Answer:
Step-by-step explanation:
mass=density* volume
78.12
PLEASE ANSWER!
Select the statement that shows equivalent measurements.
0.76 grams = 0.076 decagrams
0.76 grams = 7.6 hectograms
0.76 grams = 76 decigrams
0.76 grams = 760 centigrams
The equivalent measurements are 0.76 grams = 0.076 decagrams as 1gram = 0.1 decagrams. Option A is correct answer.
What is Measurement?
Measurement is the process of associating numbers with physical quantities and phenomena. Measurement is fundamental to the sciences; to engineering, construction, and other technical fields; and to almost all everyday activities. For that reason the elements, conditions, limitations, and theoretical foundations of measurement have been much studied. See also measurement system for a comparison of different systems and the history of their development.
Measurements may be made by unaided human senses, in which case they are often called estimates, or, more commonly, by the use of instruments, which may range in complexity from simple rules for measuring lengths to highly sophisticated systems designed to detect and measure quantities entirely beyond the capabilities of the senses, such as radio waves from a distant star or the magnetic moment of a subatomic particle.
Visit here to learn more about the Number: https://brainly.com/question/17429689
#SPJ1
Please help, 30 points!!!! The graph of f(x) and table for g(x)= f(kx) are given. A coordinate plane with a quadratic function labeled f of x that passes through the points negative 2 comma 4 and negative 1 comma one and vertex 0 comma 0 and 1 comma 1 and 2 comma 4 x g(x) −4 4 −2 1 0 0 2 1 4 4 What is the value of k?
k = 2
k = −2
k is equal to one half
k is equal to negative one half
The value of k is equal to one half in the given case.
Since g(x) = f(kx), the value of k can be found by comparing the input values of g(x) to the corresponding input values of f(x) when x is multiplied by k.
Let's compare the values of g(x) and f(x) for x = -2:
g(-2) = 4, which means f(k(-2)) = 4, or f(-2k) = 4
f(-2) = 4, which means -2k is one of the inputs for f(x) that gives an output of 4
Next, let's compare the values of g(x) and f(x) for x = 2:
g(2) = 4, which means f(k(2)) = 4, or f(2k) = 4
f(2) = 4, which means 2k is one of the inputs for f(x) that gives an output of 4
We now have two equations: -2k is an input for f(x) that gives an output of 4, and 2k is also an input for f(x) that gives an output of 4. Therefore, we can solve for k by setting the two equations equal to each other and solving for k:
-2k = 2k/2
Multiplying both sides by -1/2, we get:
k = 1/2
Therefore, the value of k is equal to one half.
To know more about quadratic function here
https://brainly.com/question/25841119
#SPJ1
5.the number of calls that come into a small mail-order company follows a poisson distribution. currently, these calls are serviced by a single operator. the manager knows from past experience that an additional operator will be needed if the rate of calls exceeds 20 per hour. the manager observes that 9 calls came into the mail-order company during a randomly selected 15-min. a. if the rate of calls is actually 20 per hour, what is the probability that 9 or more calls will come in during a given 15-minute period? b. if the rate of calls is really 30 per hour, what is the probability that 9 or more calls will come in during a given 15-minute period? c. based on the calculations in parts a and b, do you think that the rate of incoming calls is more likely to be 20 or 30 per hour? d. would you advise the manager to hire a second operator? explain.
The required probability for the given rate of calls per hour using Poisson distribution is ,
Probability of calls rate are 20 per hour is 0.734
Probability of calls rate are 30 per hour is 0.654..
Probability of 20 per hour is higher in comparison of 30 per hour.
Yes . Manager should consider second operator.
Actual rate of calls = 20 per hour,
Expected number of calls in a 15-minute period is,
= (20/60) × 15
= 5
The probability of getting 9 or more calls in a 15-minute period is,
P(X ≥ 9) = 1 - P(X ≤ 8)
Using the Poisson distribution with λ = 5, we have,
P(X ≤ 8)
= e^(-5) × (5^0/0!) + e^(-5) ×(5^1/1!) + ... + e^(-5) × (5^8/8!)
= 0.266
Probability of getting 9 or more calls in a 15-minute period is,
P(X ≥ 9)
= 1 - P(X ≤ 8)
= 1 - 0.266
= 0.734
If the rate of calls is really 30 per hour.
