A large mass M, moving at speed v, collides and sticks to a small mass m,
initially at rest. What is the mass of the resulting object?
(Work in the approximation where M >> m)

Answers

Answer 1

When a large mass M moving at speed v collides and sticks to a small mass m initially at rest, the resulting object will have a mass equal to the mass of the large object M.

In the given scenario, we assume that the large mass M is moving at speed v and collides with a small mass m initially at rest. We are also given the approximation that M is much larger than m.

When the two objects collide and stick together, momentum is conserved. Momentum is the product of mass and velocity, and in this case, we can consider the momentum before and after the collision.

Before the collision, the momentum of the large mass M is given by Mv, and the momentum of the small mass m is zero since it is at rest.

After the collision, the two masses stick together and move as one object. Let's denote the mass of the resulting object as M'. The momentum of the resulting object is given by (M' + m) times the final velocity, which we'll call V.

Since momentum is conserved, we can equate the momentum before and after the collision:

Mv = (M' + m)V

In the given approximation where M >> m, we can neglect the mass of the smaller object m compared to the larger mass M. This simplifies the equation to:

Mv = M'V

Dividing both sides of the equation by V, we get:

M = M'

Therefore, the mass of the resulting object is equal to the mass of the large object M.

To learn more about mass

https://brainly.com/question/86444

#SPJ11


Related Questions

Consider the RLC circuit shown in the figure. w R V Select 'True, "False' or 'Cannot tell' for the following statements. The current through the inductor is the same as the current through the resistor at all times. The current through the inductor always equals the current charging/discharging the capacitor. The voltage drop across the resistor is the same as the voltage drop across the inductor at all times. Energy is dissipated in the resistor but not in either the capacitor or the inductor. Submit Answer Tries 0/12 What is the value of the inductance L so that the above circuit carries the largest current? Data: R = 2.39x102 12, f = 1.65x103 Hz, C = 6.10x10-3 F, Vrms = 9.69x101 v. Submit Answer Tries 0/12 Using the inductance found in the previous problem, what is the impedance seen by the voltage source? Submit Answer Tries 0/12

Answers

Statement 1: False. The current through the inductor is not always the same as the current through the resistor. It depends on the frequency and phase difference between the voltage source and the circuit components.

Statement 2: Cannot tell. The current through the inductor can be different from the current charging/discharging the capacitor depending on the frequency and phase relationship between the components.

Statement 3: False. The voltage drop across the resistor is not always the same as the voltage drop across the inductor. It depends on the frequency and phase relationship between the components.

Statement 4: False. Energy is dissipated in the resistor, but energy can also be stored and released in the capacitor and inductor as they store electrical energy in their electric and magnetic fields, respectively.

Regarding the value of inductance L that carries the largest current, the information provided (R, f, C, Vrms) is not sufficient to determine it.

To learn more about inductor, visit

https://brainly.com/question/31503384

#SPJ11

Two 70.7 cm long wires run parallel to each other and are separated by a distance of 1.80 cm. Wire A has a current of 1.35 A, and wire B has a current of 2.75 A in the same direction.
What is the magnitude of the magnetic force of wire B on wire A?

Answers

The magnitude of the magnetic-force of wire B on wire A is approximately 1.69 x 10^(-5) N.

The magnetic force between two parallel conductors can be calculated using the formula:

F = (μ₀ * I₁ * I₂ * ℓ) / (2πd)

Where:

F is the magnetic force,

μ₀ is the permeability of free space (constant),

I₁ and I₂ are the currents in the wires,

ℓ is the length of the wires, and

d is the separation distance between the wires.

Substituting the given values into the formula, we can calculate the magnitude of the magnetic force exerted by wire B on wire A:

F = (4π * 10^(-7) T·m/A * 1.35 A * 2.75 A * 0.707 m) / (2π * 0.018 m)

Simplifying the equation, we find that the magnitude of the magnetic force is approximately 1.69 x 10^(-5) N.

To learn more about magnetic-force , click here : https://brainly.com/question/10353944

#SPJ11

Part A The observer in (Figure 1) is positioned so that the far edge of the bottom of the empty glass (not to scale) is just visible. When the glass is filled to the top with water, the center of the bottom of the glass is just visible to the observer. Find the height, H, of the glass, given that its width is W = 7.0 cm. Express your answer using two significant figures. || ΑΣφ ? H = 3.874 cm Submit Previous Answers Request Answer Figure X Incorrect; Try Again; 5 attempts remaining 1 of 1 Provide Feedback H W-

Answers

The height of the glass, H, is infinite (or very large), as the apparent shift in the position of the bottom of the glass is negligible when filled with water.

To solve this problem, we can use the concept of refraction and the apparent shift in the position of an object when viewed through a medium.

When the glass is empty, the observer can see the far edge of the bottom of the glass. Let's call this distance [tex]d^1[/tex].

When the glass is filled with water, the observer can see the center of the bottom of the glass. Let's call this distance [tex]d^2[/tex].

The change in the apparent position of the bottom of the glass is caused by the refraction of light as it passes from air to water. This shift can be calculated using Snell's law.

The refractive index of air ([tex]n^1[/tex]) is approximately 1.00, and the refractive index of water ([tex]n^2[/tex]) is approximately 1.33.

Using Snell's law: [tex]n^1sin(\theta1) = n^2sin(\theta2),[/tex]

where theta1 is the angle of incidence (which is zero in this case since the light is coming straight through the bottom of the glass) and theta2 is the angle of refraction.

Since theta1 is zero, [tex]sin(\theta1) = 0[/tex], and [tex]sin(\theta2) = d^2 / H[/tex], where H is the height of the glass.

Thus, n1 * 0 = [tex]n^2[/tex]* ([tex]d^2[/tex]/ H),

Simplifying the equation: 1.00 * 0 = 1.33 * ([tex]d^2[/tex]/ H),

0 = 1.33 * [tex]d^2[/tex]/ H,

[tex]d^2[/tex]/ H = 0.

From the given information, we can see that [tex]d^2[/tex] = W/2 = 6.6 cm / 2 = 3.3 cm.

Substituting this value into the equation: 3.3 cm / H = 0,

Therefore, the height H of the glass is infinite (or very large), since the shift in the apparent position of the bottom of the glass is negligible.

In summary, the height of the glass H is infinite (or very large) since the apparent shift in the position of the bottom of the glass is negligible when filled with water.

To know more about Snell's law

brainly.com/question/28203270

#SPJ4

When a 3.30 kg object is hung vertically on a certain light spring that obeys Kooke's law, the spring stretches 2.80 cm. How much work must an external agent to do stretch the same spring 4.00 cm from it's untrestshed position?

Answers

The work done by an external agent to stretch the spring 4.00 cm from its unstretched position is 0.34 J.

Given, the mass of the object, m = 3.30 kg

Stretched length of the spring, x = 2.80 cm = 0.028 m

Spring constant, k = ?

Work done, W = ?

Using Hooke's law, we know that the restoring force of a spring is directly proportional to its displacement from the equilibrium position. We can express this relationship in the form:

F = -kx

where k is the spring constant, x is the displacement, and F is the restoring force.

From this equation, we can solve for the spring constant: k = -F/x

Given the mass of the object and the displacement of the spring, we can solve for the force exerted by the spring:

F = mg

F = 3.30 kg * 9.81 m/s²

F = 32.43 N

k = -F/x

K = -32.43 N / 0.028 m

K = -1158.21 N/m

Now, we can use the spring constant to solve for the work done to stretch the spring 4.00 cm from its unstretched position.

W = (1/2)kΔx²W = (1/2)(-1158.21 N/m)(0.04 m)²

W = 0.34 J

Therefore, the work done by an external agent to stretch the spring 4.00 cm from its un-stretched position is 0.34 J.

To know more about Hooke's law visit:

https://brainly.com/question/30156827

#SPJ11

Thorium-232 undergors radioactive decay until a stable isotope is reached. Write the reactions for the decay of Th-238. There are cleven steps beginning with Alpha decay with cach product

Answers

Thorium-232 (Th-232) is a radioactive isotope of thorium, a naturally occurring element. Thorium-232 is found in trace quantities in soil, rocks, and minerals and undergoes a series of decay reactions until a stable isotope is produced.

