their environment? will the population increase or decrease?ignore the name its just my principles The price of a visit to the dentist is $50$50dollar sign, 50. If the dentist fills any cavities, an additional charge of $100$100dollar sign, 100 per cavity gets added to the bill. Now that you have chosen your mode of transportation, use your choice to answer the questions that follow.What would the cost of your transportation be if you drove: a. 10 miles? b. 25 miles? c. 42 miles? d. 68 miles?Make sure to list your chosen mode of transportation and then answer all parts and show your work Quality-control research determined that of all newcars sold by Sherman Motors, 8% will require aminor repair during the first year of ownership. Suppose you survey the owners of three cars fromSherman Motors. Find the probability to the nearestpercent that exactly one car will require a minorrepair in the first year How is climate crisis politics in the us right now? What are some big current issues we are facing. Contrast the pre-union development of south africas constitutional law history with the post-apartheid period with reference to the application of the rule of law All of the following were true after industrialization except. women were more likely to receive equal pay with menwomen were more likely to work outside the homewomen were more likely work in factorieswomen were likeky to move from farms to cities Can someone help with this math equation from study island???? Regina writes the expression y + 9 x 3/4. Which expression is equivalent to the one Regina writes? Please help I need it ASAP, also needs to be rounded to the nearest 10th