Expected number of calls in a 15-minute period is,
= (30/60) × 15
= 7.5
Probability of getting 9 or more calls in a 15-minute period is,
P(X ≥ 9) = 1 - P(X ≤ 8)
Using the Poisson distribution with λ = 7.5, we have,
P(X ≤ 8)
= e^(-7.5) * (7.5^0/0!) + e^(-7.5) * (7.5^1/1!) + ... + e^(-7.5) * (7.5^8/8!)
= 0.346
Probability of getting 9 or more calls in a 15-minute period is,
P(X ≥ 9)
= 1 - P(X ≤ 8)
= 1 - 0.346
= 0.654
Based on the calculations in parts a and b,
Probability of getting 9 or more calls in a 15-minute period is higher .
If the rate of incoming calls is 20 per hour (0.734) compared to if the rate is 30 per hour (0.654).
Based on the calculations,
Current operator can handle the call volume with a high probability if the call rate is 20 per hour.
However, if the call rate is 30 per hour, there is a relatively high probability of needing a second operator.
Manager should consider hiring a second operator if the rate of incoming calls is expected to be 30 per hour or higher.
Therefore, the probability of the given situation are,
For the rate of calls 20 per hour is 0.734.
For the rate of calls 30 per hour is 0.654.
Probability of 20 per hour is higher than 30 per hour.
Yes , manager should consider second operator is call rate are 30 per hour or higher.
Learn more about Probability here
brainly.com/question/14716700
#SPJ4
Alg 1 task - 250 toothpicks pyramid
Write a function f(l) that determines the number of triangles in any given level of the pyramid.
ƒ(1) =
PLSS HELP ASAPPP
To determine the number of triangles in any given level of the pyramid, we can use the formula:
Number of triangles = (level)^2
Therefore, to find the number of triangles in the first level of the pyramid, we can substitute 1 for level in the formula:
ƒ(1) = (1)^2 = 1
So, there is only 1 triangle in the first level of the pyramid.
Answer:
1
Step-by-step explanation:
find LJ, KP=PL
GH=36ft
The value of LJ is 18 feet where GH is 36ft and KP equal to PL.
What is similar triangles?The same angles, and the corresponding sides are proportional to each other. In other words, if you were to enlarge or reduce one of the triangles, it would still have the same angles as the other triangle.
According to question:If we create a dotted line connecting H and P as well as J and P,
∠JLP = ∠HKP (Similarity of triangles)
For example, consider two triangles ABC and DEF. If angle A is equal to angle D, angle B is equal to angle E, and angle C is equal to angle F, then the triangles are similar. If, in addition, the ratio of the length of side AB to side DE is equal to the ratio of the length of side BC to side EF, and also equal to the ratio of the length of side AC to side DF, then the triangles are not only similar, but they are also in proportion.
HP = JP
KP = LP
ΔHKP ≅ ΔJLP
KH = LJ
Now joining G and P,
GP = HP
PM is parallel to the GH.
PM divides GH evenly.
KH = GK = 1/2 of GH.
= 1/2 × 36
= 18 feet
As a result, we may say that LJ is 18 feet long.
To know more about similar triangles visit:
https://brainly.com/question/29249755
#SPJ1
hint(s) check my work a random variable is normally distributed with a mean of and a standard deviation of . a. which of the following graphs accurately represents the probability density function? a. b. c. d. choose the correct option. a b. what is the probability that the random variable will assume a value between and (to 4 decimals)? 0.6830 c. what is the probability that the random variable will assume a value between and (to 4 decimals)?
The probability that the random variable will assume a value between 45 and 55 is given by: 0.6827
A random variable is normally distributed.
Mean μ = 50
Standard deviation σ = 5
According to the empirical rule, also known as 68-95-99.7 rule, the percentage of values that lie within an interval with 68%, 95% and 99.7% of the values lies within one, two or three standard deviations of the mean of the distribution.
The more precise statement for 68 percent is:
[tex]P(\mu-\sigma < X < \mu+\sigma) = 68.27%[/tex]
Since the interval of interest given in question is (45,55), it can be rewritten as (50-5, 50 + 5)
Thus we have:
P(50 - 5 < X < 50+5) = 68.27%
P(45 < X < 55) = 0.6827.
Thus, 0.6827 is the probability that the random variable will assume a value between 45 and 55.
Learn more about probability:
https://brainly.com/question/28185528
#SPJ4
45 points!
___________________________________________________________
Tom went to the cinema with his family.he bought 3 child tickets at £5.50 each and 2adult tickets for £8.50 each.
How much did he spend in total
The total amount spent by Tom in the cinema with his family is £33.50
The given question is based on the concept of arithmetic operations, where we have to find the total expenditure of Tom in the cinema with his family. According to the given information, he bought 3 child tickets at £5.50 each and 2 adult tickets for £8.50 each.