The decay of Th-232 begins with the emission of an alpha particle, which results in the formation of Ra-228, as shown below:

Th-232 → Ra-228 + α

The Ra-228 produced in this reaction is also radioactive and undergoes further decay reactions. The 11-step decay reactions for Th-232 are shown below:

Th-232 → Ra-228 + αRa-228

→ Ac-228 + β-Ac-228

→ Th-228 + β-Th-228

→ Ra-224 + αRa-224

→ Rn-220 + αRn-220

→ Po-216 + αPo-216

→ Pb-212 + αPb-212

→ Bi-212 + β-Bi-212

→ Po-212 + αPo-212

→ Pb-208 + αPb-208 is a stable isotope and represents the end product of the decay series.

To learn more about radioactive visit;

https://brainly.com/question/1770619

#SPJ11

A 2.94 kg particle has a velocity of (2.90 î - 3.91 ĵ) m/s. (a) Find its x and y components of momentum. Px = 8.52 kg.m/s Py = -11.5 kg-m/s (b) Find the magnitude and direction of its momentum. 59.66 X Your response differs from the correct answer by more than 100%. kg-m/s X (clockwise from the +x axis) -0.93

Answers

The x-component of momentum and y-component of momentum is found to be 8.52 kg.m/s and -11.5 kg.m/s respectively. The magnitude and direction of momentum are found to be 14.37 kg.m/s and 52.64° clockwise from the +x-axis respectively.

Given that, Mass of the particle, m = 2.94 kg,Velocity, v = (2.90 î - 3.91 ĵ) m/s.

The x-component of momentum is,

Px = mvx,

Px = 2.94 × 2.90,

Px = 8.526 kg m/s.

The y-component of momentum is,Py = mvy,

Py = 2.94 × (-3.91),

Py = -11.474 kg m/s.

Therefore, Px = 8.52 kg.m/s and Py = -11.5 kg-m/s.

Magnitude of momentum is given by,|p| = sqrt(Px² + Py²),

|p| = sqrt(8.52² + (-11.5)²),

|p| = 14.37 kg m/s.

The direction of momentum is given by,θ = tan⁻¹(Py/Px)θ = tan⁻¹(-11.5/8.52)θ = -52.64°.

Thus, the magnitude of momentum is 14.37 kg m/s and the direction of momentum is 52.64° clockwise from the +x-axis.

The x-component of momentum is, Px = 8.52 kg.m/s.

The y-component of momentum is, Py = -11.5 kg.m/sMagnitude of momentum is, |p| = 14.37 kg.m/sDirection of momentum is, 52.64° clockwise from the +x-axis.

The x-component of momentum and y-component of momentum is found to be 8.52 kg.m/s and -11.5 kg.m/s respectively. The magnitude and direction of momentum are found to be 14.37 kg.m/s and 52.64° clockwise from the +x-axis respectively.

To know more about momentum visit:

brainly.com/question/24030570

#SPJ11

(a) A helium atom has atomic number Z = 2. Calculate the energy of a single electron in the ground state of a helium ion, He*, given that the energy of an electron in the ground state of a hydrogen atom is E₁ = -13.6 eV. (You may ignore the slight difference between the reduced masses of electrons in hydrogen and helium.) (b) Use the answer to part (a) to estimate the ground-state energy of a helium atom in the independent-particle model, where the interaction between the two electrons is neglected. (c) Write down (but do not evaluate) an integral for the first-order perturbation correction to the ground-state energy calculated in part (b), allowing for the mutual repulsion of the two electrons. Your integral should involve the ground-state atomic orbital (r) of an electron in the ground state of a helium atom and the coordinates of both electrons should range over the whole of space. [You may use the fact that the mutual potential energy of two electrons at r₁ and r₂ is Ke²/r2 - r₁, where K is a positive constant.]

Answers

The energy of a single electron in the ground state of a helium ion, He*, is -54.4 eV. The ground-state energy of a helium atom in the independent-particle model is -108.8 eV.

(a) The energy of a single electron in the ground state of a helium ion, He*, can be calculated by considering the effective nuclear charge experienced by the electron. In helium ion, there is only one electron orbiting the nucleus with atomic number Z = 2. The effective nuclear charge experienced by the electron is given by:

Zeff = Z - σ

where Z is the atomic number and σ is the shielding constant. For helium ion, Z = 2 and there is no shielding from other electrons since there is only one electron. Therefore, Zeff = 2.

The energy of the electron in the ground state of a hydrogen atom is given as E₁ = -13.6 eV. The energy of the electron in the ground state of a helium ion can be calculated using the same formula but with Zeff = 2:

E* = -13.6 eV * (Zeff²/1²)

E* = -13.6 eV * 2²

E* = -54.4 eV

Therefore, the energy of a single electron in the ground state of a helium ion, He*, is -54.4 eV.

(b) In the independent-particle model, the interaction between the two electrons in a helium atom is neglected. Each electron is considered to move in an effective potential created by the nucleus and the other electron. Therefore, the ground-state energy of a helium atom in the independent-particle model is simply twice the energy of a single electron in the ground state of a helium ion:

E₀ = 2 * E* = 2 * (-54.4 eV) = -108.8 eV

The ground-state energy of a helium atom in the independent-particle model is -108.8 eV.

(c) The first-order perturbation correction to the ground-state energy calculated in part (b) takes into account the mutual repulsion of the two electrons. The integral for this perturbation correction can be written as:

ΔE = ∫ Ψ₀*(r₁, r₂) V(r₁, r₂) Ψ₀(r₁, r₂) d³r₁ d³r₂

where Ψ₀(r₁, r₂) is the ground-state atomic orbital of an electron in the ground state of a helium atom, and V(r₁, r₂) is the mutual potential energy between the two electrons, given by:

V(r₁, r₂) = Ke²/|r₁ - r₂|

In this integral, the coordinates of both electrons range over the whole of space. However, writing down the specific form of the integral requires expressing the ground-state atomic orbital Ψ₀(r₁, r₂) in terms of the coordinates and considering the appropriate limits of integration.

To learn more about ground-state energy click here

https://brainly.com/question/32186476

#SPJ11

Which type of force exists between nucleons? strong force electric force weak force gravitational force The mass of products in a fission reaction is ____ than the mass of the reactants. much less slightly less much more slighty more

Answers

The type of force that exists between nucleons is the strong force. It is responsible for holding the nucleus of an atom together by binding the protons and neutrons within it.

In a fission reaction, which is the splitting of a heavy nucleus into smaller fragments, the mass of the products is slightly less than the mass of the reactants.

This phenomenon is known as mass defect. According to Einstein's mass-energy equivalence principle (E=mc²), a small amount of mass is converted into energy during the fission process.

The energy released in the form of gamma rays and kinetic energy accounts for the missing mass.

Therefore, the mass of the products in a fission reaction is slightly less than the mass of the reactants due to the conversion of a small fraction of mass into energy.

Learn more about force at: https://brainly.com/question/12785175

#SPJ11

As shown in the sketh below, a steam pipe of 0.12-m inside diameter is insulated with a layer of calcium silicate. 1. Ts,1} Steam 2. Ts.2} Insulation (a) If the insulation is 15 mm thick and its inner and outer surfaces are maintained at T₁,1 = 800 K and T2 = 490 K, respectively, what is the rate of heat loss per unit length (q') of the pipe, in W/m? (b) Determine the rate of heat loss per unit length (q'), in W/m, and outer surface temperature T2, in K, for the steam pipe with the inner surface temperature fixed at T1 = 800 K, inner radius r₁ = 0.06 m, and outer radius r₂ = 0.18 m. The outer surface is exposed to an airflow (T = 25°C) that maintains a convection coefficient of h = 25 W/m²-K and to large surroundings for which Tsur = To = 25°C. The surface emissivity of calcium silicate is approximately 0.8.

Answers

(a) the rate of heat loss per unit length through the insulation layer is approximately 11.4 W/m.

(b) the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m

Since the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m

To solve this problem, we can apply the principles of heat transfer and use the appropriate equations for conduction and convection.

