Hello!
To solve, we can begin by using the kinematic equation:
[tex]d = v_it + \frac{1}{2}at^2[/tex]
Where:
vi = initial velocity (m/s)
t = time (s)
a = acceleration (in this case, due to gravity. g = 9.8 m/s²)
Since the object falls from rest, the initial velocity is 0 m/s.
[tex]d = \frac{1}{2}at^2[/tex]
Plug in the given values:
[tex]d = \frac{1}{2}(9.8)(3.5^2) = \boxed{60.025 m}[/tex]
Objects 1 and 2 attract each other with a gravitational force of 178 units. If the mass of object 1 is one-fourth the original value AND the mass of object 2 is tripled AND the distance separating objects 1 and 2 is halved, then the new gravitational force will be _____ units.
Explanation:
Fgravity = G*(mass1*mass2)/D²
G is the gravitational constant, which has the same value throughout our universe.
D is the distance between the objects.
now, several numbers change.
Fgravitynew = G*((1/4)*mass1*3*mass2)/(1/2 * D)² =
= G*((3/4)*mass1*mass2)/(D²/4) =
= (3/4)* (G*(mass1*mass2)/D²) *4 =
= 4*(3/4)* (G*(mass1*mass2)/D²) =
= 3* (G*(mass1*mass2)/D²) = 3* Fgravity
the new gravitational force will be 3×178 = 534 units.
The angle of incidence (5 points)
must equal the angle of reflection
is always less than the angle of reflection
is always greater than the angle of reflection
may be greater than, less than, or equal to the angle of reflection
Answer:
D.) the same.
They are traveling in the same vacuum so there is no resistance and no outside influences. They will travel at the same speed as each other will little to no variance in their speed.
Explanation:
hope this helps. . . <3
good luck! uωu
Disk A, with a mass of 2.0 kg and a radius of 40 cm , rotates clockwise about a frictionless vertical axle at 50 rev/s . Disk B, also 2.0 kg but with a radius of 20 cm , rotates counterclockwise about that same axle, but at a greater height than disk A, at 50 rev/s . Disk B slides down the axle until it lands on top of disk A, after which they rotate together.
After the collision, what is magnitude of their common angular velocity (in rev/s)?
Hi there!
For this problem, we must use the conservation of angular momentum. This is an example of an inelastic "collision", so:
I₁w₁ + I₂w₂ = (I₁ + I₂)wf
We know that the moment of inertia of a disk is 1/2mR², so we can calculate the moments of inertia for both disks:
Disk 1: 1/2(2)(0.40²) = .16 kgm²/s
Disk 2: 1/2(2)(0.20²) = .04 kgm²/s
Plug in the values. Let counterclockwise be positive.
.16(-50) + .04(50) = (.16 + .04)wf
Solve:
wf = -30 rev/s
The elevation at the base of a ski hill is 350 m above sea level. A ski lift raises a skier (total mass=72 kg, including equipment) to the top of the hill. If the skier's gravitational potential energy relative to the base of the hill is now 9.2 x 105 J, what is the elevation at the top of the hill?
The elevation at the top of the hill is 1,653.85 m.
The given parameters;
initial height of the skier, h₁ = 350 mlet the final height of the skier at the hill top, = h₂total mass, m = 72 kggravitational potential energy of the skier, P.E = 9.2 x 10⁵ JThe elevation at the top of the hill is calculated as follows;
[tex]P.E = mg\Delta h\\\\P.E = mg(h_2 -h_1)\\\\h_2 -h_1 = \frac{P.E}{mg} \\\\h_2 = \frac{P.E}{mg} + h_1\\\\h_2 = \frac{9.2 \times 10^5 }{72 \times 9.8} \ + \ 350 \ m\\\\h_2 = 1,653.85 \ m[/tex]
Thus, the elevation at the top of the hill is 1,653.85 m.
Learn more here:https://brainly.com/question/19768887
The current in a resistor is 3.0 A, and its power is 60 W. What is the voltage?
Answer:
20 volts
Explanation:
Use the equation [tex]P=VI[/tex]
[tex]60=V(3)[/tex]
[tex]V=20[/tex]
F (N)
4
* 0
3
A
2
FIGURE 2
t(s)
5
0
1
2
3
4
3) A force of magnitude Fx acting in the x-direction on a 2.00 kg particle varies in time as shown
in FIGURE 2. Find
a) The impulse of the force
b) The final velocity of the particle if it is initially at rest
c) The final velocity of the particle if it is initially moving along the x-axis with velocity
of -2.00 ms -1
Answer:
Mark me as brainlist please.