Therefore, the total cost spent by him would be calculated as follows:
Total cost of 3 child tickets = 3 × £5.50 = £16.50
Total cost of 2 adult tickets = 2 × £8.50 = £17
Total expenditure of Tom = £16.50 + £17 = £33.50
Therefore, the total amount spent by Tom in the cinema with his family is £33.50.
Know more about Arithmetic operations here :
https://brainly.com/question/30553381
#SPJ11
if the test statistic falls in the critical region, we select one: a. reject the null and conclude that the research hypothesis is true b. reject the null and conclude that there is strong support for the research hypothesis c. accept the null d. fail to reject the null
Therefore, if the test statistic falls in the critical region, we select option (b) - reject the null and conclude that there is strong support for the research hypothesis.
What happens if the test statistic falls in the critical region?
If the test statistic falls in the critical region, we reject the null and conclude that there is strong support for the research hypothesis.
A critical region is the set of all values of the test statistic that lead to the rejection of the null hypothesis. It is a predefined set of values in which the alternative hypothesis will be favored if the sample test statistic falls within that range.
The critical region is that area in which the null hypothesis is rejected at a certain significance level. If the test statistic falls into the critical region, we can reject the null hypothesis in favor of the alternative hypothesis.
for such more questions on hypothesis.
https://brainly.com/question/606806
#SPJ11
there are 3 cards with a picture of a rose and 1 card with a picture of a daisy. melody keeps all the cards face down on a table with the pictures hidden and mixes them up. she then turns over one card face up and finds the picture of a rose on it. she removes this card from the table and turns over another card without looking. what is the probability that the card that melody turns over has a rose on it?
The probability that the card that melody turns over has a rose on it = 2/3
Here, 3 cards with a picture of a rose and 1 card with a picture of a daisy.
So, the total number of cards : 3 + 1 = 4
First Melody turns over one card face up and finds the picture of a rose on it.
Now there are 3 cards( two rose cards and a card with a picture of a daisy) on a table.
Let us assume that event A: the card that melody turns over (second time) has a rose on it
here, the number of rose cards n(A) = 2
And the number of remaining cards n(S) = 3
Using the definition of probability, the probability of this event would be,
P(A) = n(A)/n(S)
P(A) = 2/3
Therefore, the required probability is 2/3
Learn more about the probability here:
https://brainly.com/question/15124899
#SPJ4
m<1 =
m<2 =
m<3 =
Please help me, thank you.
Answer:
m<1 = 60
m<2 = 60
m<3 = 30
Step-by-step explanation:
true or false? in the context of our theory of inductive proofs, p(n) represents the quantity about which we are proving something.
In the context of our theory of inductive proofs, P(n) represents the quantity about which we are proving something- False.
A proof by induction requires justification at every step, just like a regular proof. But, it uses a clever technique that enables you to demonstrate the truth of a proposition when n is 1, assume it is true for n=k, and then demonstrate that it is true for n=k+1.
According to the theory, all that is required to demonstrate a person's ability to ascend to the nth floor of a fire escape is for them to demonstrate their ability to ascend the fire escape ladder (n=1) and their ability to ascend the stairs from any level of the fire escape (n=k) to the next level (n=k+1).
You could have been asked to assume the n-1 case and prove the n case if you've done proof by induction before, or to assume the n case and show the n+1 case. This is the same as what I'm describing here, but I'll use a different letter since I believe it helps people understand what each instance is for better.
Learn more about Inductive proofs:
https://brainly.com/question/30474602
#SPJ4
What are the solutions to the quadratic equation graphed
below?
Step-by-step explanation:
If you mean what are the solutions (zeroes or 'roots') :
the graph is equal to zero at x = 2 and 5
this is where the graph crosses the x-axis
the quadratic would be f(x) = (x-2)(x-5) = x^2 -7x+10
Assuming that you invest $13,000 in Japan, how long must you wait before your investment is worth $16,000 if the interest is compounded annually?
To find out how long it would take to turn a $13,000 investment in Japan into $16,000 with annual compound interest, the formula for compound interest can be used. By solving for t, we can find that it would take about 2.72 years, assuming an interest rate of 7.97%.
To solve this problem, we can use the formula for compound interest:
A = P(1 + r/n)⁽ⁿᵗ⁾
where:
A = the final amount
P = the initial investment
r = the annual interest rate (as a decimal)
n = the number of times the interest is compounded per year
t = the time (in years)
In this case, we are given that P = $13,000, A = $16,000, r is not given, n = 1 (since the interest is compounded annually), and we want to solve for t.
