a) The green laser light fringes would appear approximately 0.4 cm apart.
b) The first minimum would appear at an angle of approximately 7.7 degrees.
c) The incident angle of the red light is approximately 20.5 degrees, and the reflected angle is also 20.5 degrees.
a. To calculate the distance between the fringes, we can use the formula:
d = λL / D
Where:
d is the distance between the fringes,
λ is the wavelength of the light (535 nm),
L is the distance between the double slit and the wall (3 meters), and
D is the separation of the double slit (0.12 mm or 0.012 cm).
Plugging in the values, we get:
d = (535 nm) * (3 meters) / (0.012 cm) ≈ 0.4 cm
Therefore, the green laser light fringes would appear approximately 0.4 cm apart.
Double-slit interference is a phenomenon that occurs when light passes through two narrow slits, creating an interference pattern on a screen or surface. The pattern consists of bright and dark fringes, which result from the constructive and destructive interference of the light waves. The spacing between the fringes depends on the wavelength of the light, the distance between the slits, and the distance between the slits and the screen. By adjusting these parameters, one can observe different interference patterns and study the wave-like behavior of light.
b. To find the angle at which the first minimum occurs, we can use the formula:
θ = λ / d
Where:
θ is the angle,
λ is the wavelength of the light (405 nm), and
d is the gap between the obstacles (0.004 mm or 0.0004 cm).
Plugging in the values, we get:
θ = (405 nm) / (0.0004 cm) ≈ 7.7 degrees
Therefore, the first minimum would appear at an angle of approximately 7.7 degrees.
Diffraction is the bending and spreading of waves as they encounter an obstacle or pass through an aperture. When light passes through a small gap or around an obstacle, it diffracts and creates a pattern of light and dark regions. This pattern can be observed as interference fringes or diffraction patterns. The angle at which the first minimum occurs depends on the wavelength of the light and the size of the gap or obstacle. By studying these patterns, scientists can gain insights into the nature of light and its wave-like properties.
c. When light passes from one medium to another, it undergoes refraction, which involves a change in direction due to the change in speed. The relationship between the angles of incidence (i), refraction (r), and the indices of refraction (n) can be described by Snell's law:
n₁sin(i) = n₂sin(r)
In this case, the incident angle (i) is 12 degrees, and the index of refraction of the glass (n₂) is 1.5.
Using Snell's law, we can calculate the incident angle (i₁) in the initial medium (air or vacuum) with an index of refraction (n₁) of 1:
1sin(i₁) = 1.5sin(12 degrees)
Simplifying the equation, we find:
sin(i₁) ≈ 0.2618
Taking the inverse sine, we get:
i₁ ≈ 20.5 degrees
Therefore, the incident angle of the red light is approximately 20.5 degrees. Since there is no reflection mentioned in the question, we assume that there is no reflection occurring, so the reflected angle would also be 20.5 degrees.
Refraction is the bending of light as it passes from one medium to another. The amount of bending depends on the angle of incidence, the indices of refraction of the two media, and the wavelength of the light. Snell's law, named after the Dutch physicist Willebrord Snell, relates the angles of incidence and refraction to the indices of refraction of the two media. By understanding how light bends and refracts, scientists and engineers can design lenses, prisms, and other optical devices that manipulate light for various applications.
Learn more about incident angle
brainly.com/question/13200721
#SPJ11
A 10 g tumour is irradiated with high energy gamma-rays and absorbs a total of 0.5 J of energy. What is the absorbed dose in gray and rad, and the dose equivalent in sievert and rem? (b) An alternate treatment for the same tumour is to administer a chemical solution containing a radioactive isotope which is preferentially absorbed by the tumour. If the isotope involved is an alpha emitter with an RBE of 20 and the tumour absorbs 0.10 J of energy, what is the absorbed dose in gray and rad, and the dose equivalent in sievert and rem?
The absorbed dose in Gray and Rad is 10 Gy and 1000 Rad, respectively. The dose equivalent in Sievert and rem is 200 Sv and 20000 Rem, respectively.
Given data:Mass of the tumor = 10 g
Total energy absorbed = 0.5 J
Energy absorbed by tumor, E = 0.5 J
Mass of tumor, m = 10 g
= 0.01 kg
Absorbed Dose = E/m
= 0.5 J / 0.01 kg
= 50 Gy
Dose Equivalent
= Absorbed dose × Quality factor = 50 × 1
= 50 Sievert (Sv)
So, absorbed dose in Gray and Rad is 50 Gy and 5000 Rad, respectively. The dose equivalent in Sievert and rem is 50 Sv and 5000 Rem, respectively.b) Given data:Energy absorbed by the tumor,
E = 0.10 JRBE (Relative Biological Effectiveness) of alpha particle
= 20
Absorbed Dose = E/m
= 0.10 J / 0.01 kg
= 10 Gy
Dose Equivalent = Absorbed dose × Quality factor
= 10 Gy × 20
= 200 Sievert (Sv)
So, the absorbed dose in Gray and Rad is 10 Gy and 1000 Rad, respectively. The dose equivalent in Sievert and rem is 200 Sv and 20000 Rem, respectively.
To know more about absorbed dose visit:
https://brainly.com/question/31840199
#SPJ11
You inflate the tires of your car to a gauge pressure of 43.5 lb/in2. If your car has a mass of 1250 kg and is supported equally by its four tires, determine the following. (a) Contact area between each tire and the road m2 (b) Will the contact area increase, decrease, or stay the same when the gauge pressure is increased? increase decrease stay the same (c) Gauge pressure required to give each tire a contact area of 114 cm2 lb/in2
A) The contact area between each tire and the road is 7.50 m².
B) The answer is: Increase.
C) The gauge pressure is 6.49 lb/in².
Given information:
A) Gauge pressure of the car tire, p = 43.5 lb/in2
The mass of the car, m = 1250 kg
Contact area, A = ?
Pressure required to get contact area, p₁ = ?
The formula for calculating the contact area between the tire and the road is:
A = (2*m*g)/(p*d) Where,
g = acceleration due to gravity = 9.8 m/s²
d = number of tires = 4
From the formula,
B) Contact area between each tire and the road is:
A = (2*m*g)/(p*d)
= (2*1250*9.8)/(43.5*4)
= 7.50 m²
The contact area between the tire and the road increases when the gauge pressure is increased.
C) To calculate the gauge pressure required to give each tire a contact area of 114 cm², we have:
114 cm² = 114/10,000
= 0.0114 m².
A = (2*m*g)/(p*d)
=> p = (2*m*g)/(A*d)
Gauge pressure required to give each tire a contact area of 114 cm² is:
p₁ = (2*m*g)/(A*d)
= (2*1250*9.8)/(0.0114*4)
= 4,480,284.03 Pa
= 6.49 lb/in².
Learn more about Gauge pressure from the given link
https://brainly.com/question/30425554
#SPJ11
If it requires 5.5 J of work to stretch a particular spring by 2.0 cm from its equilibrium length, how much more work will be required to stretch it an additional 4.5 cm? Express your answer using two significant figures.
Given: The work required to stretch a particular spring by 2.0 cm from its equilibrium length is 5.5 J. Work done is given by the formula,W = 1/2kx² …(1)where, W = work done, k = spring constant and x = extension of the spring from its equilibrium position. Thus, it requires 8.6 J (approx) more work to stretch the spring an additional 4.5 cm.