If m1 is 24 kilograms, m2 is 12 kilograms, and mbar is 10 kilograms, what is the direction of rotation and the sign of the angular acceleration
From the diagram, the angular speed will increase clockwise, the sign of the angular acceleration will be negative and the direction of rotation will be clockwise direction and the sign of the angular acceleration is negative. The correct answer is option B
Given that two objects of masses m1 and m2 are attached to a seesaw. The seesaw is made of a bar that has length l and is pivoted so that it is free to rotate in the vertical plane without friction. Counterclockwise is considered the positive rotational direction.
If m1 is 24 kilograms, m2 is 12 kilograms, and mbar is 10 kilograms, The moment of object m1 will be equal to the moment of object m2 without the Mbar
Let assume that the length L of the seesaw is 9 cm.
Anticlockwise moment = 24 x 9/3 = 72Nm
Clockwise moment = 12 x 2(9/3) = 72 Nm
With the consideration of mass of the bar Mbar, this will add to clockwise moment of the seesaw.
Therefore, the direction of rotation will be clockwise direction.
Angular acceleration is positive when object is speeding up and negative when slowing down. Also, angular acceleration is positive when speed increases in an anticlockwise direction and negative when speed increases in the clockwise direction.
From the diagram, since the angular speed increase clockwise, the sign of the angular acceleration will be negative.
We can conclude that the direction of rotation will be clockwise direction and the sign of the angular acceleration is negative.
The correct answer is option B
Learn more here: https://brainly.com/question/20366032
A truck moves 60 km West, and then 80 km North, and then
travels in a straight line back to its starting point. The distance
travelled by the truck is ____km and its displacement is _____km
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
Distance travelled by the truck is ~
[tex] \boxed{240 \: \: km}[/tex]And it's displacement is ~
[tex] \boxed{0 \: \: km}[/tex][tex] \large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}[/tex]
See the diagram in attachment for reference ~
Let O be the initial point, It travels 60 km towards west till point B and then 80 km towards north till point P and returns to initial point O in a straight line, now as we can observe here, it forms a right angled Triangle.
The measure of two legs is 60 km and 80 km, let's find the hypotenuse ~
According to Pythagoras theorem ~
hypotenuse² = sum of squares of other two legs
that is ~
[tex]h {}^{2} = 60 {}^{2} + 80 {}^{2} [/tex][tex] {h}^{2} = 3600 + 640 0[/tex][tex]h {}^{2} = 10000[/tex][tex]h = \sqrt{10000} [/tex][tex]h = \sqrt{100 \times 100}{}[/tex][tex]h = 100 \: \: km[/tex]So, the distance between the point A and O is 100 km
Now, The total distance is equal to the distance covered through actual path that is ~
60 km + 80 km + 100 km 240 kmAnd displacement is the distance between the final point and initial point, but since the truck returns to the point from where it started the journey, so the final and initial point is same therefore displacement is equal to 0.
A skater is spinning with his arms outstretched. He has a 2 lb weight in each hand. In an attempt to change his angular velocity he lets go of both weights (by just opening his grip). Does he succeed in changing his angular velocity
Answer:
No
Explanation:
Changing momentum of any kind requires work. Work is a force acting over a distance. While holding the weights at arms length and spinning will create a force (centripetal), there is no radial distance change incurred. Releasing the weights will reduce the force to zero, still no work done and no change in angular momentum.
If he was holding the weights at arms length while spinning and he pull his hands to his chest, there now exists both the centripetal force and a distance in the direction of that force (inward radial) this work will result in an increase in angular velocity as moment of inertia has decreased with the work done.
No, the skater doesn't succeed in changing his angular velocity.
Conservation of angular momentumThe final angular velocity of the skater is determined by applying the principle of conservation of angular momentum as shown below;
Li = Lf
[tex]Ii\omega _i = I_f \omega _f[/tex]
where;
Ii is the initial moment of inertia of the skaterIf is the final moment of inertia of the skaterωi is the initial angular speed of the skaterωf is the final angular speed of the skaterWhen the skater holds the weight, the momnet of inertia of both arms is the same. Also when the skater drops the weight, the moment of inertia of both arms is still the same. Thus, at any instant, the moment of inertia of the two arms is the same.
To change the angular speed, the initial and final moment of inertia of the two arms must be different. Thus, the skater doesn't succeed in changing his angular velocity.