(a) To find the rate of heat loss per unit length (q') through the insulation layer, we can use the equation for one-dimensional heat conduction:

q' = -k * A * (dT/dx)

Where:

- q' is the rate of heat transfer per unit length (W/m)

- k is the thermal conductivity of calcium silicate (W/m-K)

- A is the cross-sectional area perpendicular to the heat flow (m²)

- dT/dx is the temperature gradient across the insulation layer (K/m)

First, let's calculate the temperature gradient dT/dx across the insulation layer. Since the inner and outer surfaces of the insulation are maintained at T₁,₁ = 800 K and T₂ = 490 K, respectively, and the insulation is 15 mm thick (0.015 m), the temperature gradient can be calculated as:

dT/dx = (T₂ - T₁,₁) / (x₂ - x₁)

where x₁ = 0 and x₂ = 0.015 m are the positions of the inner and outer surfaces of the insulation layer, respectively.

dT/dx = (490 K - 800 K) / (0.015 m - 0) = -20,000 K/m

Next, we need the thermal conductivity of calcium silicate (k). The value is not provided, so let's assume a typical value of k = 0.05 W/m-K for calcium silicate insulation.

Now, we can calculate the cross-sectional area A of the insulation layer:

A = π * (r₂² - r₁²)

where r₁ = 0.06 m is the inner radius and r₂ = 0.075 m (r₁ + 0.015 m) is the outer radius of the insulation layer.

A = π * (0.075² - 0.06²) = 0.0114 m²

Finally, we can calculate the rate of heat loss per unit length (q'):

q' = -k * A * (dT/dx) = -0.05 W/m-K * 0.0114 m² * (-20,000 K/m) ≈ 11.4 W/m

Therefore, the rate of heat loss per unit length through the insulation layer is approximately 11.4 W/m.

(b) To find the rate of heat loss per unit length (q') and the outer surface temperature (T₂) of the steam pipe, we need to consider both conduction and convection heat transfer.

The rate of heat transfer per unit length through the insulation layer can be calculated using the same formula as in part (a):

q'₁ = -k * A * (dT/dx)

where k, A, and dT/dx are the same values as in part (a).

Now, let's calculate the rate of heat transfer per unit length from the outer surface of the insulation layer to the surroundings through convection:

q'₂ = h * A₂ * (T₂ - Tsur)

where h is the convection coefficient (W/m²-K), A₂ is the outer surface area of the insulation layer (m²), T₂ is the outer surface temperature (K), and Tsur is the surrounding temperature (K).

The outer surface area of the insulation layer is:

A₂ = 2 * π * r₂ * L

where L is the length of the insulation layer.

Since the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m

Visit here to learn more about heat transfer brainly.com/question/13433948
#SPJ11

The density of copper at 293 K is 8,940 kg/m² and its linear expansion coefficient is 170 x 10-6 - Consider a hot cube of copper that is 10 cm on a side when its temperature is 1356 K. What is the cube's mass?

Answers

The cube's mass is approximately 8.91 kg. To calculate the mass of the cube, we can use the formula for the volume expansion of a solid due to thermal expansion.

The formula is given by ΔV = V₀αΔT, where ΔV is the change in volume, V₀ is the initial volume, α is the linear expansion coefficient, and ΔT is the change in temperature. Since the cube is a regular solid with all sides equal, its initial volume is V₀ = (side length)³ = (0.1 m)³ = 0.001 m³. The change in temperature is ΔT = 1356 K - 293 K = 1063 K. Substituting these values and the linear expansion coefficient α = 170 x 10^-6, we have ΔV = (0.001 m³)(170 x 10^-6)(1063 K) = 0.018 m³.

The density of copper is given as 8,940 kg/m³. Multiplying the density by the change in volume, we get the mass of the cube: mass = density × ΔV = (8,940 kg/m³)(0.018 m³) = 160.92 kg. Therefore, the cube's mass is approximately 8.91 kg.

Learn more about relative density here: brainly.com/question/12931951

#SPJ11

Two resistors with values of 29Ω and 48Ω, respectively, are connected in parallel and hooked to a 10 V batter. (a) What would be the current in the circuit? A (b) What would be the power expended in the circuit? W

Answers

According to the question (a) The current in the circuit is approximately 0.552A. (b) The power expended in the circuit is approximately 5.52W.

(a) The current in the circuit can be calculated using Ohm's Law for the total resistance in a parallel circuit:

[tex]\( I = \frac{V}{R_{\text{total}}} \)[/tex]

where V is the voltage and [tex]\( R_{\text{total}} \)[/tex] is the total resistance.

To calculate [tex]\( R_{\text{total}} \)[/tex], we use the formula for resistors connected in parallel:

[tex]\( \frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} \)[/tex]

Substituting the given values:

[tex]\( \frac{1}{R_{\text{total}}} = \frac{1}{29\Omega} + \frac{1}{48\Omega} \)[/tex]

[tex]\( \frac{1}{R_{\text{total}}} \approx 0.0345 + 0.0208 \)[/tex]

[tex]\( \frac{1}{R_{\text{total}}} \approx 0.0553 \)[/tex]

[tex]\( R_{\text{total}} \approx \frac{1}{0.0553} \)[/tex]

[tex]\( R_{\text{total}} \approx 18.09\Omega \)[/tex]

Now we can calculate the current:

[tex]\( I = \frac{V}{R_{\text{total}}} = \frac{10V}{18.09\Omega} \approx 0.552A \)[/tex]

Therefore, the current in the circuit is approximately 0.552A.

(b) The power expended in the circuit can be calculated using the formula:

[tex]\( P = IV \)[/tex]

Substituting the known values:

[tex]\( P = 0.552A \times 10V \)[/tex]

[tex]\( P \approx 5.52W \)[/tex]

Therefore, the power expended in the circuit is approximately 5.52W.

To know more about circuit visit-

brainly.com/question/29148825

#SPJ11

An RLC circuit is composed of an rms voltage of 141 V running at 60.0 Hz, a 41.4 ohm resistor, a 119mH inductor and a 610uF capacitor. Find the total reactance of the circuit.

Answers

The total reactance of the RLC circuit is -0.80 Ω.

Given the values of R, L, C, and frequency, the total reactance (X) of the circuit can be determined using the formula: X = X_L - X_C Where, X_L = inductive reactance and X_C = capacitive reactance. The inductive reactance can be determined using the formula:X_L = 2πfLWhere, f = frequency and L = inductance of the circuit.

The capacitive reactance can be determined using the formula: X_C = 1 / (2πfC)

Where, C = capacitance of the circuit. Now, let's calculate the inductive reactance: X_L = 2πfL = 2 × π × 60.0 × 0.119 = 44.8 Ω

Next, let's calculate the capacitive reactance: X_C = 1 / (2πfC) = 1 / (2 × π × 60.0 × 0.000610) = 45.6 Ω

Finally, let's calculate the total reactance:X = X_L - X_C = 44.8 - 45.6 = -0.80 ΩTherefore, the total reactance of the RLC circuit is -0.80 Ω.

Learn more about total reactance Here.

https://brainly.com/question/30752659

#SPJ11

A physical pendulum consists of a uniform rod that can swing freely from one end, with a small, heavy bob attached to the other end. If the length of the rod is 2.55 m, and the mass of the bob and the rod are both 1.4 kg, what is the period of this pendulum?

Answers

The period of the physical pendulum with a uniform rod of length 2.55 m and a mass of 1.4 kg for both the bob and the rod is approximately 3.35 seconds.

The period of a physical pendulum depends on the length of the pendulum and the acceleration due to gravity. The formula to calculate the period of a physical pendulum is:

T = 2π√(I / (mgh))

Where T is the period, I is the moment of inertia of the pendulum, m is the mass of the pendulum, g is the acceleration due to gravity, and h is the distance between the center of mass of the pendulum and the pivot point.

For a uniform rod rotating about one end, the moment of inertia is given by:

I = (1/3) * m * L²

Where L is the length of the rod.

Plugging in the given values, we have:

I = (1/3) * 1.4 kg * (2.55 m)² = 2.45 kg·m²

Substituting this value and the known values of m = 1.4 kg, g = 9.8 m/s², and h = L/2 = 1.275 m into the period formula, we get:

T = 2π√(2.45 kg·m²/ (1.4 kg * 9.8 m/s² * 1.275 m)) ≈ 3.35 s

Therefore, the period of this physical pendulum is approximately 3.35 seconds.

To learn more about mass click here brainly.com/question/11954533

#SPJ11

A drone is flying in air with an initial velocity of 22.5m/s [S]. 3.85 seconds later, the drone has a final velocity of 12.9m/s [N]. What was its average acceleration during this time?

Answers

The average acceleration of the drone, during the given time interval, is approximately 9.19 m/s² in the direction from south to north.

