A merry-go-round of radius R, shown in the figure, is rotating at constant angular speed. The friction in its bearings is so small that it can be ignored. A sandbag of mass m is dropped onto the merry-go-round, at a position designated by r. The sandbag does not slip or roll upon contact with the merry-go-round.
The figure shows a top view of a merry-go-round of radius capital R rotating counterclockwise. A sandbag is located on the merry-go-round at a distance lowercase r from the center.

Rank the following different combinations of m and r on the basis of the angular speed of the merry-go-round after the sandbag "sticks" to the merry-go-round.

Answers

Answer 1

The angular speed of the merry-go-round reduced more as the sandbag is

placed further from the axis than increasing the mass of the sandbag.

The rank from largest to smallest angular speed is presented as follows;

[m = 10 kg, r = 0.25·R]

              [tex]{}[/tex] ⇩

[m = 20 kg, r = 0.25·R]

              [tex]{}[/tex] ⇩

[m = 10 kg, r = 0.5·R]

              [tex]{}[/tex] ⇩

[m = 10 kg, r = 0.5·R] = [m = 40 kg, r = 0.25·R]

              [tex]{}[/tex] ⇩

[m = 10 kg, r = 1.0·R]

Reasons:

The given combination in the question as obtained from a similar question online are;

1: m = 20 kg, r = 0.25·R

2: m = 10 kg, r = 1.0·R

3: m = 10 kg, r = 0.25·R

4: m = 15 kg, r = 0.75·R

5: m = 10 kg, r = 0.5·R

6: m = 40 kg, r = 0.25·R

According to the principle of conservation of angular momentum, we have;

[tex]I_i \cdot \omega _i = I_f \cdot \omega _f[/tex]

The moment of inertia of the merry-go-round, [tex]I_m[/tex] = 0.5·M·R²

Moment of inertia of the sandbag = m·r²

Therefore;

0.5·M·R²·[tex]\omega _i[/tex] = (0.5·M·R² + m·r²)·[tex]\omega _f[/tex]

Given that 0.5·M·R²·[tex]\omega _i[/tex] is constant, as the value of  m·r² increases, the value of [tex]\omega _f[/tex] decreases.

The values of m·r² for each combination are;

Combination 1: m = 20 kg, r = 0.25·R; m·r² = 1.25·R²

Combination 2: m = 10 kg, r = 1.0·R; m·r² = 10·R²

Combination 3: m = 10 kg, r = 0.25·R; m·r² = 0.625·R²

Combination 4: m = 15 kg, r = 0.75·R; m·r² = 8.4375·R²

Combination 5: m = 10 kg, r = 0.5·R; m·r² = 2.5·R²

Combination 6: m = 40 kg, r = 0.25·R; m·r² = 2.5·R²

Therefore, the rank from largest to smallest angular speed is as follows;

Combination 3 > Combination 1 > Combination 5 = Combination 6 >

Combination 2

Which gives;

[m = 10 kg, r = 0.25·R] > [m = 20 kg, r = 0.25·R] > [m = 10 kg, r = 0.5·R] > [m =

10 kg, r = 0.5·R] = [m = 40 kg, r = 0.25·R] > [m = 10 kg, r = 1.0·R].

Learn more here:

https://brainly.com/question/15188750


Related Questions

Elevations on the tongue are called
sulci
taste buds
papillae
gyri

Answers

Answer:

Papillae is correct

Explanation:

hope it helps you

Answer:

Papillae is the correct answer of this question

Pendulum makes 12 complete swings in 8 seconds, what are its frequency and period on earth

Answers

Hi there!

We can begin by finding the period of the pendulum.

[tex]T = \text{ # of complete swings / seconds} = 12 / 8 = \boxed{\text{1.5 sec}}[/tex]

The frequency is simply the reciprocal of the period, so:

[tex]f = \frac{1}{T} = \frac{1}{1.5} = \frac{2}{3}Hz \text{ or } \boxed{0.67 Hz}[/tex]

I need the answer fast for c pleaseeee​

Answers

Answer:

F = - K x for spring     (note that that F here is given in grams, F = m g is correct)

K here is 100 g / cm      for the spring constant

x = -420 g / 100 g/cm = -4.2 cm

The spring would compress 4.2 cm for a total length of 20 - 4.2 = 15.8

d)  to compress the spring 6.8 cm one can see that the load would be 680 g

How many states of matter are there?