Learn more about angular momentum here: https://brainly.com/question/7538238
A man is whirling a 0.25 kg ball on a 1.5 m long string at 3 m/s. Find the centripetal acceleration of this ball.
Question 2 options:
0.5 m/s2
13.5 m/s2
6 m/s2
2 m/s2
The centripetal acceleration of this ball is equal to 12 [tex]m/s^2[/tex]
Given the following data:
Diameter = 1.5 mSpeed, V = 3 m/s.Mass = 0.25 kgRadius = [tex]\frac{Diameter}{2} = \frac{1.5}{2} = 0.75 \;meters[/tex]
To find the centripetal acceleration of this ball:
The acceleration of an object along a circular track is referred to as centripetal acceleration.
Mathematically, the centripetal acceleration of an object is given by the formula:
[tex]A_c = \frac{V^2}{r}[/tex]
Where:
Ac is the centripetal acceleration.r is the radius of the circular track.V is the velocity of an object.
Substituting the given parameters into the formula, we have;
[tex]A_c = \frac{3^2}{0.75}\\\\A_c = \frac{9}{0.75}\\\\A_c = \frac{9}{0.75}[/tex]
Centripetal acceleration = 12 [tex]m/s^2[/tex]
Read more: https://brainly.com/question/6082363
Pendulum makes 12 complete swings in 8 seconds, what are its frequency and period on earth
Hi there!
We can begin by finding the period of the pendulum.
[tex]T = \text{ # of complete swings / seconds} = 12 / 8 = \boxed{\text{1.5 sec}}[/tex]
The frequency is simply the reciprocal of the period, so:
[tex]f = \frac{1}{T} = \frac{1}{1.5} = \frac{2}{3}Hz \text{ or } \boxed{0.67 Hz}[/tex]
Water has higher specific heat than aluminum. This is all what you should know to answer following questions. An aluminum rod of mass 1 kg at temperature of 80^0C is placed into 1l of water of temperature 10^0C . there is no heat exchange with surroundings. Which material experiences greater change in temperature while system is reaching the thermal equilibrium
Answer:
The Aluminum
Explanation:
With a larger specific heat, water requires more heat to raise its temperature by a temperature degree.
In this system, with equal masses of water and aluminum, the heat moving from the aluminum lowering its temperature by one degree is not sufficient to raise the water temperature by one degree.
a convex mirror and a plane mirror both give virtual and erect images still a convex mirror is used in vehicles. why?
Pls answer thiss
Answer:Convex mirrors are used because these mirrors provide a wider viewing angle than a plane mirror. This wide angle will help you getting more information/overview than what is happening at a narrow spot right behind the car if you use a plane mirror.
With a convex mirror you are for example able to detect an overtake (by the car behind you) early, if you for some reason wanted to turn left into another lane at the same moment the overtake took place - so you then can prevent a collision. Convex mirrors are simply covering a much larger area behind the car than plane mirrors do. And in the US, on the mirrors there is a text explaining that the vehicle behind you is closer than it appears - some kind of an idiot explanation in case some driver took the mirror image literally….because in the mirror image of a convex mirror, everything looks smaller and further away than they actually are.
Explanation: mark me as brainliest this is my best answer till now
A 1-kg mass at the Earth's surface weighs how much
Answer:
the answer is weight=10N
Answer:
[tex]\boxed {\boxed {\sf 9.8 \ Newtons}}[/tex]
Explanation:
Weight is also called the force of gravity. This force acts on all objects at all times, pulling them down toward the center of the Earth.
It is calculated by multiplying the mass by the acceleration due to gravity.
[tex]F_g=mg[/tex]
The mass of the object is 1 kilogram. This scenario is occurring on Earth, so the acceleration due to gravity is 9.8 meters per second squared.
m= 1 kg g= 9.8 m/s²Substitute the values into the formula.
[tex]F_g= 1 \ kg *9.8 \ m/s^2[/tex]
Multiply.
[tex]F_g= 9.8 \ kg*m/s^2[/tex]
Convert the units. 1 kilogram meter per second squared is equal to 1 Newton, so our answer of 9.8 kilogram meters per second squared is equal to 9.8 Newtons.
[tex]F_g= 9.8 \ N[/tex]
A 1 kilogram mass at Earth's surface weighs 9.8 Newtons.
