A group of students stand at the door of the school and asked every 10th student who they would vote for in the upcoming class elections and why?

Answers

Answer 1

This is an example of a survey or sampling technique called systematic sampling. The students are selecting every 10th student from the population (in this case, the population is the entire student body) to survey.

This technique can be useful when the population is too large to survey everyone or when a random sample is difficult to obtain. By using systematic sampling, the students can obtain a representative sample of the student body without having to survey every single student.

However, it's important to note that systematic sampling can introduce bias if there is a pattern or structure in the population that is related to the sampling interval. For example, if every 10th student is in a particular grade level or section of the school, this could skew the results of the survey. To mitigate this potential bias, researchers should ensure that the sampling interval is random and that they are not selecting every nth person based on any identifiable characteristics.

To know more about  systematic sampling. here

https://brainly.com/question/24466382

#SPJ1


Related Questions

Help with math problems

Answers

Answer:

1) option A

2) p > 34

Step-by-step explanation:

1)  Inequality:   7 ≤ n + 5

Subtract 5 from both sides,

                  7 - 5 ≤ n +5 - 5

                    2 ≤ n

The value of n is all values greater than or equal to 2.

So, the answer is option A.

2) Inequality:   16 + p > 50

 Solution:

             Subtract 16 from both sides,

                  16 - 16 + p > 50 - 16

                                p > 34

If h=7 units and r= 2 then what is the approximate volume of the cone shown above

Answers

Answer:

[tex]v = \frac{28\pi}{3} [/tex]

Step-by-step explanation:

First, we can find the area of the cone's base:

[tex]a(base) = \pi \times {r}^{2} = 4\pi[/tex]

Now, let's find the volume:

[tex]v = \frac{1}{3} \times a(base)\times h[/tex]

[tex]v = \frac{1}{3} \times 4\pi \times 7 = \frac{28\pi}{3} [/tex]

A flag-shaped like an equilateral triangular has a perimeter of 45 inches. What is the length of each side of the flag?

Answers

Answer: 15 inches

Step-by-step explanation:

An equilateral triangle has three equal sides, so if the perimeter of the triangle is 45 inches, then each side must be 45 inches divided by 3, which gives us:

45 in ÷ 3 = 15 in

Therefore, the length of each side of the flag is 15 inches.

This answer in a fraction

Answers

The experimental probability that the next student will register for German is 9/79.

What is probability?

To find the experimental probability that the next student will register for German, we need to divide the number of students who have registered for German by the total number of students who have registered so far:

P(German) = number of students who have registered for German / total number of students who have registered

P(German) = 108 / (108 + 360 + 21 + 459) [Adding all the students who registered for each language]

P(German) = 108 / 948

P(German) = 9/79

Therefore, the experimental probability that the next student will register for German is 9/79.

To know more aout probability, visit:

https://brainly.com/question/11234923

#SPJ1

What is the linear inequality of the graph below?

Answers

The linear inequality for the shaded region with slope -4 is:

[tex]y < -4x + 4[/tex]

What is linear inequality?

In mathematics, a linear inequality is an inequality involving a linear function in one or more variables. It describes a region in the coordinate plane that satisfies the inequality.

What is the slope?

In mathematics, the slope is a measure of the steepness of a line. It describes how much a line rises or falls as we move from left to right along it.

According to the given information,

To write the linear inequality for the graph passing through points (0,4) and (1,0), we need to find the equation of the line first.

The slope of the line passing through these two points is:

[tex]m = (y_{2} - y_{1} ) / (x_{2} - x_{1})[/tex]

= (0 - 4) / (1 - 0)

= -4

Using the slope-intercept form of a linear equation, y = mx + b, where m is the slope and b is the y-intercept, we can find the equation of the line passing through these two points:

[tex]y = -4x + 4[/tex]

Now, to write the linear inequality for this line, we need to determine which side of the line is shaded. We can use the test point (0,0) to check which side of the line contains the solutions to the inequality.

If we plug in (0,0) into the equation [tex]y = -4x + 4[/tex], we get:

0 = -4(0) + 4

0 = 4

Since 0 is not less than 4, the point (0,0) is not a solution to the inequality. Therefore, we need to shade the side of the line that does not contain the origin (0,0).

The linear inequality for the shaded region is:

[tex]y < -4x + 4[/tex]

So any point below the line [tex]y = -4x + 4[/tex]satisfies this inequality.

Tp learn more about linear inequality, visit

brainly.com/question/2419833

#SPJ1

Which system of equations represents the graph?

y = 3x - 5 and 2x + 4y = 8
y = 3x - 5 and 4x + 2y = 8
y = 2x - 5 and 4x + 2y = 8
y = 2x - 5 and 2x + 4y = 8

Part B
What is the apparent solution to the system of equations in the graph?

(1, 2)
(2, 1)
(4, 0)
(0, 2)

Answers

Part A: The system of equations represented by the graph: y = 3x - 5 and 2x + 4y = 8.