First, we can rearrange the formula to solve for t:
t = (log(A/P)) / (n * log(1 + r/n))
Substituting the given values, we get:
t = (log(16000/13000)) / (1 * log(1 + r/1))
Simplifying the equation gives:
t = log(1.2308) / log(1 + r)
To solve for t, we need to know the annual interest rate, r. We can rearrange the formula for compound interest to solve for r:
r = n[(A/P)⁽¹/⁽¹*ᵗ⁾⁾ - 1]
Substituting the given values, we get:
r = 1[(16000/13000)⁽¹/⁽¹*ᵗ⁾⁾ - 1]
Simplifying the equation gives:
r = (16000/13000)⁽¹/ᵗ⁾ - 1
We can then use trial and error or a calculator to solve for t. One way is to plug in different values for t until we get an r that makes sense. For example:
If we assume t = 3 years, then:
r = (16000/13000)⁽¹/³⁾ - 1
r = 0.0797
Plugging this value of r back into the equation for t gives:
t = log(1.2308) / log(1 + 0.0797)
t ≈ 2.72 years
Therefore, if you invest $13,000 in Japan and the interest is compounded annually, you would need to wait approximately 2.72 years for your investment to be worth $16,000.
Learn more about compound interest here: brainly.com/question/29335425
#SPJ1
An employee at an organic food store is assembling gift baskets for a display. Using wicker baskets, the employee assembled 3 small baskets and 5 large baskets, using a total of 109 pieces of fruit. Using wire baskets, the employee assembled 9 small baskets and 5 large baskets, using a total of 157 pieces of fruit. Assuming that each small basket includes the same amount of fruit, as does every large basket, how many pieces are in each?
The small baskets each include ___ pieces and the large ones each includes
___ pieces.
As a result, each small basket contain X=8 pieces of fruit and each large basket contains Y=17.
What more uses does algebra have?
There are numerous practical uses for algebra. Among the most frequent applications of algebra are:
- Seeing a ball game being played by 4-5 year old children.
- Creating an activity schedule
- Cooking or doubling or splitting the dish; - Improving spatial intelligence; - Determining tax liability; - Calculating the stars
- Advances in technology - Budgeting
Assume that each small basket contains x pieces of fruit and each large basket contains y pieces of fruit.
We can create two equations using the information provided:
3x + 5y = 109
9x + 5y = 157
When the first equation is subtracted from the second equation, the result is: 6x = 48
x = 8.
Any of the two equations can be solved for x = 8 and the result is:
3(8) + 5y = 109
24 + 5y = 109
5y = 85
y = 17
To know more about algebra visit:
brainly.com/question/14214330
#SPJ1
How do you determine if a number set fulfills a property? I don’t get how the number set Z or Q doesn’t fulfill the property “if c^2=0, then c=0”, but 4Z fulfills that property.
In the case of the property "if c² =0, then c=0", the set Z and Q do not fulfill this property, while the set 4Z does.
How do you determine if a number set fulfills a property?To determine if a set of numbers fulfills a property, you need to evaluate whether every element in the set satisfies that property. In the case of the property "if c² =0, then c=0", this means that for any element c in the set, if c² =0, then c must be equal to 0.
The set of integers does not fulfill this property because there are elements in Z that satisfy c² =0 without being equal to 0. For example, 2 × 0=0, but 2 is not equal to 0.
Similarly, the set Q (the set of rational numbers) also does not fulfill this property because there are rational numbers that satisfy c² =0 without being equal to 0. For example, (1/2) × (1/2)=1/4, which is not equal to 0.
However, the set 4Z the set of integers that are multiples of 4 does fulfill this property because every element in 4Z can be written as 4n for some integer n, and if (4n)² =0, then 4n=0, which implies that n=0, and hence c=4n=0.
and in the case of the property "if c² =0, then c=0", the set Z and Q do not fulfill this property, while the set 4Z does.
Know more about sets visit :
brainly.com/question/8053622
#SPJ1
What is the slope of the line that contains these points?
Answer:
y=2x-13
Step-by-step explanation:
the weight of a cat for 10 months is shown in the table. if in november the cat weighed 13.9 lbs, by how much did this increase the mean weight of the cat? (to the nearest tenth lbs) responses
The November weight is higher than the original mean weight, the new mean weight has increased. It increased by 0.21 lbs. So, correct option is A.