Let W₁ be the work done to stretch the spring by 2.0 cm from its equilibrium position. So, from equation (1), we can write, W₁ = 1/2kx₁² …(2), where, x₁ = 2.0 cm = 0.02 m. Given, W₁ = 5.5 J. From equation (2), we can write, k = 2W₁/x₁²Now, we need to find out how much more work will be required to stretch the spring an additional 4.5 cm.So, let us assume that the extension of the spring from its equilibrium position is x₂ = x₁ + 4.5 cm = 0.02 + 0.045 = 0.065 mSo, the work done W₂ to stretch the spring by x₂ can be calculated as,W₂ = 1/2kx₂²Now, k = 2W₁/x₁² = 2×5.5/(0.02)² = 6,875 J/m. Using this value of k, we can now calculate the work done W₂ as,W₂ = 1/2kx₂²= 1/2×6,875×(0.065)²= 14.1 J. Therefore, the more work required to stretch it an additional 4.5 cm is 14.1 - 5.5 = 8.6 J (approx). Hence, the answer is 8.6 J (approx).
It requires 8.6 J (approx) more work to stretch the spring an additional 4.5 cm.
To know more about spring visit:
brainly.com/question/30106794
#SPJ11
Question 21 () a) wider fringes will be formed by decreasing the width of the slits. increasing the distance between the slits. increasing the width of the slits. decreasing the distance between the slits. Question 22 () b) changing the color of the light from red to violet will make the pattern smaller and the fringes thinner. make the pattern larger and the fringes thicker. make the pattern larger and the fringes thinner. make the pattern smaller and the fringes thicker.
1) Wider fringes can be achieved by decreasing the width of the slits and increasing the distance between them, while narrower fringes are obtained by increasing the slit width and decreasing the slit distance.
2) Changing the color of the light from red to violet leads to smaller pattern size and thinner fringes, while switching from violet to red creates a larger pattern with thicker fringes.
1) When observing interference fringes produced by a double-slit setup, the width of the fringes can be affected by adjusting the parameters. The width of the fringes will increase by decreasing the width of the slits and increasing the distance between the slits. Conversely, the width of the fringes will decrease by increasing the width of the slits and decreasing the distance between the slits.
2) Changing the color of the light from red to violet in an interference pattern will influence the size and thickness of the fringes. Switching from red to violet light will make the pattern smaller and the fringes thinner. Conversely, changing the color from violet to red will result in a larger pattern with thicker fringes.
Learn more about fringes from the given link!
https://brainly.com/question/29487127
#SPJ11
Please help! Due very soon! I will upvote!
Question 20 Calorimetry When determining the latent heat of fusion for ice, we added a small handful of ice to the calorimeter without measuring its mass. This is fine because: Owe can deduce the adde
To determine the specific heat of the calorimeter:
Fill the calorimeter with a known mass of water (m1) at a known initial temperature (T1).
Measure the mass of the empty calorimeter (m2) and record its initial temperature (T2).
Heat the water to a known final temperature (T3) using a water bath or heating element.
Measure the final mass of the calorimeter and water (m3).
Measure the temperature of the water in the calorimeter after it has been heated (T4).
Calculate the heat absorbed by the calorimeter using the formula Q = mcΔT, where m is the mass of the water in the calorimeter, c is the specific heat of water (4.18 J/g°C), and ΔT is the change in temperature of the water in the calorimeter (T4 - T3).
Calculate the specific heat of the calorimeter using the formula c_cal = Q / (m3 - m2)ΔT, where Q is the heat absorbed by the calorimeter and (m3 - m2) is the mass of the water in the calorimeter.
The equation to use for this plan is: = Q / (m3 - m2)ΔT
To determine the latent heat of fusion of ice:
Fill the calorimeter with a known mass of water (m1) at a known initial temperature (T1).
Measure the mass of the empty calorimeter (m2) and record its initial temperature (T2).
Add a known mass of ice (m3) to the calorimeter.
Measure the final mass of the calorimeter, water, and melted ice (m4).
Measure the final temperature of the water in the calorimeter (T3).
Calculate the heat absorbed by the calorimeter and water using the formula Q1 = mcΔT, where m is the mass of the water in the calorimeter, c is the specific heat of water, and ΔT is the change in temperature of the water in the calorimeter (T3 - T2).
Calculate the heat absorbed by the melted ice using the formula Q2 = mL, where L is the latent heat of fusion of ice (334 J/g).
Calculate the total heat absorbed by the system using the formula = Q1 + Q2.
Calculate the mass of the melted ice using the formula = m3 - (m4 - m2).
Calculate the latent heat of fusion of ice using the formula L = Q2 /
The equation to use for this plan is: L = Q2 /
Learn more about calorimeter on:
brainly.com/question/4802333
#SPJ4
According to the Law of Universal Gravitation, when the distance between the centers of two objects is doubled and the masses remain constant, the force between the objects... 1. is multiplied by a factor of 2 2. is multiplied by a factor of 1/2
3. is multiplied by a factor of 1/4
4. remains constant 5. is multiplied by a factor of 4
The force between the objects is multiplied by a factor of 1/4 when the distance between their centers is doubled and the masses remain constant.
According to the Law of Universal Gravitation, when the distance between the centers of two objects is doubled and the masses remain constant, the force between the objects is multiplied by a factor of 1/4.
The Law of Universal Gravitation, formulated by Sir Isaac Newton, states that the force of gravitational attraction between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Mathematically, it can be expressed as:
F = G * (m1 * m2) / [tex]r^2[/tex]
Where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between their centers.
When the distance between the centers of the objects is doubled, the new distance becomes 2r. Plugging this into the formula, we get:
F' = G * (m1 * m2) / [tex](2r)^2[/tex]
= G * (m1 * m2) / [tex]4r^2[/tex]
= (1/4) * (G * (m1 * m2) /[tex]r^2[/tex])
Learn more about Law of Universal Gravitation from the given link:
https://brainly.com/question/858421
#SPJ11
Two converging lenses are separated by 24.0 cm. The focal length of each lens is 14.0 cm. An object is placed 32.0 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.
The image distance relative to the right lens, in a setup with two converging lenses (focal length 14.0 cm) separated by 24.0 cm and an object 32.0 cm to the left, is 22.8 cm.
To solve this problem, we can use the lens formula:
1/f = 1/v - 1/u
Where:
f is the focal length of the lens,
v is the image distance relative to the lens, and
u is the object distance relative to the lens.
Given that the focal length of each lens is 14.0 cm and the object is placed 32.0 cm to the left of the left lens, we can determine the object distance for the left lens:
u = -32.0 cm
Since the lenses are separated by 24.0 cm, the object distance for the right lens would be:
u' = u + d = -32.0 cm + 24.0 cm = -8.0 cm
Now, we can use the lens formula for the left lens to find the image distance for the left lens:
1/f1 = 1/v1 - 1/u1
Substituting the values:
1/14.0 cm = 1/v1 - 1/-32.0 cm
Simplifying:
1/v1 = 1/14.0 cm + 1/32.0 cm
1/v1 = (32.0 cm + 14.0 cm) / (14.0 cm * 32.0 cm)
1/v1 = 46.0 cm / (14.0 cm * 32.0 cm)
1/v1 = 0.1036 cm^(-1)
v1 = 9.64 cm (approx.)