Elevations on the tongue are called
sulci
taste buds
papillae
gyri
Answer:
Papillae is correct
Explanation:
hope it helps you
Answer:
Papillae is the correct answer of this question
what is photosynthesis
: [tex] \implies[/tex] The Photosynthesis is the process of capturing light energy and transforming it into chemical energy. Green plants and several other organisms use light energy and convert carbon dioxide and water into glucose. In this process, oxygen is produced as a by-product
→ We also who how it's process occur
In plants and blue-green algae, the photosynthesis process takes place in chloroplasts. The chloroplast is present in all green parts of a plant – the leaves, green stems, sepals, and even in the flowers, in the form of green colour plastids. The chloroplast is found only in plant cells and is essential for photosynthesis reaction.Photosynthesis Equation
Carbon dioxide and water are the two major factors involved in the photosynthesis reaction. It’s an endothermic reaction, and the products resulting from it are oxygen and glucose. The formula is:6CO2 + 6H2O = C6H12O6 + 6O2
However, some bacteria don’t produce oxygen as a by-product of photosynthesis. They are called anoxygenic photosynthetic bacteria, and those who do it are called oxygenic photosynthetic bacteria.Importance of Photosynthesis
The photosynthesis process is very important for the survival of living beings, and to continue the food chain. It also produces oxygen, which is required for breathing.Photosynthetic Pigments
Four types of photosynthetic pigments are present in the leaves of the plants. They are: Chlorophyll a chlorophyll b xanthophylls CarotenoidsThe Factors Affecting Photosynthesis
Various factors influence/affect the photosynthesis process. These are:
Light Intensity: More the light, the more will be the rate of photosynthesis. Similarly, low light will lead to a low rate of photosynthesis.The Concentration of CO2: A higher CO2 concentration rate in a plant also accelerates the photosynthesis process. The required amount of CO2 is 300-400 PPM.Temperature: If the temperature is between the range of 25 to 35 degrees Celsius, the photosynthesis takes place effectively.Water: An essential amount of water is required for stomatal opening, and it’s a key factor in the process of photosynthesis.Pollution: The increasing rate of polluting particles in the atmosphere block the pores of somatic cells, and the intake of carbon dioxide becomes difficult.▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Hope it's helps !!
The symbol or variable to used find initial velocity is
Answer:
v down exponenet 1 brainlest
Explanation:
Answer:
v0 [vee nought] is the initial velocity when time=0
6. How are the temperature of the universe and Cosmic Microwave Background (CMB) related?
A. Astronomers use the temperature of CMB as the warmest temperature in the universe
B. Astronomers calculate the temperature of the universe based on the coldest part of the CMB
C. Astronomers consider the temperature of the universe to be the temperature of CMB
D. Astronomers never consider the temperature of CMB when looking at the temperature of the universe
Answer:
I think the answer is (A)...
Hope this helps!
A small 1240-kg SUV has a wheelbase of 3.2 m. If 67% of its weight rests on the front wheels, how far behind the front wheels is the wagon's center of mass
Answer:
Explanation:
Let d be the distance to the center of mass from the front wheels
Sum moments about the front wheel contact point to zero
1240(9.8)[d] - 1240(9.8)(1 - 0.67)[3.2] = 0
1240(9.8)[d] = 1240(9.8)(1 - 0.67)[3.2]
d = (1 - 0.67)[3.2]
d = 1.056 m
A train slows its speed from 52 kilometers per hour to 46 kilometers per hour in 0.04 hour. What is the acceleration o the train during this time?
Answer: here you go i have to put 20 letters in so just ignore this and look at the link.
Rachel drops a ball from a hot–air balloon while her friend Lisa is watching her from the ground. Which statement about the ball's motion is true from Lisa's point of view?
Assume that there is no air resistance and the hot–air balloon is moving horizontally.
A. The ball drops to the ground along a straight–line path.
B.When the ball lands, the hot–air balloon will be ahead of it.
C. When the ball lands, the hot–air balloon will be behind it.
D. When the ball lands, the hot–air balloon will be directly above it.
Answer:
According Lisa, both the ball and the balloon have the same forward velocity of Vx.
(D) is correct
A 0.50-kg mass is attached to a spring of spring constant 20 N/m along a horizontal, frictionless surface. The object oscillates in simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. What is the total energy of the system?
Hi there!