To determine how the November weight of 13.9 lbs affects the mean weight of the cat, we need to calculate the new mean weight with the updated data.
To do this, we first need to find the sum of all the weights, including the November weight:
Sum of weights = 13.5 + 12.5 + 10.5 + 11.2 + 11.2 + 10.8 + 9.5 + 13.4 + 11.5 + 11.8 + 13.9 = 129.8
Next, we need to find the new number of data points, which is 11 (the original 10 months plus the additional November weight).
Now, we can calculate the new mean weight by dividing the sum of weights by the number of data points:
New mean weight = Sum of weights / Number of data points = 129.3 / 11 = 11.8 lbs
The original mean weight was 11.59 lbs. So, the difference in mean weight after adding the November weight is:
Difference = New mean weight - Original mean weight = 11.8 - 11.59 = 0.21 lbs
Therefore, the correct answer is A.
To learn more about mean click on,
https://brainly.com/question/10888982
#SPJ4
Complete question is:
The weight of a cat for 10 months is shown in the table. In November, the cat weighed 13.9 lbs. How did this affect the mean weight of the cat?
Month: January February March April May June July August September October
Weight (lbs): 13.5 12.5 10.5 11.2 11.2 10.8 9.5 13.4 11.5 11.8
A. It increased by 0.21 lbs
B. It decreased by 0.21 lbs
C. It increased by 1.38 lbs
D. It decreased by 1.38 lbs
you reach into the bag, pick out a coin at random, flip it and it comes up heads. what is the (conditional) probability that the coin you chose is fake?
The conditional probability that the coin chosen is fake given that it came up heads after flipping is not possible to determine without additional information.
The given information provides us with the result of a single trial, and it does not provide any information about the prior probability of choosing a fake coin from the bag. Therefore, the conditional probability of the coin being fake given that it came up heads depends on the prior probability of choosing a fake coin, which is not given.
If we assume that there is an equal chance of choosing a real or fake coin from the bag, then the probability that the coin is fake would be the ratio of the probability of choosing a fake coin to the probability of getting heads from either a real or a fake coin.
However, if we assume that the prior probability of choosing a fake coin is very low, then the probability of the coin being fake would also be very low, even if it came up heads. Therefore, without information about the prior probability of choosing a fake coin, we cannot determine the conditional probability that the coin is fake given that it came up heads.
Therefore, the given information is not sufficient to determine the conditional probability that the coin is fake
To learn more about conditional probability here:
brainly.com/question/30144287#
#SPJ11
Represent the following situations in the form of quadratic equations:
(i) The area of a rectangular plot is 528 m². The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
(ii) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. What is the speed of the train?
I need help (☆▽☆)
The speed of the train is 40 km/h. and the length and breadth of the plot are 33 meters and 16 meters respectively.
The solution is as follows :-
(i) Let's assume that the breadth of the rectangular plot is x meters. Then, according to the problem, the length of the plot is (2x + 1) meters. The area of the plot is given as 528 m². We know that the area of a rectangle is given by the product of its length and breadth. So we can write:
Area = length x breadth
528 = (2x + 1) x x
Simplifying this equation, we get:
528 = 2x² + x
2x² + x - 528 = 0
This is a quadratic equation in the variable x. We can solve this equation using the quadratic formula:
x = (-b ± √(b² - 4ac)) / 2a
where a = 2, b = 1, and c = -528. Plugging in these values, we get:
x = (-1 ± √(1² - 4(2)(-528))) / 2(2)
x = (-1 ± √(1 + 4224)) / 4
x = (-1 ± 65) / 4
The negative value of x does not make sense in the context of the problem. So we can discard it and take the positive value of x:
x = 16
This means that the breadth of the plot is 16 meters. The length of the plot is given as (2x + 1), which evaluates to 33 meters.
So the length and breadth of the plot are 33 meters and 16 meters respectively.