The average acceleration of the drone can be calculated using the formula:

Average acceleration (a) = (change in velocity) / (change in time)

Initial velocity (u) = 22.5 m/s [S]

Final velocity (v) = 12.9 m/s [N]

Time interval (t) = 3.85 seconds

To calculate the change in velocity, we need to consider the direction of the velocities. Since the initial velocity is towards the south ([S]) and the final velocity is towards the north ([N]), we need to take the magnitudes and directions into account.

Change in velocity (Δv) = v - u

Δv = 12.9 m/s [N] - (-22.5 m/s [S])

Δv = 12.9 m/s + 22.5 m/s

Δv = 35.4 m/s

Now we can calculate the average acceleration:

Average acceleration (a) = Δv / t

a = 35.4 m/s / 3.85 s

a ≈ 9.19 m/s²

Therefore, the average acceleration of the drone during this time is approximately 9.19 m/s².

learn more about "acceleration ":- https://brainly.com/question/460763

#SPJ11

Calculate the ratio of the resistance of 10.0 m of aluminum wire 2.2 mm in radius, to 24.0 m of copper wire 1.8 mm in radius fos=2.65 ×10 ^−1 ams PCu=1.68 10 ^−8 Ωm ) 1:3 2:1 3:1 1:2 How much charge is passing on an iron rod with a cross-sectional diameter of 2.3 mm and a length of 56 cm, with a voltage of 165v clocking at 3.56sec as it passes from tip to tip of the rod? (atomic number of Fe=26;rho=9.71×10 ^−8 Ω ) 4.49×104me 4.49×104c 4.49×104KC 4.49×104Mc How much charge will the toaster consume in 1 hour? 13.4Kc 1.34Kc 50.23Kc 5.02Kc

Answers

The correct answer is 4.49 × 10^4 C, or 4.49 × 10^4 Mc. First, let's calculate the ratio of the resistance of the aluminum wire to the copper wire. The resistance of a wire can be determined using the formula: R = (ρ * L) / A,

Where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire.

For the aluminum wire:

Length (L₁) = 10.0 m,

Radius (r₁) = 2.2 mm = 0.0022 m,

Resistivity (ρAl) = 2.65 × 10^(-8) Ωm.

Calculating the cross-sectional area (A₁) of the aluminum wire:

A₁ = π * r₁^2.

For the copper wire:

Length (L₂) = 24.0 m,

Radius (r₂) = 1.8 mm = 0.0018 m,

Resistivity (ρCu) = 1.68 × 10^(-8) Ωm.

Calculating the cross-sectional area (A₂) of the copper wire:

A₂ = π * r₂^2.

Now we can calculate the resistance of each wire:

Resistance of aluminum wire (R₁) = (ρAl * L₁) / A₁,

Resistance of copper wire (R₂) = (ρCu * L₂) / A₂.

Finally, we can determine the ratio of the resistance of the aluminum wire to the copper wire:

Ratio = R₁ / R₂.

For the second part of the question, to calculate the charge passing through the iron rod, we need to use the formula:

Q = I * t,

where Q is the charge, I is the current, and t is the time.

To find the current, we can use Ohm's law:

I = V / R,

where V is the voltage and R is the resistance of the rod. The resistance of the rod can be calculated using the formula:

R = (ρ * L) / A,

where ρ is the resistivity, L is the length of the rod, and A is the cross-sectional area of the rod.

For the iron rod:

Diameter (d) = 2.3 mm = 0.0023 m,

Length (L) = 56 cm = 0.56 m,

Voltage (V) = 165 V,

Resistivity (ρFe) = 9.71 × 10^(-8) Ωm.

Calculating the cross-onal area (A) of the iron rod:
A = π * (d/2)^2.

Calculating the resistance of the rod:
R = (ρFe * L) / A.

Calculating the current (I) using Ohm's law:
I = V / R.

Finally, calculating the charge (Q) passing through the iron rod using Q = I * t, where t = 3.56 sec.

For the last part of the question, to calculate the charge consumed by the toaster in 1 hour, we need to use the formula:

Q = P * t,

where Q is the charge, P is the power consumed by the toaster, and t is the time.

Assuming the toaster power consumption is given in kilocalories per hour (Kc/h), we can calculate the charge (Q) using the formula Q = P * t, where P = 50.23 Kc/h and t = 1 hour.

By calculating the numerical values using the provided formulas and substituting the given values, we can determine the answers to each question.

Learn more about resistance here: brainly.com/question/29427458

#SPJ11

The molar specific heat can be temperature dependent at very low temperatures. A matter X has it specific heat C=aT ^3
Where T is the temperature and a=8.7×10 ^−5 J mol −1 K ^−4
is a constant. Find (i) the amount of heat that raises the temperature of 1.50 moles of matter X from 10.0 K to 20.0 K. (ii) the average molar heat capacity in the temperature range 10.0 K to 20.0 K.

Answers

The average molar heat capacity for matter X in the temperature range 10.0 K to 20.0 K is approximately 4.98 J mol^(-1) K^(-1).

To find the amount of heat required and the average molar heat capacity for matter X, which has a specific heat given by C = aT^3, where T is the temperature and a = 8.7 × 10^(-5) J mol^(-1) K^(-4), we can follow these steps:

(i) Calculate the amount of heat required to raise the temperature of 1.50 moles of matter X from 10.0 K to 20.0 K:

ΔT = 20.0 K - 10.0 K = 10.0 K

The amount of heat (Q) can be calculated using the formula:

Q = nCΔT

where n is the number of moles and C is the specific heat.

Q = (1.50 mol) * (8.7 × 10^(-5) J mol^(-1) K^(-4)) * (10.0 K)^3 = 1.305 J

Therefore, the amount of heat required to raise the temperature of 1.50 moles of matter X from 10.0 K to 20.0 K is 1.305 J.

(ii) Calculate the average molar heat capacity in the temperature range 10.0 K to 20.0 K:

The average molar heat capacity (C_avg) can be calculated using the formula:

C_avg = (1/n) * ∫(C dT)

where n is the number of moles, C is the specific heat, and the integration is performed over the temperature range.

C_avg = (1/1.50 mol) * ∫((8.7 × 10^(-5) J mol^(-1) K^(-4)) * T^3 dT) from 10.0 K to 20.0 K

Integrating the expression, we get:

C_avg = (1/1.50 mol) * [(8.7 × 10^(-5) J mol^(-1) K^(-4)) * (1/4) * (20.0 K)^4 - (8.7 × 10^(-5) J mol^(-1) K^(-4)) * (1/4) * (10.0 K)^4]

C_avg ≈ 4.98 J mol^(-1) K^(-1)

Therefore, the average molar heat capacity for matter X in the temperature range 10.0 K to 20.0 K is approximately 4.98 J mol^(-1) K^(-1).

Learn more about mole with the given link,

https://brainly.com/question/29367909

#SPJ11

A guitar string has a length L and a mass m (not counting the mass of the string wrapped around the pegs at the ends). If you would like to play a note with a fundamental frequency f, how tight must you make the string (a.k.a. what tension). Note that a guitar string is held in place so that there is a node at each end.

Answers

The tension (T) required to play a note with a fundamental frequency (f) on a guitar string with length (L) and mass (m) is given by T = 4mLf^2.

To determine the tension (T) required to achieve a desired fundamental frequency (f) on a guitar string, we can use the wave equation for the speed of a wave on a string.

The speed (v) of a wave on a string is given by the formula:

v = √(T/μ)

Where T is the tension in the string and μ is the linear mass density of the string, given by μ = m/L, where m is the mass of the string and L is the length of the string.

The fundamental frequency (f) of a standing wave on a string is related to the speed (v) and the length (L) of the string by the formula:

f = v / (2L)

By rearranging these formulas, we can solve for the tension (T) in terms of the desired frequency (f) and the properties of the string:

T = (4L^2μf^2)

Substituting μ = m/L into the equation:

T = (4L^2(m/L)f^2)

T = 4mLf^2

Therefore, the tension (T) required to play a note with a fundamental frequency (f) on a guitar string with length (L) and mass (m) is given by T = 4mLf^2.

To learn more about frequency: https://brainly.com/question/254161

#SPJ11

A boat motor is rated at 56000W. What is the fastest it can do
42000J of work?
0.75s
1.33s
8.93s
14000s

Answers

The boat motor, rated at 56,000 watts, can perform 42,000 joules of work in approximately 0.75 seconds. Therefore, the correct option is (a).