Answers

Answer:

3

Explanation:

state of matter are solid

liquid and

gases

g What is the CD's moment of inertia for rotation about a perpendicular axis through the edge of the disk

Answers

Answer:

Explanation:

A CD has an OD of 120 mm and an ID of 15 mm and has a mass between 14 and 33 grams. Let's call it m

Lets call the outer and inner radii R and r respectively

Find the moment of inertia about a line perpendicular to the surface of the disc through its center. We can integrate or look up the result from standard tables

I = ½m(R² + r²)

then use the parallel axis theorem to shift the position of the axis

I = ½m(R² + r²) + md²

where d is the distance of the shift. In this case d = R

I = ½m(R² + r²) + mR²

I = m(1.5R² + 0.5r²)

If we select a mass of say 20 grams

I = 0.020(1.5(0.060²) + 0.5(0.0075²))

I = 0.0001085625 kg•m²

jshshwjs sbwiwiw910mw s x djjskskekwkq

Answers

Answer:

jsbdhdndmlsusgsbkaksudgnslsosufhbf ffb

F (N)
4
* 0
3
A
2
FIGURE 2
t(s)
5
0
1
2
3
4
3) A force of magnitude Fx acting in the x-direction on a 2.00 kg particle varies in time as shown
in FIGURE 2. Find
a) The impulse of the force
b) The final velocity of the particle if it is initially at rest
c) The final velocity of the particle if it is initially moving along the x-axis with velocity
of -2.00 ms -1

Answers

Answer:

Mark me as brainlist please.

a convex mirror and a plane mirror both give virtual and erect images still a convex mirror is used in vehicles. why?
Pls answer thiss

Answers

Answer:Convex mirrors are used because these mirrors provide a wider viewing angle than a plane mirror. This wide angle will help you getting more information/overview than what is happening at a narrow spot right behind the car if you use a plane mirror.

With a convex mirror you are for example able to detect an overtake (by the car behind you) early, if you for some reason wanted to turn left into another lane at the same moment the overtake took place - so you then can prevent a collision. Convex mirrors are simply covering a much larger area behind the car than plane mirrors do. And in the US, on the mirrors there is a text explaining that the vehicle behind you is closer than it appears - some kind of an idiot explanation in case some driver took the mirror image literally….because in the mirror image of a convex mirror, everything looks smaller and further away than they actually are.

Explanation: mark me as brainliest this is my best answer till now

Convert :

36°C = ... °F
373 K = ... °C


Question easy​

Answers

Answer:

36 C= 96.8 F

373 K= 99.85

Explanation:

C to F: (36 x 1.8) + 32

         = 64.8 +32

         = 96.8 F

K to C: C= K- 273.15

           C= 373-273.15

           C= 99.85

____

= 36°C

=( 36 × 9/5 ) + 32

=(36 ÷ 5 × 9) + 32

=(7,2 × 9) + 32

= 64,8 + 32

= 96,8°F

______

______

= 373 K

= 373 - 273

= 100°C

[tex] \boxed { \sf semoga \: membantu \: :v }[/tex]

Seven friends equally split a restaurant bill that
comes to $93.17. How much does each person pay?

Answers

Answer:

$13.31

Explanation:

We know that the bill comes to $93.17 and that 7 people will split the bill equally

We can just use the equation

bill = $93.17/7

bill = $13.31

The equation for a progressive wave is y=6 cos⁡(20t-4x) What is the equation of another progressive wave which has twice the amplitude and frequency, and moving in the same direction?​

Answers

The equation of the progressive wave is y = 12 cos(40t - 4x)

The general wave equation is given by:

y = A sin(ωt - kx)

Where A is the amplitude, ω is the angular frequency = 2πf, f is the frequency, k is the wave number and y, x is the displacement.

Given the equation for a progressive wave is y=6 cos⁡(20t-4x). Hence:

The amplitude A = 6,

ω = 20 = 2πf

f = 20/2π = 3.183 Hz

Twice the amplitude = 2 * 6 = 12, twice the frequency = 2 * 3.183.