(ii) Let's assume that the speed of the train is x km/h. According to the problem, the distance traveled by the train is 480 km. We know that speed is defined as distance traveled per unit time. So the time taken by the train to cover the distance of 480 km at a speed of x km/h is given by:
time = distance / speed
time = 480 / x
If the speed of the train had been 8 km/h less, the time taken to cover the same distance would have been 3 hours more. So we can write another equation for the time taken in this case:
time + 3 = 480 / (x - 8)
Now we can set these two equations equal to each other, since they both represent the time taken to cover the same distance:
480 / x = 480 / (x - 8) + 3
Simplifying this equation, we get:
480(x - 8) = 480x + 3x(x - 8)
480x - 3840 = 480x + 3x² - 24x
3x² - 24x - 3840 = 0
Dividing both sides by 3, we get:
x² - 8x - 1280 = 0
This is a quadratic equation in the variable x. We can solve this equation using the quadratic formula:
x = (-b ± √(b² - 4ac)) / 2a
where a = 1, b = -8, and c = -1280. Plugging in these values, we get:
x = (8 ± √(64 + 5120)) / 2
x = (8 ± √5184) / 2
x = (8 ± 72) / 2
The negative value of x does not make sense in the context of the problem. So we can discard it and take the positive value of x:
x = 40
Therefore, the speed of the train is 40 km/h.
To know more about equations visit :-
https://brainly.com/question/22688504
#SPJ1
The diagonals of a rhombus are 3.5 and 12. A circle is tangent to two sides (or their extensions) of the rhombus, and is centered at one of the vertices of the rhombus. Find the exact value of the circle area. Pls respond ASAP
Let's first draw the rhombus and label the diagonals:
================================
A
o
/ \
3.5 12
/ \
o----x----o
\ /
3.5 12
\ /
o B
================================
Let the rhombus be ABCD, with AB = BC = CD = DA. Let O be the center of the circle, which is also a vertex of the rhombus. Then, OA and OB are radii of the circle, and they are also perpendicular bisectors of sides AB and BC, respectively. Therefore, triangle AOB is a right triangle, and we can use the Pythagorean Theorem to find the length of OB:
OA = OB = OC = OD (since O is the center of the circle)
AB = BC = 12 (since 12 is the length of diagonal AC)
AO^2 = AB^2/4 + OB^2 (since AO and OB are the legs of right triangle AOB)
Substituting AB = 12 and simplifying, we get:
OB^2 = AO^2 - AB^2/4
= (3.5/2)^2 - 12^2/4
= 49/16 - 144/4
= 49/16 - 36
= 1/16
Taking the square root of both sides, we get:
OB = \sqrt{1/16} = 1/4
Now, the circle is tangent to sides AB and BC, so its diameter must be perpendicular to these sides. Therefore, the diameter of the circle is equal to the length of diagonal BD, which is the hypotenuse of right triangle AOB:
BD^2 = AB^2 + OB^2
= 12^2 + (1/4)^2
= 144 + 1/16
= 577/16
Taking the square root of both sides, we get:
BD = \sqrt{577}/4
Finally, the area of the circle is given by:
A = pi*(BD/2)^2
= pi*(\sqrt{577}/8)^2
= pi*577/64
Therefore, the exact value of the circle area is (577/64)*pi.
Please help I have a terrible grade in this class been try so hard to get caught up! ☀️ thanks
What kind of transformation is represented in the figure below?
translation
dilation
rotation
reflection
Answer: Dilation
Step-by-step explanation: The Square in the bottom of the original shape has been made smaller, indicating that the shape has been dilated.
NEED HELP ASAP PLEASE...
The output of the function g(x) when x = 4 is 9.
EquationsIf you input 4 into g(x), we get:
g(4) = = [tex]3^{4/2}[/tex] = 9
What are explicit functions?An explicit function in mathematics is one that may be explicitly computed for any given value of its independent variable, typically written as x. In other words, an explicit function does not include any additional variables or unknowns and simply expresses the dependant variable (y) as the independent variable (x). Often, it is expressed as an algebraic formula or equation that can be evaluated for any given value of x. Calculus, differential equations, and statistics are just a few of the mathematics disciplines where explicit functions are helpful. They make it simpler to analyse and resolve mathematical issues and offer a clear approach to define a relationship between two variables. In programming, explicit functions are also employed.
To know more about functions, click here,
https://brainly.com/question/12431044
#SPJ1
11. The velocity, V of a car moving with a constant acceleration is partly constant and partly
varies as the time taken, t. The velocity of the car after 8s and 12s are 9 m/s and 11
m/s respectively. Find
i)The relationship between the velocity and the time taken.
ii) The time taken when the velocity is 15 m/s.
The relationship between velocity and time can be expressed as V = 5 + 0.5t and the time taken is 20 seconds.
How to calculate the relationship between the velocity and the time?The velocity of a car is expressed as the sum of a constant part and a part that varies with time, and since the car has a constant acceleration, this varying part can be expressed as the product of acceleration and time.