In order to determine the time it takes for the motor to do a certain amount of work, we can use the formula:

Work = Power × Time

Given that the work is 42,000 joules and the power is 56,000 watts, we can rearrange the formula to solve for time:

Time = Work / Power

Plugging in the values, we get:

Time = 42,000 J / 56,000 W = 0.75 s

Therefore, the fastest the boat motor can perform 42,000 joules of work is approximately 0.75 seconds.

The power rating of a motor represents the rate at which work can be done. In this case, the boat motor has a power rating of 56,000 watts. This means that it can deliver 56,000 joules of energy per second. When we divide the work (42,000 joules) by the power rating (56,000 watts), we get the time it takes for the motor to perform the given amount of work. In this scenario, the boat motor can complete 42,000 joules of work in approximately 0.75 seconds. It's important to note that this calculation assumes that the motor is operating at its maximum power continuously.

Hence, the correct option is (a) 0.75 seconds.

To learn more about work here brainly.com/question/29266754

#SPJ11

When analyzing the acceleration of gases as they flow through a nozzle, what would you choose as your system? describe the system boundaries. what type of system is this?

Answers

When analyzing the acceleration of gases flowing through a nozzle, the system we would choose is the gas flow within the nozzle. The system boundaries would be defined by the inlet and outlet of the nozzle, encompassing the region where the gas is undergoing acceleration.

This system is considered an open system because mass is continuously flowing in and out of it. In this case, the gas enters the nozzle at the inlet, undergoes acceleration as it passes through the converging and diverging sections, and exits at the outlet. The system boundaries separate the gas flow from its surroundings, allowing us to focus on the specific processes occurring within the nozzle.

By selecting this system, we can analyze the acceleration of gases as they pass through the nozzle, considering factors such as changes in velocity, pressure, and temperature. This analysis helps us understand the performance and efficiency of the nozzle and its impact on the gas flow.

In summary, when analyzing the acceleration of gases flowing through a nozzle, we would choose the gas flow within the nozzle as the system. The system boundaries would be defined by the nozzle inlet and outlet. This system is classified as an open system since mass is continuously flowing in and out of it.

To know more about open system, refer to the link below:

https://brainly.com/question/29975362#

#SPJ11

Blue light (450 nm) passes through a diffraction grating with 6000.0 lines/cm, before producing a diffraction pattern on a screen located beyond the slits. What is the maximum number of bright bands that can be seen on the screen? A. 4 B. 6 C. 3 D. 8 E 7

Answers

The maximum number of bright bands that can be seen on the screen is approximately 6.

The number of bright bands in a diffraction pattern can be calculated using the formula:

N = (d*sinθ) / λ,

where N is the number of bright bands, d is the slit spacing (reciprocal of the grating constant), θ is the angle of diffraction, and λ is the wavelength of light.

In this case, the grating has 6000.0 lines/cm, which means the slit spacing (d) is 1/6000.0 cm. The wavelength of blue light is 450 nm (or 450 × 10⁻⁷cm).

To find the maximum number of bright bands, we need to find the maximum angle of diffraction (θ). The maximum angle occurs when sinθ is equal to 1, which gives us:

θ_max = sin⁻¹(1) = 90°.

Substituting the values into the formula, we have:

N = (1/6000.0 cm) * sin(90°) / (450 × 10⁻⁷ cm) ≈ 6.

Therefore, the maximum number of bright bands that can be seen on the screen is approximately 6.

To Learn more about diffraction pattern here

https://brainly.com/question/3446565

#SPJ4

You create an image of an object that is 25 cm high and 3.4 m away from a diverging mirror. The mirror has a radius of curvature of 75 cm. Where is the image, how big is it and what type of image is created by the mirror?

Answers

The image formed for a mirror with 75 cm radius of curvature is 9.05 cm tall, virtual, and located 1.23 meters behind the mirror.

A diverging mirror is a type of mirror that produces virtual, diminished, and upright images. When a light beam diverges after reflecting off a mirror, the image formed is smaller than the actual object.

The location, size, and type of image created by a mirror are all determined by the object distance and radius of curvature. The following are the calculations for the given values:

The distance of the object from the mirror, u = -3.4 m (since the mirror is diverging, the distance is negative)

Height of the object, h = 25 cm

Radius of curvature of the mirror, R = -75 cm (since the mirror is diverging, the radius of curvature is negative)

The formula to find the image distance in a diverging mirror is:

1/f = 1/v - 1/u

Where f is the focal length of the mirror and v is the distance of the image from the mirror.

Since we do not know the focal length of the mirror, we must first calculate it using the formula:

f = R/2f = -75/2f = -37.5 cm

Substituting these values into the equation, we get:

1/-37.5 = 1/v - 1/-3.4v = -1.23 m

The image distance is -1.23 m.

This indicates that the image is virtual and behind the mirror.

The magnification formula is given as:

magnification (m) = -v/u

Substituting the values, we get:m = -(-1.23)/(-3.4)m = 0.362

The magnification is 0.362, which means that the image is smaller than the actual object.

Size of image = magnification * size of object

Size of image = 0.362 * 25 cm

Size of image = 9.05 cm

Therefore, the image is 9.05 cm tall, virtual, and located 1.23 meters behind the mirror.

Learn more about image at: https://brainly.com/question/27841226

#SPJ11

ertically polarized light of intensity l, is incident on a polarizer whose transmission axis is at an angle of 70° with the vertical. If the intensity of the transmitted light is measured to be 0.34W/m2, the intensity lo of the incident light is O 0.99 W/m2 O 0.43 W/m2 O 1.71 W/m2 O 2.91 W/m2

Answers

The intensity lo of the incident light is determined to be 1.71 W/m2. So, the correct option is c.

According to the question, vertically polarized light of intensity l, is incident on a polarizer whose transmission axis is at an angle of 70° with the vertical. If the intensity of the transmitted light is measured to be 0.34 W/m2, the intensity lo of the incident light can be calculated as follows:

Given, Intensity of transmitted light, I = 0.34 W/m²

           Intensity of incident light, I₀ = ?

We know that the intensity of the transmitted light is given by:

I = I₀cos²θ

Where θ is the angle between the polarization direction of the incident light and the transmission axis of the polarizer.

So, by substituting the given values in the above equation, we have:

I₀ = I/cos²θ = 0.34/cos²70°≈1.71 W/m²

Therefore, the intensity lo of the incident light is 1.71 W/m2.

Learn more about intensity of the light at https://brainly.com/question/28145811

#SPJ11

5. Calculate how many days it would take to walk around the world along the equator, assuming 10 hours walking per day at 4 km/h.
6. An average family of four people consumes approximately 1,200 liters of water per day (1 liter = 1000 cm3). How much depth would a lake lose per year if it uniformly covered an area of ​​50 km2 and supplied a local city with a population of 40,000 people? Consider only population use and ignore evaporation etC
7. SOLVE FOR V2: 1/2KX2/1=1/2MV2/2 GIVEN K=4.60N/M,M=250GRAMS AND X=35.0CM

Answers

5. It would take approximately 10,725,270 days to walk around the world along the equator.

6. The lake would lose approximately 3.312 cm of depth per year due to the water consumption of the local city.

7. Therefore, v² is equal to 0.5617 m²/s².

5. To calculate the number of days it would take to walk around the world along the equator, we need to determine the total distance around the equator and divide it by the distance covered per day.

The circumference of the Earth along the equator is approximately 40,075 kilometers.

Given:

Walking time per day = 10 hours = 10 × 3600 seconds = 36,000 seconds

Walking speed = 4 km/h = 4,000 meters/36,000 seconds = 0.1111 meters/second

Total distance = 40,075 km = 40,075,000 meters

Number of days = Total distance / (Walking speed × Walking time per day)

Number of days = 40,075,000 meters / (0.1111 meters/second × 36,000 seconds)

Number of days ≈ 10,725,270 days

Therefore, it would take approximately 10,725,270 days to walk around the world along the equator.

6. To calculate the depth a lake would lose per year, we need to find the total volume of water consumed by the population and divide it by the surface area of the lake.

Given:

Population = 40,000 people

Water consumption per day per person = 1,200 liters = 1,200,000 cm³

Area of the lake = 50 km² = 50,000,000 m²

Total volume of water consumed per day = (Water consumption per day per person) × (Population)

Total volume of water consumed per year = Total volume of water consumed per day × 365 days

Depth lost per year = Total volume of water consumed per year / Area of the lake

Depth lost per year = (1,200,000 cm³ × 40,000 people × 365 days) / 50,000,000 m²

Depth lost per year ≈ 3.312 cm

Therefore, the lake would lose approximately 3.312 cm of depth per year due to the water consumption of the local city.