ω = 2π(3.183*2) = 40

Therefore the other progressive wave has an equation of:

y = 12 cos(40t - 4x)

Find out more at: https://brainly.com/question/12931896

A small 1240-kg SUV has a wheelbase of 3.2 m. If 67% of its weight rests on the front wheels, how far behind the front wheels is the wagon's center of mass

Answers

Answer:

Explanation:

Let d be the distance to the center of mass from the front wheels

Sum moments about the front wheel contact point to zero

1240(9.8)[d] - 1240(9.8)(1 - 0.67)[3.2] = 0

1240(9.8)[d] = 1240(9.8)(1 - 0.67)[3.2]

                d = (1 - 0.67)[3.2]

                d = 1.056 m

Rachel drops a ball from a hot–air balloon while her friend Lisa is watching her from the ground. Which statement about the ball's motion is true from Lisa's point of view?

Assume that there is no air resistance and the hot–air balloon is moving horizontally.


A. The ball drops to the ground along a straight–line path.


B.When the ball lands, the hot–air balloon will be ahead of it.


C. When the ball lands, the hot–air balloon will be behind it.


D. When the ball lands, the hot–air balloon will be directly above it.

Answers

Answer:

According Lisa, both the ball and the balloon have the same forward velocity of Vx.

(D) is correct

two billiard balls moving along the same line hit each other head-on. each has a mass of 0.220 kg; one has an initial velocity of 1.84 m/s, the other an initial velocity of 0.530 m/s. if the collision is elastic, what are their final velocities? ignore friction.

Answers

Hi there!

Since the collision is elastic, we must also satisfy the following condition:

Ei = Ef, or:

KEi = KEf

Begin by writing an expression for momentum. (p = mv) Remember that one ball's direction is negative; in this instance, we can let the second ball be moving LEFT.

mv1 + mv2 = mvf1 + mvf2

0.220(1.84) + 0.220(-.530) = 0.220(vf1 + vf2)

0.2882/0.220 = vf1 + vf2

1.31 = vf1 + vf2

Now, we can express this as a conservation of energy:

1/2mv1² + 1/2mv2² = 1/2mvf1² + 1/2mvf2²

Plug in values and simplify:

0.403315 = 1/2m(vf1² + vf2²)

Simplify further:

3.6665 = vf1² + vf2²

Use the equation derived from momentum above and solve for one variable:

vf2 = 1.31 - vf1

Plug in this expression for vf2:

3.6665 = vf1² + (1.31 - vf1)²

Expand:

3.6665 = vf1² + 1.7161 - 2.62vf1 + vf1²

Simplify:

1.9504 = -2.62vf1 + 2vf1²

Solve for vf1 using a graphing calculator:

vf1 = -0.53 m/s or 1.84 m/s; we must figure out which one is correct.

Since v1 is heading to the right initially with a velocity of 1.84 m/s, we know that the ball's velocity could not have stayed the same in both magnitude and direction, so the final velocity must be -0.53 m/s.

Now, we can solve for the velocity of the other ball (initial of 0.53 m/s):

vf2 = 1.31 - (-0.53) = 1.84 m/s.

Now, you could have also made the connection that when two balls of the SAME MASS experience an ELASTIC collision, the velocities are simply "exchanged" from one to another. I just used this more "extensive" method to prove this.

a Answer the following questions 1. On a cold wintery day, you burn firewood to keep yourself warm. The firewood undergoes a change in state. a. Name the change in state of matter that you see

Answers

Answer:

heating prosedure takes place the opposite of condensation

Water has higher specific heat than aluminum. This is all what you should know to answer following questions. An aluminum rod of mass 1 kg at temperature of 80^0C is placed into 1l of water of temperature 10^0C . there is no heat exchange with surroundings. Which material experiences greater change in temperature while system is reaching the thermal equilibrium

Answers

Answer:

The Aluminum

Explanation:

With a larger specific heat, water requires more heat to raise its temperature by a temperature degree.

In this system, with equal masses of water and aluminum, the heat moving from the aluminum lowering its temperature by one degree is not sufficient to raise the water temperature by one degree.