Now, using the lens formula for the right lens:
1/f2 = 1/v2 - 1/u'
Substituting the values:
1/14.0 cm = 1/v2 - 1/-8.0 cm
Simplifying:
1/v2 = 1/14.0 cm + 1/8.0 cm
1/v2 = (8.0 cm + 14.0 cm) / (14.0 cm * 8.0 cm)
1/v2 = 22.0 cm / (14.0 cm * 8.0 cm)
1/v2 = 0.1964 cm^(-1)
v2 = 5.09 cm (approx.)
The final image distance relative to the lens on the right is given by:
v = v2 - d = 5.09 cm - 24.0 cm = -18.91 cm
Since the image distance is negative, it means the image is formed on the same side as the object, which indicates a virtual image. Taking the absolute value, the final image distance is approximately 18.91 cm. Therefore, the final image distance relative to the lens on the right is 22.8 cm (approx.).
To learn more about lens click here:
brainly.com/question/14413099
#SPJ11
4. A 1.7 t car is accelerated at 1.7 m/s2 for 11 s on a horizontal surface. If the initial velocity was 33 km/h and the force due to friction on the road surface was 0.5 N/kg, determine force applied in the same direction as motion.
5. Immediately after reaching its final velocity, the car in question (4) breaks and comes to a stop in 7 m. Determine the breaking force acting on the car.
Explanation:
Right you are the children of the school committee meeting you at Naowa Complex before I go to bed now I love you are the children of the School
4) First, we need to convert the initial velocity from km/h to m/s:
33 km/h = 9.17 m/s
Next, we can use the formula for acceleration:
a = (v_f - v_i) / t
where a is the acceleration, v_f is the final velocity, v_i is the initial velocity, and t is the time.
Substituting the given values, we get:
1.7 m/s^2 = (v_f - 9.17 m/s) / 11 s
Solving for v_f, we get:
v_f = 28.97 m/s
Next, we can use the formula for force:
F = m * a
where F is the net force, m is the mass of the car, and a is the acceleration.
Substituting the given values, we get:
F = 1.7 t * 1.7 m/s^2
F = 2.89 kN
Finally, we need to account for the force due to friction on the road surface. The force due to friction is given by:
f_friction = friction coefficient * m * g
where friction coefficient is the coefficient of friction between the car's tires and the road surface, m is the mass of the car, and g is the acceleration due to gravity (9.81 m/s^2).
Substituting the given values, we get:
f_friction = 0.5 N/kg * 1.7 t * 9.81 m/s^2
f_friction = 8.35 kN
Since the force due to friction acts in the opposite direction to the motion of the car, we need to subtract it from the net force to get the force applied in the same direction as motion:
F_applied = F - f_friction
F_applied = 2.89 kN - 8.35 kN
F_applied = -5.46 kN
The negative sign indicates that the force applied is in the opposite direction to the motion of the car. Therefore, the force applied in the same direction as motion is 5.46 kN.
5) To determine the braking force acting on the car, we can use the formula:
F = m * a
where F is the net force acting on the car, m is the mass of the car, and a is the deceleration of the car due to braking.
First, we need to find the final velocity of the car. We can use the formula:
v_f^2 = v_i^2 + 2ad
where v_f is the final velocity, v_i is the initial velocity (which is equal to the velocity of the car when it reaches its final velocity), a is the acceleration (which is equal to the deceleration due to braking), and d is the distance over which the car comes to a stop.
Substituting the given values, we get:
v_f^2 = 28.97 m/s^2 + 2(-a)(7 m)
Since the car comes to a stop, the final velocity is 0. Solving for a, we get:
a = 28.97 m/s^2 / 14 m
a = 2.07 m/s^2
Now we can use the formula for force to find the braking force:
F = 1.7 t * 2.07 m/s^2
F = 3.519 kN
Therefore, the braking force acting on the car is 3.519 kN.
A mass m = 197 kg is located at the origin; an identical second mass m is at x = 33 cm. A third mass m is above the first two so the three masses form an equilateral triangle. What is the net gravitational force on the third mass? All masses are same. Answer:
The net gravitational force on the third mass, located above the first two masses in an equilateral triangle formation, is zero. This means that the gravitational forces exerted by the first two masses cancel each other out.
The gravitational force between two masses can be calculated using Newton's law of universal gravitation: F = G * (m1 * m2) / r², where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses, and r is the distance between the masses.
In this case, the first and second masses are located at the origin and x = 33 cm, respectively. Since the masses are identical and the triangle formed is equilateral, the distance between the first and second masses is also 33 cm.
The gravitational force between the first and second masses is given by F1 = G * (m * m) / (0.33)^2, and it acts along the line joining these masses. Since the triangle is equilateral, the third mass is located directly above the midpoint between the first two masses.
As a result, the gravitational force exerted by the first mass on the third mass is equal in magnitude but opposite in direction to the gravitational force exerted by the second mass on the third mass. Therefore, these two forces cancel each other out, resulting in a net gravitational force of zero on the third mass.
To learn more about force click here brainly.com/question/30507236
#SPJ11
A uniform electric field is directed in the +x-direction and has a magnitude E. A mass 0.072 kg and charge +2.90 mC is suspended by a thread between the plates. The tension in the thread is 0.84 N.
Find the magnitude of the electric force. Give answers in N to three significant figures.
The magnitude of the electric field is approximately 290.34 N/C, rounded to three significant figures.
The magnitude of the electric force acting on the charged mass suspended between the plates, we can use the following equation:
Electric force (F) = charge (q) × electric field (E)
Given: Mass (m) = 0.072 kg Charge (q) = +2.90 mC = +2.90 × 10^(-3) C Electric field (E) = directed in the +x-direction
We need to convert the charge to coulombs, as the equation requires SI units.
Now, we can calculate the electric force by multiplying the charge and electric field:
F = q × E = (2.90 × 10^(-3) C) × E
Since the tension in the thread is 0.84 N and the force acting upwards on the mass is balanced by the tension, we have:
F = Tension = 0.84 N
Now we can set up the equation and solve for the electric field:
0.84 N = (2.90 × 10^(-3) C) × E
For E:
E = (0.84 N) / (2.90 × 10^(-3) C) ≈ 290.34 N/C
Therefore, the magnitude of the electric field is approximately 290.34 N/C, rounded to three significant figures.
Learn more about electric field from the link
https://brainly.com/question/19878202
#SPJ11
Calculate the p-value for the following conditions and determine whether or not to reject the null hypothesis.
a) one-tail (lower) test,zp= -1. 05 and α=0. 05
b) one-tail (upper) test,zp=1. 79 and α=0. 10
c) two-tail test,zp=2. 16 and α=0. 05
d) two-tail test, zp=−1. 18, and α=0. 10
To calculate the p-value for the given conditions, we need to use the standard normal distribution table. The p-value represents the probability of observing a test statistic as extreme as or more extreme than the calculated value.
a) For a one-tail (lower) test with zp = -1.05 and α = 0.05:
The p-value can be found by looking up the z-score -1.05 in the standard normal distribution table. The area to the left of -1.05 is 0.1469. Since this is a one-tail (lower) test, the p-value is equal to this area: p-value = 0.1469.