With the work-energy theorem for oscillating springs:
ME = KE + PE
[tex]ME = \frac{1}{2}mv^2 + \frac{1}{2}kx^2[/tex]
Where:
m = mass (kg)
v = velocity (m/s)
k = Spring Constant (N/m)
x = displacement from equilibrium (m)
If the object is at the equilibrium position, there is NO potential energy since:
[tex]\frac{1}{2}k(0^2) = 0 J[/tex]
Thus:
[tex]ME = \frac{1}{2}mv^2[/tex]
Plug in the given values:
[tex]ME = \frac{1}{2}(0.50)(1.5^2) = \boxed{0.5625 \text{ J}}[/tex]
Why Amphibians are Vanishing
Answer:Climate change, emerging diseases, and increased exposure to ultraviolet radiation (due to ozone depletion) are all additional factors that could be contributing to falling amphibian populations. ... Instead, amphibians are disappearing thanks to a complex mixture of factors, including: Alien Specie
Explanation:
just look it up........
jshshwjs sbwiwiw910mw s x djjskskekwkq
Answer:
jsbdhdndmlsusgsbkaksudgnslsosufhbf ffb
I need the answer fast for c pleaseeee
Answer:
F = - K x for spring (note that that F here is given in grams, F = m g is correct)
K here is 100 g / cm for the spring constant
x = -420 g / 100 g/cm = -4.2 cm
The spring would compress 4.2 cm for a total length of 20 - 4.2 = 15.8
d) to compress the spring 6.8 cm one can see that the load would be 680 g
PLEASE HELP!
A 2457 kg car moves with initial speed of 18 ms-?. It is stopped in 62 m by its brakes.
How much work is done by the brakes?
Answer:
Explanation:
The work of the brakes will equal the initial kinetic energy of the car
Fd = ½mv²
F = mv²/2d
F = 2457(18²) / (2(62))
F = 6,419.903...
F = 6.4 kN
How many states of matter are there?
Answer:
3
Explanation:
state of matter are solid
liquid and
gases
Can anyone help me with question 10 a.
Answer:
it's ahfdfhhh hhgfdjjjjuyggffdddcff
two billiard balls moving along the same line hit each other head-on. each has a mass of 0.220 kg; one has an initial velocity of 1.84 m/s, the other an initial velocity of 0.530 m/s. if the collision is elastic, what are their final velocities? ignore friction.
Hi there!
Since the collision is elastic, we must also satisfy the following condition:
Ei = Ef, or:
KEi = KEf
Begin by writing an expression for momentum. (p = mv) Remember that one ball's direction is negative; in this instance, we can let the second ball be moving LEFT.
mv1 + mv2 = mvf1 + mvf2
0.220(1.84) + 0.220(-.530) = 0.220(vf1 + vf2)
0.2882/0.220 = vf1 + vf2
1.31 = vf1 + vf2
Now, we can express this as a conservation of energy:
1/2mv1² + 1/2mv2² = 1/2mvf1² + 1/2mvf2²
Plug in values and simplify:
0.403315 = 1/2m(vf1² + vf2²)
Simplify further:
3.6665 = vf1² + vf2²
Use the equation derived from momentum above and solve for one variable:
vf2 = 1.31 - vf1
Plug in this expression for vf2:
3.6665 = vf1² + (1.31 - vf1)²
Expand:
3.6665 = vf1² + 1.7161 - 2.62vf1 + vf1²
Simplify:
1.9504 = -2.62vf1 + 2vf1²
Solve for vf1 using a graphing calculator:
vf1 = -0.53 m/s or 1.84 m/s; we must figure out which one is correct.
Since v1 is heading to the right initially with a velocity of 1.84 m/s, we know that the ball's velocity could not have stayed the same in both magnitude and direction, so the final velocity must be -0.53 m/s.
Now, we can solve for the velocity of the other ball (initial of 0.53 m/s):
vf2 = 1.31 - (-0.53) = 1.84 m/s.
Now, you could have also made the connection that when two balls of the SAME MASS experience an ELASTIC collision, the velocities are simply "exchanged" from one to another. I just used this more "extensive" method to prove this.
The equation for a progressive wave is y=6 cos(20t-4x) What is the equation of another progressive wave which has twice the amplitude and frequency, and moving in the same direction?
The equation of the progressive wave is y = 12 cos(40t - 4x)
The general wave equation is given by:
y = A sin(ωt - kx)
Where A is the amplitude, ω is the angular frequency = 2πf, f is the frequency, k is the wave number and y, x is the displacement.
Given the equation for a progressive wave is y=6 cos(20t-4x). Hence:
The amplitude A = 6,
ω = 20 = 2πf
f = 20/2π = 3.183 Hz
Twice the amplitude = 2 * 6 = 12, twice the frequency = 2 * 3.183.
ω = 2π(3.183*2) = 40
Therefore the other progressive wave has an equation of:
y = 12 cos(40t - 4x)
Find out more at: https://brainly.com/question/12931896