Part B: The solution of the system of equations : (2, 1).

Explain about the system of equations:

Determining the significance of the variables employed in a system of equations entails solving the set of equations.

A specific system of equations may have a variety of solutions,

unique responseNo remedythere are several options

Let's examine three approaches to solving a set of equations, presuming that they are linear equations with two variables.

Method of Substitution Method of EliminationGraphical Approach

From the graph shown.

The blue line shows the equation: 2x + 4y = 8

At x =0, y= 2

At y =0, x = 4

Red line shows the equation: y = 3x - 5

At x = 0, y = -5.

Part B: solution to the system of equations.

From the graph, where two lines intersect is the solution of the system of equations.

That is point (2,1).

Know more about the system of equations

https://brainly.com/question/25976025

#SPJ1

The life of Sunshine CD players is normally distributed with mean of 4.3
years and a standard deviation of 1.1
years. A CD player is guaranteed for three years. We are interested in the length of time a CD player lasts.
Find the 90th percentile of the distribution for the time a CD player lasts.

Answers

The 90th percentile of the distribution for the time a CD player lasts is approximately 4.674 years.

Percentile of the distribution:

In statistics, a percentile is a measure used to indicate the value below which a given percentage of observations falls in a dataset or distribution.

For example, the 90th percentile is the value below which 90% of the observations fall, and above which only 10% of the observations fall.

Similarly, the 50th percentile (also known as the median) is the value below which 50% of the observations fall, and above which 50% of the observations fall.

Here we have

The life of Sunshine CD players is normally distributed with a mean of 4.3 years and a standard deviation of 1.1 years.

To find the 90th percentile of the distribution for the time a CD player lasts, find the value of x such that 90% of the CD players last less than x and 10% last more than x.

First, standardize the distribution by converting it to a standard normal distribution with a mean of 0 and a standard deviation of 1.

This can be done by subtracting the mean and dividing by the standard deviation:

Z = (x - μ) / σ

To find the Z-score corresponding to the 90th percentile,

We can use a standard normal distribution table or a calculator.

The Z-score corresponding to the 90th percentile is approximately 1.28.

Now we can solve for x by rearranging the standardization equation above:

=> Z = (x - μ) / σ

=> 1.28 = (x - 4.3) / 1.1

=> 1.28 * 1.1 = x - 4.3

=> x = 4.674

Therefore,

The 90th percentile of the distribution for the time a CD player lasts is approximately 4.674 years.

Learn more about Percentile of distribution

https://brainly.com/question/25151638

#SPJ1

The function f(x) = 3x + 13 x + 4 1 is a transformation of the function g(x) = r(x) To make the transformation visible, rewrite the rule for f in the form f(x) = q (x) + d (r) where q, r, and d are polynomials. ​

Answers

The rule for f in the desired form is: f(x) = (3x^2 + 12x + 13r(x) + 52) / (x + 4)

How to rewrite the rule for f in the form

To rewrite the rule for f in the form f(x) = q(x) + d(r), we need to first write g(x) in terms of r(x).

We know that g(x) = r(x) / (x + 4) + 1, so we can rewrite it as:

g(x) = r(x) / (x + 4) + (x + 4) / (x + 4)

g(x) = (r(x) + x + 4) / (x + 4)

Now, we can see that f(x) is a transformation of g(x) with q(x) = 3x and d(r) = 13. So, we can write:

f(x) = q(x) + d(r)

f(x) = 3x + 13(r(x) + x + 4) / (x + 4)

f(x) = (3x(x + 4) + 13r(x) + 52) / (x + 4)

Therefore, the rule for f in the desired form is: f(x) = (3x^2 + 12x + 13r(x) + 52) / (x + 4)

Learn more about polynomials at https://brainly.com/question/1496352

#$SPJ1

will mark branliest!

which equation is represented by the graph?

Answers

The graph represents the equation with option C, tan x/2.

What is graph?

A graph is a structure that resembles a collection of objects in discrete mathematics, more specifically in graph theory, in which some pairs of the objects are conceptually "related." The objects are represented by mathematical abstractions known as vertices, and each set of connected vertices is referred to as an edge.

Here,

The graph of the function tan(x/2) represents the tangent of half of the angle x in radians.

The tangent function has vertical asymptotes at odd multiples of π/2, which means that the function is undefined at those points. Therefore, the graph has vertical asymptotes at x = π/2, 3π/2, 5π/2, ....

The function also has zeros at even multiples of π, which occur when tan(x/2) = 0. This happens when x/2 = kπ where k is an integer, so x = 2kπ.

Between each pair of vertical asymptotes, the function oscillates between positive and negative infinity. The function is positive in the intervals (2kπ, (2k+1)π) and negative in the intervals ((2k-1)π, 2kπ) for all integers k.