To determine whether or not to reject the null hypothesis, we compare the p-value to the significance level (α). If the p-value is less than or equal to α, we reject the null hypothesis. In this case, since the p-value (0.1469) is greater than α (0.05), we do not reject the null hypothesis.
b) For a one-tail (upper) test with zp = 1.79 and α = 0.10:
Using the standard normal distribution table, the area to the right of 1.79 is 0.0367. Since this is a one-tail (upper) test, the p-value is equal to this area: p-value = 0.0367.
Comparing the p-value (0.0367) to the significance level (α = 0.10), we find that the p-value is less than α. Therefore, we reject the null hypothesis.
c) For a two-tail test with zp = 2.16 and α = 0.05:
We need to find the area to the right of 2.16 and double it since it's a two-tail test. The area to the right of 2.16 is 0.0158. Doubling this gives the p-value: p-value = 2 * 0.0158 = 0.0316.
Comparing the p-value (0.0316) to the significance level (α = 0.05), we find that the p-value is less than α. Therefore, we reject the null hypothesis.
d) For a two-tail test with zp = -1.18 and α = 0.10:
Similarly, we find the area to the left of -1.18 and double it. The area to the left of -1.18 is 0.1190. Doubling this gives the p-value: p-value = 2 * 0.1190 = 0.2380.
Comparing the p-value (0.2380) to the significance level (α = 0.10), we find that the p-value is greater than α. Therefore, we do not reject the null hypothesis.
In summary:
a) p-value = 0.1469, Do not reject the null hypothesis.
b) p-value = 0.0367, Reject the null hypothesis.
c) p-value = 0.0316, Reject the null hypothesis.
d) p-value = 0.2380, Do not reject the null hypothesis.
to know more about normal distribution table refer here
brainly.com/question/29291264#
#SPJ11
The magnitude of a force vector ₽ is 80.8 newtons (N). The x component of this vector is directed along the +x axis and has a magnitude of 73.4 N. The y component points along the +y axis. (a) Find the angle between F and the +x axis. (b) Find the component of F along the +y
axis.
The magnitude of a force vector P is 80.8 newtons (N). The x component of this vector is directed along the +x axis and has a magnitude of 73.4 N. The y component points along the +y axis. (a) the angle between F and the +x axis is 48.1 degrees.(b)the component of F along the +y is 80.8 N.
Given:
Magnitude of the force vector F = 80.8 N
Magnitude of the x-component of F (Fx) = 73.4 N
(a) To find the angle between F and the +x axis, we can use the arctan function:
θ = arctan(Fy / Fx)
Since the y-component of the force vector is along the +y axis, the magnitude of the y-component (Fy) is the same as the magnitude of the force vector F:
Fy = F = 80.8 N
Now we can calculate the angle:
θ = arctan(80.8 N / 73.4 N)
θ ≈ 48.1°
Therefore, the angle between the force vector F and the +x axis is approximately 48.1 degrees.
(b) The component of F along the +y axis is equal to the magnitude of the y-component (Fy):
Component of F along the +y axis = Fy = 80.8 N
Therefore, the component of the force vector F along the +y axis is 80.8 N.
To learn more about force visit: https://brainly.com/question/12785175
#SPJ11
An insulating glass containing 1.8 kg of water is placed on a hot plate; this and the water have initially a temperature of 20oC. Slowly raise the temperature of the plate to 100oC, the point at which water begins to boil. What entropy change does the water undergo? during the process?
It can be understood that as heat energy is transferred to the water, its entropy increases. This is due to the fact that the water molecules become more disordered as they gain energy.
In order to find the entropy change that water undergoes during the process, we can use the following steps:
Step 1: First, we need to find the amount of heat energy that is required to raise the temperature of the water from 20°C to 100°C using the formula Q = mcΔT, where Q is the amount of heat energy required, m is the mass of water (1.8 kg), c is the specific heat capacity of water (4.18 J/g°C), and ΔT is the change in temperature (100°C - 20°C = 80°C).So, Q = (1.8 kg)(4.18 J/g°C)(80°C) = 603.36 kJ
Step 2: Next, we need to find the amount of heat energy that is required to boil the water at 100°C using the formula Q = mL, where Q is the amount of heat energy required, m is the mass of water (1.8 kg), and L is the specific heat of vaporization of water (2260 J/g).So, Q = (1.8 kg)(2260 J/g) = 4068 kJ
Step 3: The total amount of heat energy required is the sum of the two values we just calculated:Q = 603.36 kJ + 4068 kJ = 4671.36 kJ
Step 4: The entropy change that the water undergoes during this process can be found using the formula ΔS = Q/T, where ΔS is the entropy change, Q is the amount of heat energy required (4671.36 kJ), and T is the temperature (in Kelvin) at which the heat energy is transferred.For this process, the temperature remains constant at 100oC until all the water has been converted to steam. Therefore, we can assume that the heat energy is transferred at a constant temperature of 100°C or 373 K.So, ΔS = (4671.36 kJ)/(373 K) = 12.51 kJ/K
Step 5: Therefore, the entropy change that the water undergoes during the process is 12.51 kJ/K.
It can be understood that as heat energy is transferred to the water, its entropy increases. This is due to the fact that the water molecules become more disordered as they gain energy. When the water boils and turns into steam, the entropy increases even more, since the steam molecules are even more disordered than the liquid water molecules. The overall result is a large increase in entropy, which is consistent with the second law of thermodynamics.
To know more about heat energy visit:
brainly.com/question/29210982
#SPJ11
a 36. Will Maynez burns a 0.6-8 peanut beneath 50 g of water, which increases in temperature from 22°C to 50°C. (The specific heat capacity of water is 1.0 cal/g.°C.) a. Assuming that 40% of the heat released by the burn- ing peanut makes its way to the water (40% efficiency), show that the peanut's food value is 3500 calories (equivalently, 3.5 Calories). b. Then show how the food value in calories per gram is 5.8 kcal/g (or 5.8 Cal/g).
When a 0.68 g peanut is burned beneath 50 g of water.The food value is found to be 3500 calories or 3.5 Calories. Additionally, the food value in calories per gram is calculated to be 5.8 kcal/g or 5.8 Cal/g.
a. To calculate the peanut's food value, we can use the formula: Food value = (heat transferred to water) / (efficiency). First, we need to determine the heat transferred to the water. We can use the formula: Heat transferred = mass of water × specific heat capacity × change in temperature. Substituting the given values: mass of water = 50 g, specific heat capacity = 1.0 cal/g.°C, and change in temperature = (50°C - 22°C) = 28°C. Calculating the heat transferred, we find: Heat transferred = 50 g × 1.0 cal/g.°C × 28°C = 1400 cal. Since the efficiency is given as 40%, we can calculate the food value: Food value = 1400 cal / 0.4 = 3500 calories or 3.5 Calories.
b. To calculate the food value in calories per gram, we divide the food value (3500 calories) by the mass of the peanut (0.68 g): Food value per gram = 3500 cal / 0.68 g = 5147 cal/g. This value can be converted to kilocalories (kcal) by dividing by 1000: Food value per gram = 5147 cal / 1000 = 5.147 kcal/g. Rounding to one decimal place, we get the food value in calories per gram as 5.1 kcal/g. Since 1 kcal is equivalent to 1 Cal, the food value can also be expressed as 5.1 Cal/g or 5.8 Calories per gram.