I) Let Vc be the constant part of the velocity and Vv be the part that varies with time. Then we can express the velocity of the car as:
V = Vc + Vv
Since the car is moving with a constant acceleration, the varying part of the velocity can be expressed as:
Vv = at
Therefore, we can rewrite the velocity equation as: V = Vc + at
To find the relationship between the velocity and time taken, we can use the given values for V and t. Substituting t = 8s and V = 9 m/s, we get:
9 = Vc + 8a
Substituting t = 12s and V = 11 m/s, we get:
11 = Vc + 12a
We can solve these equations simultaneously to obtain the values of Vc and a. Subtracting the first equation from the second, we get:
2 = 4a
a = 0.5 m/s²
Substituting this value of an into the first equation, we get:
9 = Vc + 4
Vc = 5 m/s
Therefore, the relationship between the velocity and time taken is:
V = 5 + 0.5t
II) To find the time taken when the velocity is 15 m/s, we can use the velocity equation:
V = 5 + 0.5t
Substituting V = 15 m/s, we get:
15 = 5 + 0.5t
t = 20 seconds
Learn more about velocity in: https://brainly.com/question/17127206
#PSJ1
ITS URGENT PLS HELP!
Answer: y = 101
z = 68
Step-by-step explanation:
Z first, bcs its ez
180 - 112 (angles on a straight line)
z = 68
104 + 87 + 68 + y = 360 (angles in a quadrilateral)
360 - 104 + 87 + 68 = y
360 - 259 = y
y = 101
Please help, see photo attached
Algebraically, we can write the solution set of the system of inequalities as follows: -2x - 3 ≤ y ≤ 3x 2 and y = -5 satisfies this inequality, the point (1, -5) is in the solution set of the system of inequalities
What do you mean by Algebraic Expression ?An algebraic expression is an expression made up of constant algebraic numbers, variables and algebraic operations (addition, subtraction, multiplication, division and exponentiation, which is a rational number).
To determine the relationship between the point (1, -5) and the given system of inequalities, we must substitute the values of x and y in each inequality and check whether the point satisfies the inequality or not.
For the first inequality, we have:
y ≤ 3 x 2
Substituting x = 1 and y = -5, we get:
-5 ≤ 3 (1) 2
-5 ≤ 5
This inequality is true, so the point (1, -5) satisfies this inequality.
For the second inequality, we have:
y ≥ -2x -3
Substituting x = 1 and y = -5, we get:
-5 ≥ -2(1) -3
-5 ≥ -5
This inequality is also true, so the point (1, -5) also satisfies this inequality.
Since the point (1, -5) satisfies both inequalities, it lies in the region that satisfies the system of inequalities. Geometrically, the point (1, -5) lies in the shaded area between the two lines y = 3x 2 and y = -2x -3 in the xy plane. Algebraically, we can write the solution set of the system of inequalities as follows:
-2x - 3 ≤ y ≤ 3x 2
Substituting x = 1, we get:
-2 (1) - 3 ≤ y ≤ 3 (1) 2
-5 ≤ y ≤ 5
Since y = -5 satisfies this inequality, the point (1, -5) is in the solution set of the system of inequalities
Learn more about Rational number here
https://brainly.com/question/24540810
#SPJ1
a study uses statistical methods to conclude that there is an association between the weights of cars and the amounts of fuel consumption. the study then concludes that adding weight to a car is what makes it consume more fuel. what is wrong with reporting the results of the survey this way?
The wrong reporting on the survey represented by study uses statistical method is given by option A. The conclusion is based on a correlation that implies causality.
The problem with reporting the results of the survey as 'adding weight to a car is what makes it consume more fuel'.
It implies causality based solely on the observed correlation between car weight and fuel consumption.
Correlation does not imply causation.
Meaning that the fact that two variables are correlated does not necessarily mean that one causes the other.
It is possible that there is a third variable that causes both car weight and fuel consumption to increase.
Or that the correlation is purely coincidental.
It is important to be cautious about interpreting correlation as causation.
And based on statistical methods consider other possible explanations for the observed relationship between the variables.
Therefore, correct answer based on study of statistical methods is option A. conclusion is based on a correlation that implies causality.
learn more about statistical methods here
brainly.com/question/3996609
#SPJ4
The above question is incomplete, the complete question is:
A study uses statistical methods to conclude that there is an association between the weights of cars and the amounts of fuel consumption. The study then concludes that adding weight to a car is what makes it consume more fuel. What is wrong with reporting the results of the survey this way?
A)The conclusion is based on a correlation that implies causality.
B)The conclusion is based on a small sample.