Disk A, with a mass of 2.0 kg and a radius of 40 cm , rotates clockwise about a frictionless vertical axle at 50 rev/s . Disk B, also 2.0 kg but with a radius of 20 cm , rotates counterclockwise about that same axle, but at a greater height than disk A, at 50 rev/s . Disk B slides down the axle until it lands on top of disk A, after which they rotate together.
After the collision, what is magnitude of their common angular velocity (in rev/s)?

Answers

Hi there!

For this problem, we must use the conservation of angular momentum. This is an example of an inelastic "collision", so:

I₁w₁ + I₂w₂ = (I₁ + I₂)wf

We know that the moment of inertia of a disk is 1/2mR², so we can calculate the moments of inertia for both disks:

Disk 1: 1/2(2)(0.40²) = .16 kgm²/s

Disk 2: 1/2(2)(0.20²) = .04 kgm²/s

Plug in the values. Let counterclockwise be positive.

.16(-50) + .04(50) = (.16 + .04)wf

Solve:

wf = -30 rev/s

Objects 1 and 2 attract each other with a gravitational force of 178 units. If the mass of object 1 is one-fourth the original value AND the mass of object 2 is tripled AND the distance separating objects 1 and 2 is halved, then the new gravitational force will be _____ units.

Answers

Explanation:

Fgravity = G*(mass1*mass2)/D²

G is the gravitational constant, which has the same value throughout our universe.

D is the distance between the objects.

now, several numbers change.

Fgravitynew = G*((1/4)*mass1*3*mass2)/(1/2 * D)² =

= G*((3/4)*mass1*mass2)/(D²/4) =

= (3/4)* (G*(mass1*mass2)/D²) *4 =

= 4*(3/4)* (G*(mass1*mass2)/D²) =

= 3* (G*(mass1*mass2)/D²) = 3* Fgravity

the new gravitational force will be 3×178 = 534 units.

The elevation at the base of a ski hill is 350 m above sea level. A ski lift raises a skier (total mass=72 kg, including equipment) to the top of the hill. If the skier's gravitational potential energy relative to the base of the hill is now 9.2 x 105 J, what is the elevation at the top of the hill?

Answers

The elevation at the top of the hill is 1,653.85 m.

The given parameters;

initial height of the skier, h₁ = 350 mlet the final height of the skier at the hill top, = h₂total mass, m = 72 kggravitational potential energy of the skier, P.E = 9.2 x 10⁵ J

The elevation at the top of the hill is calculated as follows;

[tex]P.E = mg\Delta h\\\\P.E = mg(h_2 -h_1)\\\\h_2 -h_1 = \frac{P.E}{mg} \\\\h_2 = \frac{P.E}{mg} + h_1\\\\h_2 = \frac{9.2 \times 10^5 }{72 \times 9.8} \ + \ 350 \ m\\\\h_2 = 1,653.85 \ m[/tex]

Thus, the elevation at the top of the hill is 1,653.85 m.

Learn more here:https://brainly.com/question/19768887

A train slows its speed from 52 kilometers per hour to 46 kilometers per hour in 0.04 hour. What is the acceleration o the train during this time?​

Answers

Answer: here you go i have to put 20 letters in so just ignore this and look at the link.

If m1 is 24 kilograms, m2 is 12 kilograms, and mbar is 10 kilograms, what is the direction of rotation and the sign of the angular acceleration

Answers

From the diagram, the angular speed will increase clockwise, the sign of the angular acceleration will be negative and the direction of rotation will be clockwise direction and the sign of the angular acceleration is negative. The correct answer is option B

Given that two objects of masses m1 and m2 are attached to a seesaw. The seesaw is made of a bar that has length l and is pivoted so that it is free to rotate in the vertical plane without friction. Counterclockwise is considered the positive rotational direction.

If m1 is 24 kilograms, m2 is 12 kilograms, and mbar is 10 kilograms, The moment of object m1 will be equal to the moment of object m2 without the Mbar

Let assume that the length L of the seesaw is 9 cm.

Anticlockwise moment = 24 x 9/3 = 72Nm

Clockwise moment = 12 x 2(9/3) = 72 Nm

With the consideration of mass of the bar Mbar, this will add to clockwise moment of the seesaw.

Therefore, the direction of rotation will be clockwise direction.

Angular acceleration is positive when object is speeding up and negative when slowing down. Also, angular acceleration is positive when speed increases in an anticlockwise direction and negative when speed increases in the clockwise direction.