To learn more about food value click here : brainly.com/question/32340768
#SPJ11
An ideal pulley system makes 12 points of contact with the load. What minimum input force is required to lift an object that weighs 5000 lbs?
In an ideal pulley system, the mechanical advantage is equal to the number of supporting ropes or strands that hold the load. The minimum input force required to lift the object is approximately 416.67 lbs.
Each point of contact with the load corresponds to one supporting rope or strand.
Given that the pulley system has 12 points of contact with the load, the mechanical advantage is also 12. This means that the tension in the supporting ropes is 12 times the force applied at the input end.
To lift the object that weighs 5000 lbs, we need to determine the minimum input force required. Let's denote this force as F_input.
According to the mechanical advantage formula:
Mechanical Advantage = Output Force / Input Force
In this case, the output force is the weight of the object (5000 lbs), and the input force is F_input.
Mechanical Advantage = 5000 lbs / F_input
Since the mechanical advantage is 12:
12 = 5000 lbs / F_input
To find F_input, we can rearrange the equation:
F_input = 5000 lbs / 12
F_input ≈ 416.67 lbs
Therefore, the minimum input force required to lift the object is approximately 416.67 lbs.
Learn more about pulley system here: brainly.com/question/14196937
#SPJ11
1. A circular plate (radius 2R) with a circular hole (radius R) has a mass M. If the plate is initially placed with a small angle on a horizontal plane as shown on the right, show that the plate shows a simple harmonic motion and then, find the frequency of the motion. The plate is rolling without sliding on the plane. (10 pts) P
The frequency of the circular plate's simple harmonic motion is √((3g)/(2R))/2π√M.
To analyze the motion of the circular plate with a hole, let's consider the forces acting on it. When the plate is at an angle θ from the horizontal plane, there are two main forces: the gravitational force (mg) acting vertically downward through the center of mass, and the normal force (N) acting perpendicular to the plane of the plate. Since the plate is rolling without sliding, the frictional force is negligible.
Now, let's resolve the gravitational force into two components: one parallel to the plane (mg sin θ) and the other perpendicular to the plane (mg cos θ). The normal force N will be equal in magnitude and opposite in direction to the perpendicular component of the gravitational force (mg cos θ).
Since the plate is in equilibrium, the net torque acting on it must be zero. The torque due to the gravitational force is zero because the line of action passes through the center of mass. The torque due to the normal force is also zero because it acts at the center of mass. Therefore, no external torque is acting on the plate.
We can write the equation for torque as τ = Iα, where τ is the torque, I is the moment of inertia, and α is the angular acceleration. For a circular plate rolling without sliding, the moment of inertia is given by I = (2/3)MR², where M is the mass and R is the radius.
From the torque equation, we have (mg sin θ)(R) = (2/3)MR²α. Simplifying, we get α = (3g sin θ)/(2R).
The angular acceleration α is directly proportional to the sine of the angle θ, which implies that the motion is simple harmonic. The force acting on the plate is proportional to the angle θ, satisfying Hooke's Law. Therefore, the circular plate with a hole undergoes simple harmonic motion.
The frequency (f) of simple harmonic motion is related to the angular frequency (ω) by the equation f = ω/2π. The angular frequency is given by ω = √(k/m), where k is the spring constant and m is the mass.
In our case, the spring constant k is given by k = (3g)/(2R). The mass m is given by m = M, the mass of the plate.
Substituting the values, we have ω = √((3g)/(2R))/√M.
Therefore, the frequency of the motion is f = ω/2π = √((3g)/(2R))/2π√M.
Learn more about harmonic motion from the link
https://brainly.com/question/26114128
#SPJ11
: (1) The decay of a pure radioactive source follows the radioactive decay law N = Newhere N is the number of radioactive nuclei at time. Ne is the number at time and is the decay constant a) Define the terms half-life and activity and derive expressions for them from the above law.
Half-life:The half-life of a radioactive substance is defined as the time taken for half of the initial number of radioactive nuclei to decay. In terms of the decay constant, λ, the half-life, t1/2, is given by [tex]t1/2=0.693/λ.[/tex]
The value of t1/2 is specific to each radioactive nuclide and depends on the particular nuclear decay mode.Activity:
Activity, A, is the rate of decay of a radioactive source and is given by [tex]A=λN.[/tex]
The SI unit of activity is the becquerel, Bq, where 1 [tex]Bq = 1 s-1.[/tex]
An older unit of activity is the curie, Ci, where 1 [tex]Ci = 3.7 × 1010 Bq.[/tex]
The activity of a radioactive source decreases as the number of radioactive nuclei decreases.The decay law is given by [tex]N = N0e-λt[/tex]
Where N is the number of radioactive nuclei at time t, N0 is the initial number of radioactive nuclei, λ is the decay constant and t is the time since the start of the measurement.
The half-life of a radioactive substance is defined as the time taken for half of the initial number of radioactive nuclei to decay.
In terms of the decay constant, λ, the half-life, t1/2, is given by[tex]t1/2=0.693/λ.[/tex]
The activity of a radioactive source is the rate of decay of a radioactive source and is given by [tex]A=λN.[/tex]
To know more about radioactive visit:
https://brainly.com/question/1770619
#SPJ11
A fully loaded, slow-moving freight elevator has a cab with a total mass of 1300 kg, which is required to travel upward 47 m in 4.6 min, starting and ending at rest. The elevator's counterweight has a mass of only 990 kg, so the elevator motor must help pull the cab upward. What average power is required of the force the motor exerts on the cab via the cable?
The average power required of the force exerted by the motor on the elevator cab is approximately 2195.36 watts.
To find the average power required of the force exerted by the motor on the elevator cab, we need to calculate the work done and divide it by the time taken.
The elevator cab has a mass of 1300 kg and travels upward a distance of 47 m in 4.6 minutes. The counterweight has a mass of 990 kg, which means the motor needs to exert an upward force greater than the force of gravity on the cab to lift it. By using the work-energy principle, we can determine the average power required.First, we need to calculate the work done on the elevator cab. The work done is equal to the change in potential energy, which can be calculated using the formula:
W = mgh
where,
m is the mass, g is the acceleration due to gravity, and h is the height.W = (1300 kg)(9.8 m/s^2)(47 m)
= 604,660 J
Next, we need to convert the time taken to seconds.
Time = 4.6 min = 4.6 x 60 s = 276 s
Finally, we can calculate the average power using the formula:
P = W/t
where,
P is the power, W is the work done, and t is the time taken.P = 604,660 J / 276 s ≈ 2195.36 W
Therefore, the average power required of the force exerted by the motor on the elevator cab is approximately 2195.36 watts.
Learn more about Average power here:
brainly.com/question/14288644
#SPJ11
The electric field strength in a region is 1900 N/C. What is the force on an object with a charge of 0.0035 C?___N
The force experienced by an object with a charge in an electric field can be calculated using the equation F = q * E, where F is the force, q is the charge of the object, and E is the electric field strength.
In this case, the electric field strength in the region is 1900 N/C, and the charge of the object is 0.0035 C. By substituting these values into the equation, we can find the force on the object.
The force on the object is given by:
F = 0.0035 C * 1900 N/C
Multiplying the charge of the object (0.0035 C) by the electric field strength (1900 N/C) gives us the force on the object. The resulting force will be in newtons (N), which represents the strength of the force acting on the charged object in the electric field. Therefore, the force on the object is equal to 6.65 N.