To know more about graph,

https://brainly.com/question/29467965

#SPJ1

Write a paragraph proof of the Triangle Proportionality Theorem.
(Theorem 8.6)
__ __
Given: BD || AE
Prove: BA/CB = DE/CD

Answers

The Triangle Proportionality Theorem, also known as the Side Splitter Theorem, states that if a line is parallel to one side of a triangle, then it divides the other two sides proportionally.

Triangle Proportionality Theorem:

To prove this theorem, we begin by drawing a ΔABC with a line DE parallel to side AB. We then draw lines BD and CE, which intersect the parallel line DE at points F and G, respectively. By the properties of parallel lines, we know that ∠ADE and ∠ABD are congruent, and ∠AED and ∠ADB are congruent. Similarly, ∠CDE and ∠BDC are congruent, and ∠CED and ∠DCB are congruent.

We can then use the properties of similar triangles to show that ΔADE and ΔABC are similar, as are  ΔCDE and ΔACB. This means that the ratios of corresponding side lengths are equal:

BA/DE = CA/CE and CB/DE = AB/BD

We can then substitute CA - BA for CB in the first equation, and BD for AB in the second equation:

BA/DE = (CA - BA)/CE and CB/DE = BD/(CA - BA)

Cross-multiplying both equations, we obtain:

BA * CE = DE * (CA - BA) and CB * DE = BD * (CA - BA)

Adding the two equations, we get:

BA * CE + CB * DE = (DE + CE) * CA

Dividing both sides by CB * DE, we obtain:

BA/CB = (DE + CE)/CE * CA/DE = DE/CD

Thus, we have proven the Triangle Proportionality Theorem.

To know more about  Proportionality Theorem, visit:

https://brainly.com/question/29204751

#SPJ1

Solve the systems by graphing.

Y=1/4 x-5
y=-X+4

Answers

Answer: (7.2, -3.2)

Step-by-step explanation:

         First, we will graph these equations. See attached. One has a y-intercept of -5 and then moves four units right for every unit up (we get this from the slope of 1/4). The other has a y-intercept of 4, and moves right one unit for every unit down (we get this from the slope of -1).

         The point of intersection is the solution, this is the point at which both graphed lines cross each other. Our solution is:

                         (7.2, -3.2)     x = 7.2, y = -3.2

BRAINEST IF CORRECT 50 POINTS! Look at picture

Answers

Answer:

C)  decreasing then increasing.

Step-by-step explanation:

A function is said to be increasing if the y-values increase as the x-values increase.

A function is said to be decreasing if the y-values decrease as the x-values increase.

From inspection of the given graph of y = x², we can see that for the first half of the graph, the y-values are decreasing as the x-values increase. Therefore, the function is decreasing for this part of the graph.

Similarly, for the second half of the graph, we can see that the y-values are increasing as the x-values increase. Therefore, the function is increasing for this part of the graph.

So the description of the graph of the function is:

C)  decreasing then increasing.

HELP ASAP ASAP PLEASE ASAP HELP BRAINLIEST
The histograms display the frequency of temperatures in two different locations in a 30-day period.

A graph with the x-axis labeled Temperature in Degrees, with intervals 60 to 69, 70 to 79, 80 to 89, 90 to 99, 100 to 109, 110 to 119. The y-axis is labeled Frequency and begins at 0 with tick marks every one unit up to 16. A shaded bar stops at 2 above 60 to 69, at 4 above 70 to 79, at 12 above 80 to 89, at 6 above 90 to 99, at 4 above 100 to 109, and at 2 above 110 to 119. The graph is titled Temps in Desert Landing.

A graph with the x-axis labeled Temperature in Degrees, with intervals 60 to 69, 70 to 79, 80 to 89, 90 to 99, 100 to 109, 110 to 119. The y-axis is labeled Frequency and begins at 0 with tick marks every one unit up to 16. A shaded bar stops at 2 above 60 to 69, at 4 above 70 to 79, at 9 above 80 to 89, at 9 above 90 to 99, at 4 above 100 to 109, and at 2 above 110 to 119. The graph is titled Temps in Flower Town.

When comparing the data, which measure of variability should be used for both sets of data to determine the location with the most consistent temperature?

IQR, because Desert Landing is skewed
IQR, because Desert Landing is symmetric
Range, because Flower Town is skewed
Range, because Flower Town is symmetric

Answers

The range, on the other hand, is affected by extreme values and may not be a good representation of the spread of the data in these cases.

What is Histogram ?

A histogram is a graphical representation of the distribution of a dataset. It is a way to display the frequency of occurrence of different values or ranges of values in a dataset.

The correct answer is IQR, because it is more robust to outliers and is not affected by extreme values like Range.

Although the question provides information about the shape of the histograms, it does not indicate whether the distributions are symmetric or skewed. Therefore, the choice of IQR over Range is not based on the shape of the data but on the fact that IQR is a more appropriate measure of variability when dealing with skewed data or data with outliers.