7. To solve for V2 in the given equation: 1/2kx² = 1/2mv²

Given:

k = 4.60 N/m

x = 35.0 cm = 0.35 m

m = 250 grams = 0.250 kg

To solve for V2, we rearrange the equation:

1/2kx² = 1/2mv²

v² = (kx²) / m

Substituting the values into the formula:

v² = (4.60 N/m × (0.35 m)²) / 0.250 kg

Therefore, v² is equal to 0.5617 m²/s².

Read more on circumference here: https://brainly.com/question/18571680

#SPJ11

"A fully charged 5.5 μF capacitor is connected in series with a
1.7×10^5 Ω resistor.
What percentage of the original charge is left on the capacitor
after 1.7 s of discharging?

Answers

The percentage of the original charge left on the capacitor after 1.7 seconds of discharging is approximately 20.6%.

Given that the 5.5 μF capacitor is connected in series with a 1.7×10^5 Ω resistor and it is fully charged. We are to find the percentage of the original charge left on the capacitor after 1.7 seconds of discharging.

First we need to find the time constant, τ of the circuit.Tau (τ) = RC

where, R = 1.7 × 10^5 Ω, C = 5.5 × 10^-6 F.

∴ τ = RC = 1.7 × 10^5 Ω × 5.5 × 10^-6 F = 0.935 s.

After 1.7 seconds, the number of time constants, t/τ = 1.7 s/0.935 s = 1.815.

The charge remaining on the capacitor after 1.7 seconds is given by :

Q = Q0e^(-t/τ) = Q0e^(-1.815)

The percentage of the original charge left on the capacitor = Q/Q0 × 100%

Substituting the values :

Percentage of the original charge left on the capacitor = 20.6% (approx)

Therefore, the percentage of the original charge left is 20.6%.

To learn more about capacitor :

https://brainly.com/question/30529897

#SPJ11

A charge particle moving at a speed of 263 m/s along the x-axis. A magnetic field of magnitude 0.5T along the y-axis. An electric field along the negative z-axis keeps the charge moving along the x-axis. What must be the value of the electric field?

Answers

To maintain the motion of a charged particle along the x-axis in the presence of a 0.5 T magnetic field along the y-axis, an electric field of approximately -131.5 N/C is required along the negative z-axis.

To determine the value of the electric field that keeps a charged particle moving along the x-axis in the presence of a magnetic field, we can use the Lorentz force equation.

The Lorentz force experienced by a charged particle moving in a magnetic field is given by the equation:

F = q * (v x B)

Where F represents the force, q is the charge of the particle, v denotes its velocity, and B represents the magnitude of the magnetic field.

In this scenario, the charged particle is moving along the x-axis with a velocity of 263 m/s and experiences a magnetic field of magnitude 0.5 T along the y-axis.

Since the force must act in the negative z-axis direction to counteract the magnetic force, we can write the Lorentz force equation as:

F = q * (-v * B)

The electric field (E) produces a force (F) on the charged particle given by:

F = q * E

By equating these two forces, we can write the following equation:

q * (-v * B) = q * E

q, the charge of the particle, appears on both sides of the equation and can be canceled out:

-v * B = E

Substituting the given values:

E = - (263 m/s) * (0.5 T)

E = - 131.5 N/C

Therefore, the value of the electric field must be approximately -131.5 N/C along the negative z-axis to keep the charged particle moving along the x-axis in the presence of a magnetic field of magnitude 0.5 T along the y-axis.

Learn more about electric field at: https://brainly.com/question/19878202

#SPJ11

Calculate the wavelength and the frequency f of the photons that have an energy of Ephoton = 1.72 x 10-18 J. Use c = 3.00 x 108 m/s for the speed of light in a vacuum. λ = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 663 MeV. λ = m λ = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 4.61 keV. m λ = m f = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 8.20 eV.

Answers

The wavelength of the photon is 1.52 x 10⁻⁷ m and the frequency of the photon is 1.98 x 10¹⁵ Hz.

The formula to calculate the wavelength of the photon is given by:λ = c / f where c is the speed of light and f is the frequency of the photon. The formula to calculate the frequency of the photon is given by:

f = E / h where E is the energy of the photon and h is Planck's constant which is equal to 6.626 x 10⁻³⁴ J s.1. Energy of the photon is Ephoton = 1.72 x 10⁻¹⁸ J

The speed of light in a vacuum is given by c = 3.00 x 10⁸ m/s.The frequency of the photon is:

f = E / h

= (1.72 x 10⁻¹⁸) / (6.626 x 10⁻³⁴)

= 2.59 x 10¹⁵ Hz

Wavelength of the photon is:

λ = c / f

= (3.00 x 10⁸) / (2.59 x 10¹⁵)

= 1.16 x 10⁻⁷ m

Therefore, the wavelength of the photon is 1.16 x 10⁻⁷ m and the frequency of the photon is 2.59 x 10¹⁵ Hz.2. Energy of the photon is Ephoton = 663 MeV.1 MeV = 10⁶ eVThus, energy in Joules is:

Ephoton = 663 x 10⁶ eV

= 663 x 10⁶ x 1.6 x 10⁻¹⁹ J

= 1.06 x 10⁻¹¹ J

The frequency of the photon is:

f = E / h

= (1.06 x 10⁻¹¹) / (6.626 x 10⁻³⁴)

= 1.60 x 10²² Hz

The mass of photon can be calculated using Einstein's equation:

E = mc²where m is the mass of the photon.

c = speed of light

= 3 x 10⁸ m/s

λ = h / mc

where h is Planck's constant. Substituting the values in this equation, we get:

λ = h / mc

= (6.626 x 10⁻³⁴) / (1.06 x 10⁻¹¹ x (3 x 10⁸)²)

= 3.72 x 10⁻¹⁴ m

Therefore, the wavelength of the photon is 3.72 x 10⁻¹⁴ m and the frequency of the photon is 1.60 x 10²² Hz.3. Energy of the photon is Ephoton = 4.61 keV.Thus, energy in Joules is:

Ephoton = 4.61 x 10³ eV

= 4.61 x 10³ x 1.6 x 10⁻¹⁹ J

= 7.38 x 10⁻¹⁶ J

The frequency of the photon is:

f = E / h

= (7.38 x 10⁻¹⁶) / (6.626 x 10⁻³⁴)

= 1.11 x 10¹⁸ Hz

Wavelength of the photon is:

λ = c / f

= (3.00 x 10⁸) / (1.11 x 10¹⁸)

= 2.70 x 10⁻¹¹ m

Therefore, the wavelength of the photon is 2.70 x 10⁻¹¹ m and the frequency of the photon is 1.11 x 10¹⁸ Hz.4. Energy of the photon is Ephoton = 8.20 eV.

Thus, energy in Joules is:

Ephoton = 8.20 x 1.6 x 10⁻¹⁹ J

= 1.31 x 10⁻¹⁸ J

The frequency of the photon is:

f = E / h

= (1.31 x 10⁻¹⁸) / (6.626 x 10⁻³⁴)

= 1.98 x 10¹⁵ Hz

Wavelength of the photon is:

λ = c / f= (3.00 x 10⁸) / (1.98 x 10¹⁵)

= 1.52 x 10⁻⁷ m

Therefore, the wavelength of the photon is 1.52 x 10⁻⁷ m and the frequency of the photon is 1.98 x 10¹⁵ Hz.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

Ephoton is the energy of the photon, h is the Planck's constant (6.626 x 10^-34 J·s), c is the speed of light in a vacuum (3.00 x 10^8 m/s), λ is the wavelength, and f is the frequency.

To calculate the wavelength (λ) and frequency (f) of photons with given energies, we can use the equations:

Ephoton = h * f

c = λ * f

where Ephoton is the energy of the photon, h is the Planck's constant (6.626 x 10^-34 J·s), c is the speed of light in a vacuum (3.00 x 10^8 m/s), λ is the wavelength, and f is the frequency.

Let's calculate the values for each given energy:

Ephoton = 1.72 x 10^-18 J:

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (1.72 x 10^-18 J) / (6.626 x 10^-34 J·s) ≈ 2.60 x 10^15 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (2.60 x 10^15 Hz) ≈ 1.15 x 10^-7 m.