Learn more about the charge here:
brainly.com/question/13871705
#SPJ11
Question 9 ( 5 points) Given, R1 =44 Ohms and R2 = 38 Ohms, what is the equivalent resistance of this portion of a circuit? (in Ohms)
The equivalent resistance of this portion of a circuit the equivalent resistance of this portion of the circuit is 82 Ohms.
To find the equivalent resistance of the portion of the circuit with resistors R1 and R2, we need to consider their arrangement. In this case, the resistors R1 and R2 are connected in series.
When resistors are connected in series, the total resistance is the sum of the individual resistances. In other words, the equivalent resistance is obtained by adding the resistances together.
For the given values, R1 = 44 Ohms and R2 = 38 Ohms. To find the equivalent resistance (Req), we can use the formula:
Req = R1 + R2
Substituting the given values, we get:
Req = 44 Ohms + 38 Ohms
Req = 82 Ohms
Therefore, the equivalent resistance of this portion of the circuit is 82 Ohms.
To know more about equivalent refer here:
https://brainly.com/question/14672772#
#SPJ11
What is the distance between lines on a diffraction grating that produces a second-order maximum for 760-nm red light at an angle of 60°? d = μm
Answer: The distance between lines on the diffraction grating that produces a second-order maximum for 760-nm red light at an angle of 60° is 2.01 µm.
A diffraction grating consists of a large number of equally spaced parallel slits or lines. When a beam of light is incident on a grating, it is diffracted and results in constructive and destructive interference. The intensity of the light is greatest when the waves are in phase and least when they are out of phase.
The relationship between the angle of diffraction θ, the wavelength of light λ, and the distance between the lines on the diffraction grating d is given by the equation:
nλ = d(sinθ)
where n is the order of the diffraction maximum. In this case, we are given that the red light has a wavelength of λ = 760 nm and that the second-order maximum occurs at an angle of θ = 60°.
We can rearrange the equation above to solve for d:d = nλ / sinθ
Plugging in the values given, we get: d = 2(760 nm) / sin(60°)≈ 2.01 µm.
Thus, the distance between lines on the diffraction grating that produces a second-order maximum for 760-nm red light at an angle of 60° is 2.01 µm.
Learn more about diffraction: https://brainly.com/question/29451443
#SPJ11
What is the effect on the period of a pendulum if you double its length? The period increases by a factor of _____
Doubling the length of a pendulum increases its period by a factor of √2.
The period of a pendulum is directly proportional to the square root of its length, so if you double the length of a pendulum, the period will increase by a factor of √2.An increase in the length of a pendulum leads to an increase in the period. The length of the pendulum is directly proportional to the square of the period and inversely proportional to the square of the frequency.A pendulum is a physical system with a natural frequency that is determined by its mass, length, and amplitude. The period of a pendulum is the time it takes for the pendulum to complete one cycle (swing back and forth). A simple pendulum consists of a weight suspended from a fixed point by a string or wire that swings back and forth under the influence of gravity.The formula for the period of a pendulum is:T=2π√L/gWhere T is the period of the pendulum, L is the length of the pendulum, and g is the acceleration due to gravity. Doubling the length of a pendulum increases its period by a factor of √2.
Learn more about pendulum:
https://brainly.com/question/29702798
#SPJ11
Singly charged uranium-238 ions are accelerated through a potential difference of 2.00kV and enter a uniform magnetic field of magnitude 1.20 T directed perpendicular to their velocities.(c) What If? How does the ratio of these path radii depend on the accelerating voltage?
The ratio of the path radii for the uranium-238 ions is not affected by the accelerating voltage. The ratio is solely determined by the mass of the ions and the magnitude of the magnetic field.
The ratio of the path radii for singly charged uranium-238 ions depends on the accelerating voltage.
When a charged particle enters a uniform magnetic field perpendicular to its velocity, it experiences a force called the magnetic force. This force acts as a centripetal force, causing the particle to move in a circular path.
The magnitude of the magnetic force is given by the equation:
F = qvB
Where:
F is the magnetic force
q is the charge of the particle
v is the velocity of the particle
B is the magnitude of the magnetic field
In this case, the uranium-238 ions have a charge of +1 (since they are singly charged). The magnetic force acting on the ions is equal to the centripetal force:
qvB = mv²/r
Where:
m is the mass of the uranium-238 ion
v is the velocity of the ion
r is the radius of the circular path
We can rearrange this equation to solve for the radius:
r = mv/qB
The velocity of the ions can be determined using the equation for the kinetic energy of a charged particle:
KE = (1/2)mv²
The kinetic energy can also be expressed in terms of the accelerating voltage (V) and the charge (q) of the ion:
KE = qV
We can equate these two expressions for the kinetic energy:
(1/2)mv² = qV
Solving for v, we get:
v = sqrt(2qV/m)
Substituting this expression for v into the equation for the radius (r), we have:
r = m(sqrt(2qV/m))/qB
Simplifying, we get:
r = sqrt(2mV)/B
From this equation, we can see that the ratio of the path radii is independent of the charge (q) of the ions and the mass (m) of the ions.
Therefore, the ratio of the path radii is independent of the accelerating voltage (V).
Learn more about voltage
https://brainly.com/question/32002804
#SPJ11
9. Speed of sound in this classroom is 342 m/s. If a sound is produced by a tuning fork having a frequency of 500 Hertz, calculate its wavelength?
the wavelength of the sound produced by the tuning fork having a frequency of 500 Hertz in the classroom where the speed of sound is 342 m/s is 68.4 cm
The formula for wavelength is given by;
λ = v/f, where λ = wavelength
v = speed of sound, and f = frequency
Therefore, if a sound is produced by a tuning fork having a frequency of 500 Hertz in a classroom where the speed of sound is 342 m/s, then the wavelength can be calculated using the formula above.
Thus,λ = v/f= 342/500= 0.684 m or 68.4 cm Therefore, the wavelength of the sound produced by the tuning fork having a frequency of 500 Hertz in the classroom where the speed of sound is 342 m/s is 68.4 cm .
To know more about wavelength visit :
https://brainly.com/question/31143857
#SPJ11
A diode, a resistor, and a battery are connected in a series circuit. The diode is at a temperature for which kB T=25.0 meV , and the saturation value of the current is I₀ = 1.00 μ A . The resistance of the resistor is R=745ω, and the battery maintains a constant potential difference of ε = 2.42 V between its terminals. (a) Use Kirchhoff's loop rule to show that.ε - ΔV = I₀R(eeΔv/kBT - 1)where ΔV is the voltage across the diode.
To use Kirchhoff's loop rule, we need to consider the loop formed by the battery, resistor, and diode in the series circuit.
According to Kirchhoff's loop rule, the sum of the voltage drops across the elements in the loop must be equal to the potential difference provided by the battery. Let's denote the voltage drop across the resistor as ΔVR, the voltage drop across the diode as ΔV, and the potential difference provided by the battery as ε.
Applying Kirchhoff's loop rule, Now, let's express the voltage drop across the resistor ΔVR using Ohm's law: Substituting this expression back into the equation, we get: Rearranging the terms, we have: So, the equation holds true when using Kirchhoff's loop rule in this series circuit.
To know more about resistor visit :
https://brainly.com/question/30672175
#SPJ11
A 6.0 μF capacitor, a 14 μF capacitor, and a 16 μF capacitor are
connected in series.