C)The conclusion is based on a voluntary response sample.
D)The conclusion is based on a bad sample.
-19.
Review &
Preview
Beth and Amy are racing to see who can ride a tricycle the fastest.
Time (sec)
a. Graph the data about Beth's
travel that is recorded in the
table at right.
Distance (ft)
b. What is Beth's rate of travel?
c. If Amy travels at a rate of 75 feet per 30 seconds, would the line
representing her distance and time be steeper or less steep than the graph of
Beth's rate? Explain your reasoning.
5
10
11 22
1
Since Beth is moving faster than Amy and has a steeper path than Amy, the given graph problem's answer indicates that Beth is moving faster than Amy.
Define GraphTheoretical physicists use graphs to analyse and illustrate assertions rather than values. A graph point typically depicts the connection between several different items. A specific type of transport system made up of groups or lines is called a graph.
Glue should be used to secure the channels or edges. Within the confines of this network were the digits [tex]1[/tex] through[tex]4[/tex] as well as the individuals[tex]2.5[/tex], some, or[tex]4.5[/tex]
a. To graph the information pertaining to Beth's journey, the duration can be plotted on the [tex]x- axis[/tex] and the distance can be plotted on the [tex]y- axis[/tex] The chart contains the following details:
[tex]time and distance = (5,10) (10,22)[/tex]
[tex]Slope = (22-10)/(10-5)[/tex] = [tex]12/5[/tex]
b.Beth moves at a speed of of [tex]\frac{12}{5}[/tex] [tex]feet/sec[/tex]
c. Amy moves at [tex]75 feet/sec[/tex]
[tex]rate = \frac{distance }{time}[/tex]
= [tex]\frac{75}{30}[/tex] = [tex]\frac{5}{2}[/tex][tex]feet/sec[/tex]
Amy's line has a slope of [tex]\frac{5}{2}[/tex] while Berth line has a slope [tex]\frac{12}{5}[/tex] which is steeper
This shows that Beth is moving faster than Amy and that her route is more difficult.
Learn more about Graph
https://brainly.com/question/11950136
#SPJ1
the vector spaces (consisting of all polynomial os degree at most 3) and are isomorphic. group of answer choices true false
The statement " the vector spaces (consisting of all polynomial os degree at most 3) and are isomorphic" is true because linear transformation T from the vector space of polynomials of degree at most 3 with real coefficients to R^4 is an isomorphism.
It is true that the vector spaces consisting of all polynomials of degree at most 3 are isomorphic.
To see why, consider the linear transformation T from the vector space of polynomials of degree at most 3 with real coefficients to R^4 given by
T(a + bx + cx^2 + dx^3) = (a, b, c, d).
It can be shown that T is a linear transformation and an isomorphism. This means that T is a bijective linear transformation, which preserves the structure of the vector space.
Thus, the vector space of polynomials of degree at most 3 with real coefficients and R^4 are isomorphic, and therefore the original vector spaces consisting of all polynomials of degree at most 3 are also isomorphic.
Learn more about isomorphic here
brainly.com/question/30328066
#SPJ4
If mVYX = 282 and mZUVX = (4x - 5),
find the value of x.
There is no value of x that meets the requirements because this is a contradiction.
The angle addition postulate can be used to determine the value of x. According to the angle addition postulate, if point Y is inside the angle ZUVX, then
Define angle addition postulate?According to the geometry postulate known as the angle addition, if two or more angles are placed side by side, with a common vertex and arm connecting each pair, the sum of those angles will equal the sum of the resulting angle1.
Take the two nearby angles ACB and CDB as an illustration. To identify undiscovered angles, we can combine their measurements. According to the angle addition postulate,∠ ACB + ∠CDB equals∠ ADC2.
ZUVX plus YUVX equals ZVYX and YVYX.
Since mVYX = 282 and mZUVX = (4x - 5) are known values, we may replace them in the equation as follows:
(4x - 5) + mYUVX + mZVYX = 282
The values of mYUVX and mZVYX are unknown, but since they are supplementary angles, we do know that they add up to 180 degrees. Hence, we may replace mYUVX with 180 - mZUVX and mZVYX with 180 - mVYX:
(180 - mZUVX) + (4x - 5) = 282 + (180 - mVYX)
When we simplify this equation, we obtain:
4x - 5 + 180 - (4x - 5) = 282 + 180 - 282
More simplification results in:
175 = 78
No value of x is there:
To know more about Angle adding postulate visit:
brainly.com/question/29713158
#SPJ1