In general, the IQR is a better measure of variability than the range when the data is skewed or contains outliers, as it only considers the middle 50% of the data and is not affected by extreme values.

Therefore, The range, on the other hand, is affected by extreme values and may not be a good representation of the spread of the data in these cases.

To learn more about Histogram from given link.

https://brainly.com/question/16819077

#SPJ1

In 2018 Gallup poll, it was reported that about 5% of Americans identify themselves as vegetarians. You think that percent is higher in the age group 18 to 35 years. Test your hypothesis at 5% level of significance.

Answers

At a 5% level of significance, we reject the null hypothesis and conclude that there is evidence to support the alternative hypothesis that the percentage of vegetarians in age group 18 to 35 years is higher than 5%.

To test the hypothesis that the percentage of vegetarians is higher in the age group 18 to 35 years at a 5% level of significance, we can use a hypothesis test with the following null and alternative hypotheses:

Null hypothesis (H0): The percentage of vegetarians in the age group 18 to 35 years is equal to 5%.

Alternative hypothesis (Ha): The percentage of vegetarians in the age group 18 to 35 years is greater than 5%.

We can conduct a one-tailed z-test to test this hypothesis, using the following formula:

z = (p - P0) / sqrt(P0 * (1 - P0) / n)

where:

p is the sample proportion of vegetarians in the age group 18 to 35 years

P0 is the hypothesized proportion (5%)

n is the sample size

We will reject the null hypothesis if the calculated z-value is greater than the critical z-value corresponding to a 5% level of significance (one-tailed test).

Assuming a sample of size n = 100, if we find that 10 people in the sample identify themselves as vegetarians, then the sample proportion is:

p = 10/100 = 0.1

Using the formula above, we can calculate the z-value:

z = (0.1 - 0.05) / sqrt(0.05 * 0.95 / 100) = 1.96

The critical z-value for a one-tailed test at a 5% level of significance is 1.645 .

To learn more about z-test please click on below link        

https://brainly.com/question/30034815

#SPJ1

A map has a scale of 1 cm : 275 miles. On the map, the distance between two towns is 3 cm. What is the actual distance between the two towns ?​

Answers

Answer:

825 miles

Step-by-step explanation:

275 x 3 = 825

Helping in the name of Jesus.

Find g(x), where g(x) is the translation 5 units right of f(x)= – 7(x–5)2+3.

Answers

g(x) is the translation 5 units right of f(x)= – 7(x–5)²+3.

A function called f(x) accepts an input of "x" and outputs "y". You can write it out as y = f. (x).‘x’ is a variable that represents an input to a function.

To translate a function, we need to replace x with (x-a) in the function f(x) where ‘a’ is the amount of translation.

To translate a function 5 units right, we need to replace x with (x-5) in the function f(x).

So, g(x) = f(x-5) = -7(x-5-5)²+ 3 = -7(x-10)²+ 3.

Therefore, g(x) is the translation 5 units right of f(x)= – 7(x–5)²+3.

learn more about function,

https://brainly.com/question/12431044

#SPJ1

A dealer selling an automobile for $18,340 offers a $500 rebate. What is the percent markdown (to the nearest tenth of a percent)?

Answers

Answer:

The selling price of the automobile after the $500 rebate is:

$18,340 - $500 = $17,840

The markdown is the difference between the original selling price and the selling price after the rebate, expressed as a percentage of the original selling price. The markdown can be calculated as follows:

Markdown = [(Original Price - Discounted Price) / Original Price] × 100%

Markdown = [(18,340 - 17,840) / 18,340] × 100%

Markdown = (500 / 18,340) × 100%

Markdown ≈ 2.72%

Rounding to the nearest tenth of a percent, the percent markdown is approximately 2.7%.

On thurday, lisa had 5$ in her bank account. she went to target to purchase stickers for her class. each pack of stickers cost 2$
write an inequality that represents s, the number of stickers purchased that resulted in her account ending in -10.

Answers

Let's start by defining the variables:

s = number of sticker packs purchased
x = ending balance in Lisa's bank account

We know that Lisa started with $5 and each pack of stickers costs $2. Therefore, her bank account balance after purchasing s packs of stickers is:

x = 5 - 2s

We also know that her account ended with a balance of -$10. Therefore, we can set up the following inequality:

x = 5 - 2s ≤ -10

Simplifying this inequality:

5 - 2s ≤ -10
-2s ≤ -15
s ≥ 7.5

However, since s represents the number of sticker packs, it must be a whole number. Therefore, the final inequality is:

s ≥ 8

This means that Lisa must have purchased at least 8 packs of stickers in order for her account to end with a balance of -$10.

72x5/12=blankx5x1/12=blank x 1=360/12=blank

Answers

Answer:

Step-by-step explanation:

Starting with 72x5/12:

72x5/12 = (72/12) x 5 (simplifying the fraction)

= 6 x 5

= 30

Now, we have:

30 = ?x5x1/12

Multiplying both sides by 12, we get:

30 x 12 = ? x 5 x 1

360 = ? x 5

Dividing both sides by 5, we get:

72 = ?