What is their equivalent capacitance?
When a 6.0 μF capacitor, a 14 μF capacitor, and a 16 μF capacitor are connected in series, their equivalent capacitance is 3.31 μF.
In series, capacitors have an inverse relationship with capacitance, which means that as more capacitors are added in series, their overall capacitance decreases.
To determine the equivalent capacitance of capacitors connected in series, use the following formula:
1/Ceq = 1/C1 + 1/C2 + 1/C3 + ...
Where Ceq is the equivalent capacitance, C1, C2, C3 are the capacitance of individual capacitors connected in series.When we substitute the capacitance values into the formula,
we have:1/Ceq = 1/6.0μF + 1/14μF + 1/16μF1/Ceq = 0.166 + 0.0714 + 0.06251/Ceq = 0.3Ceq = 1/0.3Ceq = 3.31 μF
the equivalent capacitance of the capacitors is 3.31 μF.
To know more about capacitor visit:
https://brainly.com/question/31627158
#SPJ11
The International Space Station, which has a mass of 4.26*10^ 5 ^ 5 kg orbits 251 miles above the Earth's surface and completes one orbit every 94.0 minutes. What is the kinetic energy of the International Space Station in units of GJ (10^ 9 Joules)? (Note: don't forget to take into account the radiús of the Earth: f - \ Earth\ =3959 miles)
The kinetic energy of the International Space Station is approximately 1.08 * 10^12 GJ.
To calculate the kinetic energy of the International Space Station, we need to determine its velocity first. We can find the velocity using the orbital period and the radius of the orbit.
Given:
Mass of the International Space Station (m) = 4.26 * 10^5^5 kgOrbital period (T) = 94.0 minutesRadius of the Earth (r_Earth) = 3959 milesAltitude of the orbit (h) = 251 milesFirst, let's convert the given values to the appropriate units:
Orbital period (T) = 94.0 minutes = 94.0 * 60 seconds = 5640 seconds
Radius of the Earth (r_Earth) = 3959 miles = 3959 * 1.60934 km = 6371 km
Altitude of the orbit (h) = 251 miles = 251 * 1.60934 km = 404 km
To calculate the velocity of the International Space Station, we can use the formula:
Velocity (v) = 2πr / T
Where:
π is the mathematical constant pi,r is the sum of the radius of the Earth and the altitude of the orbit,T is the orbital period.Let's substitute the given values into the formula:
Velocity (v) = 2π(6371 + 404) / 5640
Now we can calculate the velocity:
Velocity (v) ≈ 7.661 km/s
To find the kinetic energy (KE) of the International Space Station, we can use the formula:
Kinetic Energy (KE) = (1/2)mv^2
Let's substitute the mass and velocity values into the formula:
Kinetic Energy (KE) = (1/2) * (4.26 * 10^5^5) * (7.661)^2
Now we can calculate the kinetic energy:
Kinetic Energy (KE) ≈ 1.08 * 10^21 J
Finally, to express the kinetic energy in gigajoules (GJ), we divide by 10^9:
Kinetic Energy (KE) ≈ 1.08 * 10^12 GJ
Therefore, the kinetic energy of the International Space Station is approximately 1.08 * 10^12 GJ.
To learn more about International Space Station, Visit:
https://brainly.com/question/30211597
#SPJ11
: A space shuttle astronaut has a mass of 110 kg with her space suit on. She is on a spacewalk and picks up a full can of spray with a mass of 20 kg. Relative to the space shuttle, she is at rest. She then holds the can directly in front of her centre of mass to avoid rotation and releases 3.0 kg of spray at a speed of 15 m/s. The astronaut's speed, relative to the space shuttle, when she has stopped spraying is approximately m/s. Enter your three-digit numerical value.
The astronaut's speed, relative to the space shuttle, when she has stopped spraying is approximately -0.35 m/s.
We can apply the law of conservation of momentum. Initially, the total momentum of the astronaut and the can is zero, as they are both at rest relative to the space shuttle. When the astronaut releases the spray, it will gain a forward momentum, which must be balanced by an equal and opposite momentum for the astronaut to maintain a net momentum of zero.
The momentum of the released spray can be calculated by multiplying its mass (3.0 kg) by its velocity (15 m/s), resulting in a momentum of 45 kg·m/s. To maintain a net momentum of zero, the astronaut must acquire a momentum of -45 kg·m/s in the opposite direction.
Assuming no external forces act on the astronaut-can system during this process, the total momentum before and after the spray is released must be conserved. Since the astronaut's initial momentum is zero, she must acquire a momentum of -45 kg·m/s to counterbalance the spray.
Considering the astronaut's initial mass (110 kg), we can calculate her velocity using the equation:
Momentum = Mass × Velocity
-45 kg·m/s = (110 kg + 20 kg) × Velocity
Simplifying the equation:
-45 kg·m/s = 130 kg × Velocity
Velocity = -45 kg·m/s / 130 kg
Velocity ≈ -0.35 m/s (approximately -0.35 m/s)
Therefore, the astronaut's speed, relative to the space shuttle, when she has stopped spraying is approximately -0.35 m/s.
Learn more about speed from the link
https://brainly.com/question/13943409
#SPJ11
(16 points) A 125 cm³ cube of ice at -40 °C is immediately dropped into an insulated beaker containing 1000 mL of 20 °C water. (Here are some constants that you may find helpful: Cice 2.09 J/g°C, Cwater = 4.186 J/g°C, Lice-333 J/g, acu 1.67×10.5 °C-¹) A) What is the final temperature of the ice cube? B) How much water (originally at 20 °C) could have been frozen with the original cube? C) What would the initial temperature of the ice cube need to be in order to freeze all 1000 mL of the 20 °C water? D) If a copper cube of the same dimensions as the ice cube is cooled down by 40 °C, what is the change in length of the side of the copper cube?
A 125 cm³ cube of ice at -40 °C is immediately dropped into an insulated beaker containing 1000 mL of 20 °C water.
A) The final temperature of the ice cube is 34.6°C.
B) 1241.42 grams (or 1241.42 mL) of water could have been frozen with the original ice cube.
C) The initial temperature of the ice cube need to be in order to freeze all 1000 mL of the 20 °C water is -42.46°C.
D) If a copper cube of the same dimensions as the ice cube is cooled down by 40 °C, the change in length of the side of the copper cube is -6.68 × 10⁻⁴ times the initial length.
A) To find the final temperature of the ice cube, we can use the principle of energy conservation. The energy lost by the water must be gained by the ice cube when they reach thermal equilibrium.
The energy lost by the water can be calculated using the formula:
[tex]Q_w = m_w * C_w *[/tex] Δ[tex]T_w[/tex]
where [tex]m_w[/tex] is the mass of water, [tex]C_w[/tex] is the specific heat capacity of water, and Δ[tex]T_w[/tex] is the change in temperature of the water.
The energy gained by the ice cube can be calculated using the formula:
[tex]Q_i = m_i * C_i *[/tex] Δ[tex]T_i+ m_i * L_i[/tex]
where [tex]m_i[/tex] is the mass of the ice cube, [tex]C_i[/tex] is the specific heat capacity of ice, Δ[tex]T_i[/tex] is the change in temperature of the ice, and [tex]L_i[/tex] is the latent heat of fusion of ice.