Ephoton = 663 MeV:

First, we need to convert the energy from MeV to Joules:

Ephoton = 663 MeV = 663 x 10^6 eV = 663 x 10^6 x 1.6 x 10^-19 J = 1.061 x 10^-10 J.

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (1.061 x 10^-10 J) / (6.626 x 10^-34 J·s) ≈ 1.60 x 10^23 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.60 x 10^23 Hz) ≈ 1.87 x 10^-15 m.

Ephoton = 4.61 keV:

First, we need to convert the energy from keV to Joules:

Ephoton = 4.61 keV = 4.61 x 10^3 eV = 4.61 x 10^3 x 1.6 x 10^-19 J = 7.376 x 10^-16 J.

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (7.376 x 10^-16 J) / (6.626 x 10^-34 J·s) ≈ 1.11 x 10^18 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.11 x 10^18 Hz) ≈ 2.70 x 10^-10 m.

Ephoton = 8.20 eV:

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (8.20 eV) / (6.626 x 10^-34 J·s) ≈ 1.24 x 10^15 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.24 x 10^15 Hz) ≈ 2.42 x 10^-7 m.

To know more about wavelength, visit:

https://brainly.com/question/31143857

#SPJ11

For the given equation of state of a gas, derive the parameters, a, b, and c in terms of the critical constants (Pc and Tc) and R.
P = RT/(V-b) a/TV(V-b) + c/T2V³ Show complete solution no shortcuts please

Answers

The parameters can be derived as follows: a = RTc^3/Pc, b = RTc^2/Pc, and c = aV - ab.

How can the parameters a, b, and c be derived in terms of the critical constants (Pc and Tc) and R for the given equation of state?

To derive the parameters a, b, and c in terms of the critical constants (Pc and Tc) and R for the given equation of state, we start by expanding the equation and manipulating it algebraically.

The equation of state given is:

P = RT/(V - b) - a/(TV(V - b)) + c/(T^2V^3)

Step 1: Eliminate the fraction in the equation by multiplying through by the common denominator T^2V^3:

P(T^2V^3) = RT(T² V^3)/(V - b) - a(V - b) + c

Step 2: Rearrange the equation:

P(T^2V^3) = RT^3V^3 - RT² V² b - aV + ab + c

Step 3: Group the terms and factor out common factors:

P(T^2V^3) = (RT^3V^3 - RT²V²b) + (ab + c - aV)

Step 4: Compare the equation with the original form:

We equate the coefficients of the terms on both sides of the equation to determine the values of a, b, and c.

From the term involving V^3, we have: RT^3V^3 = a

From the term involving V^2, we have: RT² V²   = ab

From the constant term, we have: ab + c = aV

Simplifying the equations further, we can express a, b, and c in terms of the critical constants (Pc and Tc) and R:

a = RTc^3/Pc

b = RTc²/Pc

c = aV - ab

This completes the derivation of the parameters a, b, and c in terms of the critical constants (Pc and Tc) and R for the given equation of state.

Learn more about  parameters

brainly.com/question/29911057

#SPJ11

11. What is the work done during an adiabatic expansion during
atmospheric pressure and a change in volume from 30 to 31 m³?

Answers

We can conclude that the work done during this adiabatic expansion at atmospheric pressure and a change in volume from 30 to 31 m³ will be negative, indicating work done on the system

To determine the work done during an adiabatic expansion, we can use the formula:

=

1

1

2

2

1

W=

γ−1

P

1

V

1

−P

2

V

2

In this case, the expansion occurs at atmospheric pressure, so

1

=

2

=

atm

P

1

=P

2

=P

atm

. The initial volume is

1

=

30

m

3

V

1

=30m

3

 and the final volume is

2

=

31

m

3

V

2

=31m

3

.

Substituting the given values into the formula, we have:

=

atm

30

atm

31

1

W=

γ−1

P

atm

⋅30−P

atm

⋅31

Simplifying further, we get:

=

atm

1

W=

γ−1

−P

atm

The specific value for

γ depends on the gas involved in the adiabatic expansion. For example, for a monatomic ideal gas,

=

5

3

γ=

3

5

, while for a diatomic ideal gas,

=

7

5

γ=

5

7

.

Without the specific value of

γ, we cannot calculate the numerical value of the work done.

However, we can conclude that the work done during this adiabatic expansion at atmospheric pressure and a change in volume from 30 to 31 m³ will be negative, indicating work done on the system.

Learn more about Adiabatic expansion from the given link!

https://brainly.com/question/4597803

#SPJ11

A 4.00-m-long pole stands vertically in a freshwater lake having a depth of 2.25 m. The Sun is 3.5 above the horizontal. Determine the length of the pole's shadow on the bottom of the lake. Draw a careful picture, labeling the incident and refracted angle. What length of the pole lu above the waterm Need Help? Head it Watch

Answers

The length of the part of the pole above the water is 4 - 2.25 = 1.75 m and  the length of the pole's shadow on the bottom of the lake is = 0.75 m.

Pole length, l = 4 m

Depth of the lake, h = 2.25 m

Height of the sun, H = 3.5 m

In triangle ABE, we can apply Snell's law of refraction:

(sin θ1) / (sin θ2) = (v1) / (v2)

Where v1 and v2 are the speeds of light in the first and second media, respectively. In this case, we can take v1 as the speed of light in air and v2 as approximately 3/4 of its speed in air.

Substituting the values:

(sin θ1) / (sin θ2) = 4 / 3

By Snell's law of refraction:

θ2 = sin^(-1)((4sin θ1) / 3)

In triangle AEF, we can apply trigonometric ratios as follows:

tan θ1 = h / AE

tan θ2 = h / EF

Substituting the value of θ2:

tan θ1 = h / AE

tan(sin^(-1)((4sin θ1) / 3)) = h / EF

Squaring both sides:

tan^2(sin^(-1)((4sin θ1) / 3)) = (h^2) / (EF^2)

sin^2(sin^(-1)((4sin θ1) / 3)) = ((h^2) / (EF^2)) * (1 / (1 + tan^2(sin^(-1)((4sin θ1) / 3))))

cos^2(sin^(-1)((4sin θ1) / 3)) = 1 / (1 + tan^2(sin^(-1)((4sin θ1) / 3)))

But we know that:

cos^2(sin^(-1)((4sin θ1) / 3)) = 1 - sin^2(sin^(-1)((4sin θ1) / 3))

1 - sin^2(sin^(-1)((4sin θ1) / 3)) = 1 / (1 + tan^2(sin^(-1)((4sin θ1) / 3))))

sin^2(sin^(-1)((4sin θ1) / 3)) = 1 - (1 / (1 + tan^2(sin^(-1)((4sin θ1) / 3))))

Substituting the value of sin θ1:

sin^2(sin^(-1)((4 * (2.25 / AE)) / 3)) = 1 - (1 / (1 + tan^2(sin^(-1)((4 * (2.25 / AE)) / 3))))

Let x = EF, then:

(h^2) / (x^2) * (1 / (1 + (h / x)^2)) = 1 - (1 / (1 + (4h / (3x))^2))

(h^2) / (x^2 + h^2) = 1 / (1 + (4h / (3x))^2)

x^2 = (h^2) / (1 / (1 + (4h / (3x))^2)) - h^2

x^2 = (h^2) + ((4h / (3x))^2 * h^2) / (1 + (4h / (3x))^2)

(1 + (4h / (3x))^2) * x^2 = (h^2) + ((4h / 3)^2 * h^2)

x^2 = (h^2) / (1 + (16h^2) / (9x^2))

(1 + (16h^2) / (9x^2)) * x^2 = h^2 + ((4h / 3)^2 * h^2)

x^2 = (h^2) / 9

=> x = h / 3

Therefore, the length of the pole's shadow on the bottom of the lake is 2.25 / 3 = 0.75 m. The length of the part of the pole above the water is 4 - 2.25 = 1.75 m.

To learn more about length, refer below:

https://brainly.com/question/2497593

#SPJ11

A long, straight wire lies along the x-axis and carries current I₁ = 2.50 A in the +x-direction. A second wire lies in the xy-plane and is parallel to the x-axis at y = +0.800 m. It carries current I₂ = 7.00 A, also in the +x-direction. Part A In addition to y→[infinity], at what point on the y-axis is the resultant magnetic field of the two wires equal to zero? Express your answer with the appropriate units. μА ? y = Units Submit ■ Value Request Answer

Answers

The problem involves two parallel wires, one carrying current I₁ and the other carrying current I₂. The goal is to find the point on the y-axis where the resultant magnetic field of the two wires is zero.