Therefore, the missing value is 72.

What is 27500.00 minus .025

Answers

Answer:27499.975

Step-by-step explanation:

Divide the following 11/15by 7/18​

Answers

Answer:

4567

578९=8877

5790=9766

Answer:

11/15 : 7/18 = 15 / 11 : 18 / 7=  270 / 77

Step-by-step explanation:

A company makes two kinds of engineering pencils , Type I and Type II ( deluxe ) . Type I needs 2 min of sanding and 6 min of olishing . Type needs 5 min of sanding and 3 min of polishing . The sander can run no more than 66 hours per week and the olisher can run no more than 73 hours a week . A $ 3 profit is made on Type I and $ 5 profit on Type II . How many of each type be made to maximize profits ?

Answers

After solving by linear programming, the business needs create 100 Type I pencils and 80 Type II pencils to increase revenue.

LINEAR PROGRAMMING: WHAT IS IT?

A mathematical method called linear programming is used to maximise a linear objective function under the restrictions of linear equality and inequality. In a mathematical model whose requirements are expressed by linear connections, it is used to identify the best result.

With linear programming, this issue can be resolved.

Please define x as the quantity of Type I pencils produced and y as the quantity of Type II pencils produced.

Profit = 3x + 5y is the formula for the goal function.

2x + 5y 660 are the restrictions (sanding constraint)

(Polishing constraint): x ≥0 y≥ 0; 6x + 3y 730

Under these limitations, we wish to maximize the profit function.

The largest profit comes when x = 100 and y = 80,

with a profit of $740, according to software that can solve linear programming issues or a graphing calculator.

Thus, the business needs create 100 Type I pencils.80pencil for type II

To know more about linear programming visit:

brainly.com/question/15417573

#SPJ1

Calculate five-number summary and construct box and whisker plot from the following data: Ans: 30, 40, 50, 60 & 70; No skewed Daily wages (Rs.) 10-30 30-50 50-70 70-90 90-110 110-130 130-150 No. of workers 53 85 56 4 3 21 16 Aus: 10 150-170 2​

Answers

Five-number summary: Minimum = 30, Q1 = 35, Median = 50, Q3 = 65, Maximum = 70. Bοx and whisker plοt: Bοx spans frοm 35 tο 65 with median at 50, whiskers extend frοm 30 tο 70, nο οutliers.

What are the steps tο calculate five-number summary and cοnstruct a bοx and whisker plοt?  

Tο find the five-number summary and cοnstruct a bοx and whisker plοt, we need tο first οrganize the given data in ascending οrder:

30, 40, 50, 60, 70

The five-number summary cοnsists οf the minimum value, the first quartile (Q1), the median (Q2), the third quartile (Q3), and the maximum value.

Minimum value: 30

Q1 (first quartile): the median οf the lοwer half οf the data set, which is (30 + 40)/2 = 35

Median (Q2): the middle value οf the data set, which is 50

Q3 (third quartile): the median οf the upper half οf the data set, which is (60 + 70)/2 = 65

Maximum value: 70

Sο, the five-number summary is:

Minimum = 30

Q1 = 35

Median = 50

Q3 = 65

Maximum = 70

To construct a box and whisker plot, we draw a number line that includes the range of the data (from the minimum value to the maximum value), and mark the five-number summary on the number line. Then we draw a box that spans from Q1 to Q3, with a vertical line inside the box at the median (Q2). In addition, we draw "whiskers" from the box to the minimum and maximum values.

The box and whisker plot for the given data is as follows:

       20         40         60         80        100

       |----------|----------|----------|----------|

                   +-----+                    

                   |     |                    

                   |     |                    

                   |     |                    

                   |     |                    

                   +-----+                    

The box spans from 35 to 65, with a vertical line inside the box at 50. The whiskers extend from 30 to 70. There are no outliers in the data, so there are no points beyond the whiskers.

To learn more about whisker plot, visit: https://brainly.com/question/30942027

#SPJ9

Lydia is buying a house and looking at blueprints to make his decision. If each 4 cm on the scale drawing below is equal to 8 feet, what is the area of the living room? The rectangular scale drawing of the living room has a length of 12 centimeters and a width of 12 centimeters.

Answers

So the area of the living room on the scale drawing is 334128.48 square centimeters.

What is area?

Area is a measure of the size of a two-dimensional surface or region, typically expressed in square units. It is the amount of space inside a flat, enclosed shape or surface, and is calculated by multiplying the length and width of the shape or surface. For example, the area of a rectangle can be calculated by multiplying its length by its width, while the area of a circle can be calculated by multiplying pi (3.14) by the square of its radius. Area is a fundamental concept in mathematics and is used in a wide range of fields, from geometry and physics to engineering and architecture.