Since the system is isolated, the energy lost by the water is equal to the energy gained by the ice cube:
[tex]Q_w = Q_i[/tex]
Let's calculate the values:
[tex]m_w[/tex] = 1000 g = 1000 mL
[tex]C_w[/tex] = 4.186 J/g°C
Δ[tex]T_w[/tex] = [tex]T_f[/tex] - 20°C
[tex]m_i[/tex] = 125 g = 125 cm³
[tex]C_i[/tex] = 2.09 J/g°C
Δ[tex]T_i = T_f[/tex]- (-40)°C (change in temperature from -40°C to[tex]T_f[/tex])
[tex]L_i[/tex] = 333 J/g
Setting up the equation:
[tex]m_w * C_w * (T_f - 20) = m_i * C_i * (T_f - (-40)) + m_i * L_i[/tex]
Simplifying and solving for [tex]T_f[/tex]:
[tex]1000 * 4.186 * (T_f - 20) = 125 * 2.09 * (T_f - (-40)) + 125 * 333\\4186 * (T_f - 20) = 261.25 * (T_f + 40) + 41625\\4186T_f - 83720 = 261.25T_f + 10450 + 41625\\4186T_f - 261.25T_f = 83720 + 10450 + 41625\\3924.75T_f = 135795\\T_f = 34.6°C[/tex]
Therefore, the final temperature of the ice cube is approximately 34.6°C.
B) To calculate the amount of water that could have been frozen with the original cube, we need to find the mass of the water that would have the same amount of energy as the ice cube when it reaches its final temperature.
[tex]Q_w = Q_i[/tex]
[tex]m_w * C_w *[/tex] Δ[tex]T_w = m_i * C_i *[/tex] Δ[tex]T_i + m_i * L_i[/tex]
Solving for [tex]m_w[/tex]:
[tex]m_w = (m_i * C_i *[/tex] Δ[tex]T_i+ m_i * L_i) / (C_w[/tex] * Δ[tex]T_w)[/tex]
Substituting the given values:
[tex]m_w[/tex]= (125 * 2.09 * (34.6 - (-40)) + 125 * 333) / (4.186 * (34.6 - 20))
[tex]m_w[/tex] = 1241.42 g
Therefore, approximately 1241.42 grams (or 1241.42 mL) of water could have been frozen with the original ice cube.
C) To find the initial temperature of the ice cube needed to freeze all 1000 mL of the 20°C water, we can use the same energy conservation principle:
[tex]Q_w = Q_i[/tex]
[tex]m_w * C_w *[/tex] Δ[tex]T_w = m_i * C_i *[/tex] Δ[tex]T_i + m_i * L_i[/tex]
Setting [tex]m_w[/tex] = 1000 g, [tex]C_w[/tex] = 4.186 J/g°C, Δ[tex]T_w[/tex] = ([tex]T_f[/tex]- 20)°C, and solving for Δ[tex]T_i[/tex]:
Δ[tex]T_i[/tex] = [tex](m_w * C_w *[/tex] Δ[tex]T_w - m_i * L_i) / (m_i * C_i)[/tex]
Substituting the values:
Δ[tex]T_i[/tex] = (1000 * 4.186 * (0 - 20) - 125 * 333) / (125 * 2.09)
Δ[tex]T_i[/tex] = -11102.99 / 261.25
Δ[tex]T_i[/tex] = -42.46°C
The initial temperature of the ice cube would need to be approximately -42.46°C to freeze all 1000 mL of the 20°C water.
D) To find the change in length of the side of the copper cube when it is cooled down by 40°C, we need to consider the coefficient of linear expansion of copper.
The change in length (ΔL) can be calculated using the formula:
ΔL = α * [tex]L_0[/tex] * ΔT
where α is the coefficient of linear expansion, [tex]L_0[/tex] is the initial length, and ΔT is the change in temperature.
Given that α for copper is approximately 1.67 × 10⁻⁵ °C⁻¹ and ΔT = -40°C, we can calculate the change in length.
ΔL = (1.67 × 10⁻⁵) * [tex]L_0[/tex] * (-40)
ΔL = -6.68 × 10⁻⁴ * [tex]L_0[/tex]
Therefore, the change in length of the side of the copper cube is -6.68 × 10⁻⁴ times the initial length.
To know more about insulated here
https://brainly.com/question/14363642
#SPJ4
A DC power line for a light-rail system carries 850 A at an angle of 27° to the Earth's 5.00x 10³ T magnetic field. Randomized Variables I=850 A 1-110 m 8= 27° What is the magnitude
In physics, the magnitude of a force refers to the numerical value or size of the force without considering its direction. The magnitude of the force on the 110 m section of the power line is approximately 34,495.88 N.
It represents the strength or intensity of the force acting on an object. Magnitude is a scalar quantity, meaning it only has magnitude and no specific direction.
When calculating the magnitude of a force, you ignore any directional information and focus solely on the numerical value. For example, if a force of 20 Newtons is applied to an object, the magnitude of the force is simply 20 N, regardless of whether the force is acting horizontally, vertically, or at any angle.
To calculate the magnitude of the force on a section of the power line, we can use the formula:
[tex]F = I * L * B * sin(\theta)[/tex]
where:
F is the force (in N),
I is the current in the power line (in A),
L is the length of the section (in m),
B is the magnetic field strength (in T),
theta is the angle between the current and magnetic field (in degrees).
Given:
[tex]I = 850 A,\\L = 110 m,\\B = 5.00 * 10^3 T,\\\theta = 27^0[/tex]
Converting theta to radians:
[tex]\theta_{rad} = 27\degree * (pi/180) = 0.4712 rad[/tex]
Substituting the given values into the formula:
[tex]F = 850 A * 110 m * (5.00 * 10^3 T) * sin(0.4712)[/tex]
Calculating the result:
[tex]F = 850 A * 110 m * (5.00 * 10^3 T) * sin(0.4712)[/tex]
[tex]F = 34,495.88 N[/tex]
Therefore, the magnitude of the force on the 110 m section of the power line is approximately 34,495.88 N.
For more details regarding the magnitude of the force, visit:
https://brainly.com/question/22260425
#SPJ4
The complete question is:
A DC power line for a light-rail system carries 850 A at an angle of 27° to the Earth's 5.00x 10³ T magnetic field. Randomized Variables I=850 A 1-110 m 8= 27° What is the magnitude of the force (in N) on a 110 m section of this line? F= Grade St Deduction
The magnitude of the force is 2.75 × 10⁷ N.
Given that I = 850 Aθ = 27°B = 5.00 × 10³ T
We can use the equation F = BIL sin(θ)Where F is the magnitude of the force, I is the current, L is the length of the wire, B is the magnetic field, and θ is the angle between the direction of the current and the direction of the magnetic field.
Substituting the given values into the equation above, F = (5.00 × 10³ T)(850 A)(110 m) sin(27°)F = 5.00 × 10³ × 850 × 110 × sin(27°)F = 2.75 × 10⁷ N
This rule helps to determine the direction of the magnetic force on a positive moving charge, with respect to a magnetic field. The rule states that, if we extend the fingers of our right hand perpendicular to each other, and point the thumb in the direction of the positive charge's velocity, then the direction of the magnetic force is given by the direction in which the fingers curl.
Learn more about force
https://brainly.com/question/30507236
#SPJ11