From the diagram, since the angular speed increase clockwise, the sign of the angular acceleration will be negative.

We can conclude that the direction of rotation will be clockwise direction and the sign of the angular acceleration is negative.

The correct answer is option B

Learn more here: https://brainly.com/question/20366032

A man is whirling a 0.25 kg ball on a 1.5 m long string at 3 m/s. Find the centripetal acceleration of this ball.

Question 2 options:

0.5 m/s2

13.5 m/s2

6 m/s2

2 m/s2

Answers

The centripetal acceleration of this ball is equal to 12 [tex]m/s^2[/tex]

Given the following data:

Diameter = 1.5 mSpeed, V = 3 m/s.Mass = 0.25 kg

Radius = [tex]\frac{Diameter}{2} = \frac{1.5}{2} = 0.75 \;meters[/tex]

To find the centripetal acceleration of this ball:

The acceleration of an object along a circular track is referred to as centripetal acceleration.

Mathematically, the centripetal acceleration of an object is given by the formula:

[tex]A_c = \frac{V^2}{r}[/tex]

Where:

Ac is the centripetal acceleration.r is the radius of the circular track.

V is the velocity of an object.

Substituting the given parameters into the formula, we have;

[tex]A_c = \frac{3^2}{0.75}\\\\A_c = \frac{9}{0.75}\\\\A_c = \frac{9}{0.75}[/tex]

Centripetal acceleration = 12 [tex]m/s^2[/tex]

Read more: https://brainly.com/question/6082363

A 1-kg mass at the Earth's surface weighs how much

Answers

Answer:

the answer is weight=10N

Answer:

[tex]\boxed {\boxed {\sf 9.8 \ Newtons}}[/tex]

Explanation:

Weight is also called the force of gravity. This force acts on all objects at all times, pulling them down toward the center of the Earth.

It is calculated by multiplying the mass by the acceleration due to gravity.

[tex]F_g=mg[/tex]

The mass of the object is 1 kilogram. This scenario is occurring on Earth, so the acceleration due to gravity is 9.8 meters per second squared.

m= 1 kg g= 9.8 m/s²

Substitute the values into the formula.

[tex]F_g= 1 \ kg *9.8 \ m/s^2[/tex]

Multiply.

[tex]F_g= 9.8 \ kg*m/s^2[/tex]

Convert the units. 1 kilogram meter per second squared is equal to 1 Newton, so our answer of 9.8 kilogram meters per second squared is equal to 9.8 Newtons.

[tex]F_g= 9.8 \ N[/tex]

A 1 kilogram mass at Earth's surface weighs 9.8 Newtons.

6. How are the temperature of the universe and Cosmic Microwave Background (CMB) related?

A. Astronomers use the temperature of CMB as the warmest temperature in the universe

B. Astronomers calculate the temperature of the universe based on the coldest part of the CMB

C. Astronomers consider the temperature of the universe to be the temperature of CMB

D. Astronomers never consider the temperature of CMB when looking at the temperature of the universe​

Answers

Answer:

I think the answer is (A)...

Hope this helps!

The current in a resistor is 3.0 A, and its power is 60 W. What is the voltage?

Answers

Answer:

20 volts

Explanation:

Use the equation [tex]P=VI[/tex]

[tex]60=V(3)[/tex]

[tex]V=20[/tex]

A 1300 watt hair blow dyer is designed to operate on 120 Volts. How much current does the dryer require

Answers

Answer:

10.83 Amperes

Explanation:

if   A ⇒ current

W = VA

1300 = 120 x A

1300 / 120 = A

10.83 = A

The symbol or variable to used find initial velocity is

Answers

Answer:

v down exponenet 1 brainlest

Explanation:

Answer:

v0 [vee nought] is the initial velocity when time=0

Can anyone help me with question 10 a.

Answers

Answer:

it's ahfdfhhh hhgfdjjjjuyggffdddcff

The volume of a toy car was calculated by displacing water. The water
rose by 20ml when the object was placed into the graduated cylinder. The balance showed the toy car had a
mass of 500grams. Calculate the density of the toy car

Answers

25 ml/g there you go :)!