To determine the point on the y-axis where the resultant magnetic field is zero, we can use the principle of superposition. The magnetic field at a point due to a current-carrying wire is given by the Biot-Savart law.

By considering the contributions of the magnetic fields generated by each wire separately, we can find the point where their sum cancels out. Since the wires are parallel to the x-axis, the magnetic fields they generate will be in the y-direction.

At a point on the y-axis, the magnetic field due to the wire carrying current I₁ will have a component in the negative y-direction, while the magnetic field due to the wire carrying current I₂ will have a component in the positive y-direction. By adjusting the distance on the y-axis, we can find a point where the magnitudes of these two components are equal, resulting in a net magnetic field of zero.

To determine this point precisely, we would need to calculate the magnetic fields generated by each wire at different positions on the y-axis and find where their sum is zero.

Learn more about Parallel wires:

https://brainly.com/question/9758294

#SPJ11

Other Questions
Which phase of the cell cycle is the shortest?Which phase of the cell cycle is the shortest?G0MitosisInterphaseG1 Clark needs to withdraw $24,000 per year for each of the next 17 years, with the first withdrawal occurring today. How much money does Clark need in his account right now in order to achieve his goal? Use a discount rate of 6% in your calculations. Enter your answer as a positive number rounded to the nearest dollar. An variable rate investment pays $400 in 1 year, $789.70 in the second year and $500 in the third year. What is the present value of the cash flows at a 6% discount rate? Tanger Ltd.S Outstanding Bonds Have $1000 Par Value And They Mature In 10 Years The Annual Yield To Maturity Is 8% However A Coupon Is Paid Semiannually And They Sell At A Price Of $1150.96 What Is The Bonds Annual Coupon Interest Rate (c) This part of the question concerns the quadratic function y = x +18x + 42. (i) Write the quadratic expression 2 +18x + 42 in completed-square form. (ii) Use the completed-square form from part (c)(i) to solve the equation x + 18x + 42 = 0, leaving your answer in exact (surd) form. (iii) Use the completed-square form from part (c)(i) to write down the coordinates of the vertex of the parabola y = x +18x + 42. (iv) Provide a sketch of the graph of the parabola y = 2 +18x +42, either by hand or by using a suitable graphing software package like Graphplotter. If you intend to go on to study more mathematics, then you are advised to sketch the graph by hand for the practice. Whichever method you choose, you should refer to the graph-sketching strategy box in Subsection 2.4 of Unit 10 for information on how to sketch and label a graph correctly. (a) 0 cm from the center of the sphere kN/C (b) 10.0 cm from the center of the sphere kN/C (c) 40.0 cm from the center of the sphere kN/C (d) 56.0 cm from the center of the sphere kN/C Why do successful leaders often stumble ethically? Explain theBathsheba syndrome. Do you agree with Karl Marx's theory of society that divided usinto the oppressed and the oppressor? Why or why not? "Thank You Ma'am" By Langston Hughes.In this Story, "Thank You Ma'am" Discuss the point of view?100 Words. A saturated solution of copper (II) hydroxide has a concentration of 1.0 mol/L.A lab technician takes 25 mL of this solution and places it in a beaker.What mass of copper (II) hydroxide is dissolved within the solution in the beaker? PICO for the effect of hourlt rounding tk reduce fall a. Describe briefly the following storages:Primary storageSecondary storageb. Explain the two types of primary storages in the computer system.c. Give three examples of secondary storage media Which of these statements is associated with the phenomenon of Cognitive Dissonance? a. Buying a product and discovering it was the wrong one b. Failing to recognize a need for a product c. Failing to collect sufficient information about a product d. Buying a product and regretting the purchase decision A supply company manufactures copy machines. The unit cost C (the cost in dollars to make each copy machine) depends on the number of machines made. If x machines are made, then the unit cost is given by the function C(x)=0.6x^2288x+51,365. How many machines must be made to minimize the unit cost? Do not round your answer. 5. For the business you have identified for prior weeks? discussions, identify a setting where a network model representation is appropriate. For manufacturing oriented settings this could be a real network of transportation, delivery or shipment; for service oriented settings think of possible task appointments and customer/client assignments. Submit your initial post (at least 200 words) by Thursday at 11:59pm CST. You will be able to see peers' posts after you post your own. Then. Respond to at least one of your peers in a way that advances the conversation (minimum of 50 words) by noting issues missed or misidentified by the original poster. Or by critically expanding on an existing issue. The response is due by Sunday at 11. 59pm CST 23) Which of the following legal forms of organization is most expensive to organize? A) Sole proprietorships. B) Partnerships. C) Corporations. D) Limited partnership. 24) is an association of two or more persons who come together as co-owners for the purpose of operating a business for profit. A) Sole proprietorship. B) Partnership. C) Corporation. D) Limited partnership 25) The statement of cash flows provides a summary of the firm's A) cash flows from operating activities. B) cash inflows from financing activities. C) cash flows from investment activities. D) all of the above. 26) Which of the following documents represents a summary of the revenue and expenditure of firm for a specified period? a) Balance Sheet b) Statement of Cash Flows c) Income Statement d) Statement of Retained Earnings 27) The represents a summary statement of the firm's financial position at a given point in time. A) income statement B) balance sheet C) statement of cash flows D) statement of retained earning 28) The amount of eash that can actually be taken out of the business over a certain time interval can be considered as: a) Revenue b) Profit c) Cash Flow d) Tax expense 29) Which of the following options is not classified as current assets a) Cash & Cash Equivalents b) Accounts Payable c) Accounts Receivable d) Inventory 30) Patents and copyrights are examples of a) Current Assets b) Current Liabilities c) Tangible Assets d) Intangible Assets 31) The annual rate of return is variously referred to as the A) discount rate. B) opportunity cost. C) cost of capital. D) all of the above. 32) is an annuity with an infinite life making continual annual payments. A) An amortized loan B) A principal C) A perpetuity D) An APR 33) The greater the interest rate and the longer the period of time, the.... a) higher the future value b) higher the present value c) lower the future value d) lower the future value PiCO search strategy work sheetScenario: : Sarah, a first-year nursing student, is feeling depressed because of the pressure of her studies, the unfamiliar environment of university, and associated financial difficulties. She has heard that physical activity can have a positive effect on mood and as a result is considering starting an exercise program. However, her friend recently began practicing mindfulness meditation and told Sarah that it has improved her mood and helped her to deal with the pressure of studying. Sarah wants to know more about this and decides to search for evidence to determine which approach would be more effective in helping to improve her mood.Developing your Research QuestionPopulationInterventionComparisonOutcomeResearch Question in FullSearch Plan (write your search terms, including synonyms and truncations).PopulationInterventionComparisonOutcomeSearch StrategyThe search strategy you have entered into PubMed using Boolean operators, truncations and wild card symbols (if applicable).Limits (filters) applied to your search.Search history from PubMed and first 3 results.A screen shot showing all elements of the search history and a further screenshot showing the first 3 results. Design a Multi- cultural forum with the theme "Diversity creates Dimension in the world". about the country QATAR speaking on pressing issues in Organizational culture from the perspectives of:Cultural influence on Gender and Occupation At t1 = 2.00 s, the acceleration of a particle moving at constant speed in counterclockwise circular motion isa1 =(4.00m/s2)i+(2.00m/s2)jAt t2 = 5.00 s (less than one period later), the acceleration isa2=(2.00m/s2)i(4.00m/s2)jThe period is more than 3.00 s. What is the radius of the circle? Episode 2: Tom uses his owner's motorcycle to chase Jerry (with an ax). The motorcy- cle has a 95 hp engine, that is, the rate it does work at is 95 hp. It has an efficiency of 23%. a) How much energy in the form of heat from burning gasoline) enters the engine every second? b) Assume that engine has half the efficiency of a Carnot engine running between the same high and low temperatures. If the low temperature is 360 K. what is the high tem- perature? c) Assume the temperature of the inside of the engine is 360 K. One part of the engine is a steel rectangle. 0.0400 m by 0.0500 m and 0.0200 m thick. Heat flows from that temper- ature through the thickness of the steel to a temperature of 295 K. What is the rate of heat flow? Steam Workshop Downloader