Here,

First, we need to determine the actual dimensions of the living room. Since each 4 cm on the scale drawing is equal to 8 feet, we can set up a proportion:

4 cm : 8 feet = 12 cm : x

Solving for x, we get:

x = (12 cm x 8 feet) / 4 cm

= 24 feet

So the actual length and width of the living room are 24 feet and 24 feet, respectively.

The area of the living room is then:

Area = length x width

= 24 feet x 24 feet

= 576 square feet

Now, we need to determine the area of the living room on the scale drawing. Since the length and width of the scale drawing are both 12 cm, the area is:

Area = length x width

= 12 cm x 12 cm

= 144 square cm

Finally, we can determine the scale factor for the area by dividing the actual area by the scale area:

Scale factor = actual area / scale area

= 576 square feet / 144 square cm

Since we need the area in square centimeters, we can convert square feet to square centimeters by multiplying by 929.03:

Scale factor = (576 square feet / 144 square cm) x (929.03 square cm/square feet)

= 2324.12

Therefore, the area of the living room on the scale drawing is:

Area = scale area x scale factor

= 144 square cm x 2324.12

= 334128.48 square cm

To know more about area,

https://brainly.com/question/13194650

#SPJ1

HELP ASAP 20 POINTS PLS

Answers

71.5 ur welcome hope this helps

Unless specified, all approximating rectangles are assumed to have the same width. Evaluate the upper and lower sums for f(x) = 2 + sin(x), 0 ≤ x ≤ with n = 8.

Answers

The top and lower sums for n =2,4, and 8 and f(x) = 2 +sin(x),0  x   are as follows:

n = 2: Upper Sum = 7.85398; Lower sum ≈ 7.85398

n = 4: Upper sum ≈ 6.43917; Lower sum ≈ 6.43917

n = 8: Upper sum ≈ 6.35258; Lower sum ≈ 6.352

It is necessary to first divide the range [0, ] into n subintervals of identical width x, where x = ( - 0)/n = /n, in order to calculate the upper and lower sums for the equations f(x) = 2 + sin(x), 0 x for n = 2, 4, and 8. The endpoints of these subintervals are:

x0 = 0, x1 = Δx, x2 = 2Δx, ..., xn-1 = (n-1)Δx, xn = π.

Then, for each subinterval [xi-1, xi], we can approximate the area under the curve by the area of a rectangle whose height is either the maximum or minimum value of f(x) on that interval. The sum of these areas' overall subintervals gives us the upper and lower sums.

For n = 2:

Subintervals: [0, π/2], [π/2, π]Width of subintervals: Δx = π/2Maximum values of f(x) on each subinterval:

[0, π/2]: f(π/2) = 2 + sin(π/2) = 3

[π/2, π]: f(π) = 2 + sin(π) = 2

Minimum values of f(x) on each subinterval:

[0, π/2]: f(0) = 2 + sin(0) = 2

[π/2, π]: f(π/2) = 2 + sin(π/2) = 3

Upper sum: (3)(π/2) + (2)(π/2) = 5π/2 ≈ 7.85398Lower sum: (2)(π/2) + (3)(π/2) = 5π/2 ≈ 7.85398

For n = 4:

Subintervals: [0, π/4], [π/4, π/2], [π/2, 3π/4], [3π/4, π]Width of subintervals: Δx = π/4Maximum values of f(x) on each subinterval:

[0, π/4]: f(π/4) = 2 + sin(π/4) ≈ 2.70711

[π/4, π/2]: f(π/2) = 2 + sin(π/2) = 3

[π/2, 3π/4]: f(3π/4) = 2 + sin(3π/4) ≈ 2.29289

[3π/4, π]: f(π) = 2 + sin(π) = 2

Minimum values of f(x) on each subinterval:

[0, π/4]: f(0) = 2 + sin(0) = 2

[π/4, π/2]: f(π/4) = 2 + sin(π/4) ≈ 2.70711

[π/2, 3π/4]: f(π/2) = 2 + sin(π/2) = 3

[3π/4, π]: f(3π/4) = 2 + sin(3π/4) ≈ 2.29289

Upper sum: (2.70711 + 3 + 2.29289)(π/4) ≈ 6.43917Lower sum: (2 + 2.70711 + 3 + 2.29289)(π/4) ≈ 6.43917

For n = 8:

Subintervals: [0, π/8], [π/8, π/4], [π/4, 3π/8], [3π/8, π/2], [π/2, 5π/8], [5π/8, 3π/4], [3π/4, 7π/8], [7π/8, π]Width of subintervals: Δx = π/8Maximum values of f(x) on each subinterval:

[0, π/8]: f(π/8) = 2 + sin(π/8) ≈ 2.25882

[π/8, π/4]: f(π/4) = 2 + sin(π/4) ≈ 2.70711

[π/4, 3π/8]: f(3π/8) = 2 + sin(3π/8) ≈ 2.96593

[3π/8, π/2]: f(π/2) = 2 + sin(π/2) = 3

[π/2, 5π/8]: f(5π/8) = 2 + sin(5π/8) ≈ 2.96593

[5π/8, 3π/4]: f(3π/4) = 2 + sin(3π/4) ≈ 2.70711

[3π/4, 7π/8]: f(7π/8) = 2 + sin(7π/8) ≈ 2.25882

[7π/8, π]: f(π) = 2 + sin(π) = 2

Minimum values of f(x) on each subinterval:

[0, π/8]: f(0) = 2 + sin(0) = 2

[π/8, π/4]: f(π/8) = 2 + sin(π/8) ≈ 2.25882

[π/4, 3π/8]: f(π/4) = 2 + sin(π/4) ≈ 2.70711

[3π/8, π/2]: f(3π/8) = 2 + sin(3π/8) ≈ 2.96593

[π/2, 5π/8]: f(π/2) = 2 + sin(π/2) = 3

[5π/8, 3π/4]: f(5π/8) = 2 + sin(5π/8) ≈ 2.96593

[3π/4, 7π/8]: f(3π/4) = 2 + sin(3π/4) ≈ 2.70711

[7π/8, π]: f(7π/8) = 2 + sin(7π/8) ≈ 2.25882

Upper sum: (2.25882 + 2.70711 + 2.96593 + 3 + 2.96593 + 2.70711 + 2.25882 + 2)(π/8) ≈ 6.35258Lower sum: (2 + 2.25882 + 2.70711 + 2.96593 + 3 + 2.96593 + 2.70711 + 2.25882)(π/8) ≈ 6.352

The complete question is:-

Unless specified, all approximating rectangles are assumed to have the same width. Evaluate the upper and lower sums for f(x) = 2 + sin(x),0 ≤ x ≤ π with n = 2, 4, and 8.

To learn more about the upper sum, refer:-

https://brainly.com/question/29636891

#SPJ1

Samantha sells tomatoes at a farmer's market. She uses 15 to 60 gallons of water each week to water her tomato plants. She measured the number of tomatoes produced each week and noticed that the amount of water given to the plants impacts the amount of tomatoes they produce.

What are the domain, independent and dependent variables in this situation?
a.) 15 to 60 gallons of water
b.) gallons of water used
c.) number of tomato plants
d.) number of tomatoes produced
e.) 0 to 60 gallons of water
f.) price per tomato sold

Domain: ?

Independent variable: ?

Dependent variable: ?

Answers

Samantha waters her tomato plants once a week with between 15 and 60 gallons of water.

15 to 60 gallons of water are the domain.Gallons of utilized water is an independent variable.The number of tomatoes produced is a dependent variable.

Domain refers to the set of possible values that the independent variable can take. In this case, the domain is the range of possible amounts of water that Samantha can use to water her tomato plants, which is 15 to 60 gallons.

The independent variable is the variable that is being manipulated or controlled by Samantha, which in this case is the amount of water used to water the tomato plants. So, the independent variable is "gallons of water used".

The dependent variable is the variable that is being measured or observed, which in this case is the number of tomatoes produced each week. So, the dependent variable is the "number of tomatoes produced".

Therefore, the answer is:

Domain: 15 to 60 gallons of waterIndependent variable: gallons of water usedDependent variable: number of tomatoes produced

To learn more about dependent variables, refer:-

https://brainly.com/question/29430246

#SPJ1

Find the missing side lengths. Leave your answers as radicals in simplest form

Answers

Answer:

[tex]u = \frac{2 \sqrt{6} }{3} [/tex]

[tex]v = \frac{ \sqrt{6} }{3} [/tex]

Step-by-step explanation:

Use trigonometry:

[tex] \tan(60°) = \frac{ \sqrt{2} }{v} [/tex]

Use the property of proportion to find v:

[tex]v = \frac{ \sqrt{2} }{ \tan(60°) } = \frac{ \sqrt{2} }{ \sqrt{3} } = \frac{ \sqrt{2} \times \sqrt{3} }{ \sqrt{3} \times \sqrt{3} } = \frac{ \sqrt{6} }{3} [/tex]

Use the Pythagorean theorem to find u:

[tex] {u}^{2} = {v}^{2} + ( { \sqrt{2} )}^{2} [/tex]

[tex] {u}^{2} = ( { \frac{ \sqrt{6} }{3}) }^{2} + ( { \sqrt{2} )}^{2} = \frac{6}{9} + \frac{2}{1} = \frac{6}{9} + \frac{2 \times 9}{9} = \frac{6}{9} + \frac{18}{9} = \frac{24}{9} = \frac{8}{3} [/tex]

[tex]u > 0[/tex]

[tex]u = \sqrt{ \frac{8}{3} } = \frac{2 \sqrt{6} }{3} [/tex]

The sale price of a backpack is $3, it’s 85% off

Answers

Answer:

The answer to your question is $2.55

Step-by-step explanation:

85% × $3 = $2.55

With original price $3 and 85% off,

Final price: $0.45

Saved amount: $2.55

I hope this helps and have a wonderful day!