Answer:

D = 25g/cm³

Explanation:

1ml = 1cm³

D = m/V

D = 500g/20cm³

D = 25g/cm³

2) A rolling disk, mass m and radius R, approaches a step of height R/2 with velocity v. (i) Taking the corner of the step as the pivot point, what is the initial angular momentum of the disk

Answers

The rolling disk's initial angular momentum is mR√[2(gR + v²)]/2

Using the law of conservation of energy, the initial mechanical energy E of the disk equals its final mechanical energy E' as it climbs the step.

So, E = E'

1/2Iω + 1/2mv² + mgh = 1/2Iω' + 1/2mv'² + mgh'

where I = rotational inertia of disk = 1/2mR² where m = mass of disk and R = radius of disk, ω = initial angular speed of disk, v = initial velocity of disk, h = initial height of disk = 0 m, ω' = final angular speed of disk = 0 rad/s (assumung it stops at the top of the step), v' = final velocity of disk = 0 m/s (assumung it stops at the top of the step), and h' = final height of disk = R/2.

Substituting the values of the variables into the equation, we have

1/2Iω² + 1/2mv² + mgh = 1/2Iω'² + 1/2mv'² + mgh'

1/2(1/2mR² )ω² + 1/2mv² + mg(0) = 1/2I(0)² + 1/2m(0)² + mgR/2

mR²ω²/4 + 1/2mv² + 0 = 0 + 0 + mgR/2

mR²ω²/4 + 1/2mv² = mgR/2

R²ω²/4 = gR/2 + 1/2v²

R²ω²/4 = (gR + v²)/2

ω² = 2(gR + v²)/R²

ω² = √[2(gR + v²)/R²]

ω = √[2(gR + v²)]/R

Since angular momentum L = Iω, the rolling disk's initial angular momentum is

L = 1/2mR² ×√[2(gR + v²)]/R

L = mR√[2(gR + v²)]/2

the rolling disk's initial angular momentum is mR√[2(gR + v²)]/2

Learn more about angular momentum here:

https://brainly.com/question/13822610

Other Questions
What is the molarity of a HCl solution, if 28.6 mL of a 0.175 m NaOH solution is needed to neutralize a 25.0 mL sample of the HCl solution What 3 factors determined your social class in Mesopotamian social hierarchy Bro HELPPPPPPPPPPPPPPPPPPPPPPPPP ;-; Compare PoemsNow it is time to write about some of the poems youve read and studied! So far in this unit, you have examined the following works: The Rainy Day, Invictus, We Real Cool, The Negro Speaks of Rivers, and The Mending Wall. Select two of these works and, in a well-developed response of at least two paragraphs, compare and contrast them. Your response must address the following in each poem: at least one element, such as conflict, characterization, or setting literary point of view at least one literary technique, such as flashback, foreshadowing, dialogue, or word choice Poetic structure Remember to write in complete, grammatically correct sentences and to avoid errors in usage, mechanics, and spelling. what is the smallest and largest you can make with 1,7,3,5 using each number only once PLs answer I rlly need the answer If $20,000 is invested at 7% for 15 years, find the future value if the interest is compounded daily(365 days) DUE AT 8 MT!!! HELP ASAP!!!Define a variable, set up an equation, then solve.Lynn put 3 7/8 gallons of gas in her gas tank. If there are now 18 1/6 gallons in the tank, how many gallons did she start with?x - gallons she started with Please help me please Solve for X in the triangle round your answer to the nearest 10th Why can't we feel all the action-reaction forces around us? How to factorise n(2n+1)(n+1)+n(2n+1)? I know the answer is n(2n+1)(n+2) but can someone explain every step fully, thanks:) Please write 2 sentences about what you see in this image. Which of the functions represents a function? What is Chlorophyll and why do plants need it? f(x)+7x^2+1 (-1,2) FInd the critical points of this function 1 pointA roller coaster is 20 m high and traveling 11 m/s. If the roller coaster has amass of 150 kg, what is its total energy? (only put the number, no units orcommas) an observer sees two spaceships flying apart with speed .99c. What is the speed of one spaceship as viewed by the other Use the long division method to find the result when 12x^3+25x^2+4x-112x 3 +25x 2 +4x1 is divided by 3x+13x+1. HELP PLSSSSSSSSSSSSSS