Answer:0.45

Step-by-step explanation:

Purchase Price:

$3

Discount:

(3 x 85)/100 = $2.55

Final Price:

3 - 2.55 = $0.45

In politics, marketing, etc. we often want to estimate a percentage or proportion p . One calculation in statistical polling is the margin of error - the largest (reasonble) error that the poll could have. For example, a poll result of 72% with a margin of error of 4% indicates that p is most likely to be between 68% and 76% (72% minus 4% to 72% plus 4%). In a (made-up) poll, the proportion of people who like dark chocolate more than milk chocolate was 32% with a margin of error of 2.2% . Describe the conclusion about p using an absolute value inequality. Be sure to use decimal numbers in your answer (such as using 0.40 for 40%).

Answers

The conclusion about p using an absolute value inequality is in the range of 29.8% to 34.2%.

What is absolute value inequality?

An expression using absolute functions and inequality signs is known as an absolute value inequality.

We know that the absolute value inequality about p using an absolute value inequality is written as,

[tex]|p-\hat{p}|\leq E[/tex]

where E is the margin of error and is the sample proportion.

Now, it is given that the poll result of 72% with a margin of error of 4% indicates that p is most likely to be between 68% and 76%. Therefore, p can be written as,

[tex]|p-0.72|\leq 0.04\\(0.72-0.04)\leq p\leq (0.72+0.04)\\\\0.68 \leq p \leq 0.76[/tex]

Thus, the p is most likely to be between the range of 68% to 76%.

Similarly, the proportion of people who like dark chocolate more than milk chocolate was 32% with a margin of error of 2.2%. Therefore, p can be written as,

[tex]|p-0.32| \leq 0.022\\\\0.248 \leq p \leq 0.342[/tex]

Thus, the p is most likely to be between the range of 29.8% to 34.2%.

Hence, the conclusion about p using an absolute value inequality is in the range of 29.8% to 34.2%.

Learn more about Absolute Value Inequality:

brainly.com/question/4688732

#SPJ1

Other Questions
Use the V n of the function y=f(x) below to answer the questions.12BEN2011PyT5(a) Is f(1) negative?O Yes No(b) For which value(s) of x is f(x) > 0?Write your answer using interval notation.I(c) For which value(s) of x is f(x)=0?If there is more than one value, separate them with commas.0 Find the probability of neither showingmultiple of 3 nor multiple of 4 on the second die On January 1, 2015, Jose Company purchased a building for $200,000 and a delivery truck for $20,000. The following expenditures have been incurred during 2017: 4. What is the central idea of the letter?Question 4 options:A breakup of the Union has been something that has been a long time coming.A breakup of the Union is the worst thing that could happen.Secession is necessary to preserve the principals of the South.Secession would cause the North to reevaluate their ideals. How many face edges and verties in cube ) what type of materials in terms of specific heat that work best for building envelopes in hot arid regions? simplify: [2](3d'2e'4)'3_________9d'2e'5" ' " is used for square.. you can be an entrepreneur by using your creativity and resourcefulneds a system releases 1 kj of heat and has 650 j of work done on it by the syrroundings. what is the change in the internal energy of the system prove that cos x = cscx-1---------------------------cscx ap myers psychology how does culture affect diagnosis of psychological disorder? how does the biopsychosocial model help explain psychological disorders? Members of a basketball team are paintinga design on the floor of the basketballcourt. The special paint they are buyingcosts $15.80 a pint. One pint of this paintcovers ten square feet of surface. What is the value of x? Enter your answer in the box. Angle b has a measure between 0 and 360 and is coterminal with a ""865 angle. what is the measure of angle b? 110 115 210 215 what were the key differences between the reconstruction visions of andrew johnson and the radical republicans? a blockage in the lymphatic system could have which of the following consequences? question 1 options: a. an increase in interstitial fluid volume b. an increase in blood volume returning to the right atrium c. a reduction in colloid osmotic pressure d. (a) and (b) are correct; (c) is incorrect e. (a), (b), and (c) are all correct a spherical object orbiting the sun that has objects of similar mass orbiting nearby or crossing its path is a you purchase a $1000 par value bond with 15 years to maturity, paying a semiannual coupon of 7.5%. the yield to maturity (annual yield) on bonds with comparable risk is 7%. you hold this bond and sell it 5 years later when the yield to maturity (annual yield) on bonds with comparable risk is 10%. what is the change in bond price over the five years? The Pythagorean Theorem - Quiz - Level HQuestion 6What is the length of the diagonal of the rectangle? Value: 2Why did the Allies focus on the naval blockades?O a. Denied badly needed imports, it was assumed, the German war effort would be seriously weakened.O b. The slaughter brought on by massed artillery and infantry charges between the trenches was horrible.O c. German high command launched a massive offensive against the strategic fortress of Verdun in thespring of 1916.