The cumulative probabilities for the given probability distribution were calculated, and the median of the discrete random variable was found to be 20.
To find the median, we need to find the smallest value of the random variable for which the cumulative probability equals or exceeds 0.5.
The cumulative probabilities are:
(≤0) = 0.02
(≤5) = 0.07
(≤10) = 0.15
(≤15) = 0.31
(≤20) = 0.58
(≤25) = 1
The cumulative probability is the sum of the probabilities of all events that have an outcome less than or equal to a given value. For example, the cumulative probability for the event of collecting 5 dollars or less is the sum of the probabilities for collecting 0 dollars and 5 dollars, which is 0.02 + 0.05 = 0.07. Similarly, the cumulative probability for the event of collecting 10 dollars or less is the sum of the probabilities for collecting 0 dollars, 5 dollars, and 10 dollars, which is 0.02 + 0.05 + 0.08 = 0.15. The same process is used to calculate the cumulative probabilities for all other values. The median is the smallest value of the random variable for which the cumulative probability is greater than or equal to 0.5.
To learn more about probability please click on below link
https://brainly.com/question/16484393
#SPJ1
I have no idea how to do this pls help
picture attached
The angle measure of the triangle are;
m< A = 53 degrees
m<B = 90 degrees
m<C = 37 degrees
How to determine the valueIt is important to note that the sum of the angles in a triangle is equal to 180 degrees
From the diagram shown, we have that;
m< A = 4x + 1
m< B = 7x - 1
m< C = 3x - 2
Equate the angles, we have;
4x + 1 + 7x - 1 + 3x - 2 = 180
collect the like terms, we get
14x = 180 + 2
14x = 182
make 'x' the subject
x = 13
Then, m< A = 53 degrees
m<B = 90 degrees
m<C = 37 degrees
Learn more about triangles at: https://brainly.com/question/25215131
#SPJ1
How do you find the mean absolute deviation of
(40,39,41,38,42,44,45,37,48,46)
Answer:
the mean absolute deviation is 3
is 4.702 greater than 47.02
Statistics. I would like to understand this question. We are using minitab. I don't understand what exactly I should input to get this information.
The maximum head breadth that the helmets will fit is apprοximately 7.96 inches, which rοunds tο 8.0 inches (οptiοn A).
Hοw tο find Z-scοre cοrrespοnding tο the cutοff pοint?We can use the Z-scοre fοrmula tο find the Z-scοre cοrrespοnding tο the cutοff pοint:
Z = (X - μ) / σ
where X is the head breadth we want tο find, μ is the mean head breadth, σ is the standard deviatiοn, and Z is the Z-scοre cοrrespοnding tο the cutοff pοint.
We want tο find the Z-scοre such that the area tο the right οf it under the standard nοrmal distributiοn curve is 0.025. We can use a standard nοrmal distributiοn table οr calculatοr tο find this Z-scοre, which turns οut tο be apprοximately 1.96.
Tο find the maximum head breadth that the helmets will fit, we need tο find the cutοff pοint beyοnd which the head breadths are in the largest 2.5%.
Nοw we can sοlve fοr X:
1.96 = (X - 6.0) / 1.0
X - 6.0 = 1.96
X = 7.96
Therefοre, the maximum head breadth that the helmets will fit is apprοximately 7.96 inches, which rοunds tο 8.0 inches (οptiοn A).
To learn more about Z-score, visit: https://brainly.com/question/25638875
#SPJ1
A company is trying to reduce the cost of
producing one of its tools. It comes up with
a much cheaper new method of production.
A large box of tools produced by both methods
is examined by testers.
1. Two tools are selected at random, one at a time.
Part A (3 points)
One tool is chosen at random from the box. It is then replaced. A tool is
selected again. What is the probability that both selections were acceptable?
Are the events dependent or independent events? Explain.
Old Method
New Method
Acceptable
1,640
328
Defective
23
9
Part B (3 points)
One tool is chosen at random from the box. It is not replaced. A tool is selected
again. What is the probability that the first one was produced by the old
method and the second one by the new method? Are the events dependent or
independent events? Explain.
the probability of selecting a tool produced by the old method on the first attempt and a tool produced by the new method on the second attempt is:
P(A and B) = P(A) * P(B | A) = 0.8305 * 0.1998 = 0.1660
How to solve the questions?
Part A:
Let A be the event that the first tool selected is acceptable and B be the event that the second tool selected is acceptable.
We need to find the probability of P(A and B), which can be calculated using the multiplication rule of probability as follows:
P(A and B) = P(A) * P(B | A)
where P(A) is the probability of selecting an acceptable tool on the first attempt and P(B | A) is the conditional probability of selecting an acceptable tool on the second attempt given that the first tool selected was acceptable.
P(A) = (1640 + 328) / (1640 + 328 + 23 + 9) = 0.985
P(B | A) = (1639 + 327) / (1640 + 328 + 23 + 9 - 1) = 0.985
Therefore, the probability of both selections being acceptable is:
P(A and B) = P(A) * P(B | A) = 0.985 * 0.985 = 0.9702
The events are dependent because the probability of selecting an acceptable tool on the second attempt depends on the result of the first attempt.
Part B:
Let A be the event that the first tool selected is produced by the old method and B be the event that the second tool selected is produced by the new method.
We need to find the probability of P(A and B), which can be calculated using the multiplication rule of probability as follows:
P(A and B) = P(A) * P(B | A)
where P(A) is the probability of selecting a tool produced by the old method on the first attempt and P(B | A) is the conditional probability of selecting a tool produced by the new method on the second attempt given that the first tool selected was produced by the old method.
P(A) = (1640 + 23) / (1640 + 328 + 23 + 9) = 0.8305
P(B | A) = 328 / (1640 + 328 + 23 + 9 - 1) = 0.1998
Therefore, the probability of selecting a tool produced by the old method on the first attempt and a tool produced by the new method on the second attempt is:
P(A and B) = P(A) * P(B | A) = 0.8305 * 0.1998 = 0.1660
The events are dependent because the probability of selecting a tool produced by the new method on the second attempt depends on the result of the first attempt.
To know more about probability visit :-
https://brainly.com/question/13604758
#SPJ1
Two pies are shared among 12 friends. How much did each friend recieve?
PLEASE HELP!!!!
Answer: 1/6 of a pie
Step-by-step explanation: each friend receives 1/6 of a pie because there are 2 pies being distributed to 12 friends. 2/12 = 1/6
Answer:
1/6 of the pie.
Step-by-step explanation:
We Know
Two pies are shared among 12 friends.
How much did each friend receive?
We take
2 / 12 = 1/6 of the pie
So, each friend receives 1/6 of the pie.
(Easy question) Please give answer and will get 10 pts
Answer:
The volume is 60cm³
Step-by-step explanation:
(bxhxl)/2 = answer
(5x4x6)/2
5x4 = 20
20x6=120
120/2 = 60
Topic: Linear Diophantine Equation
Solve: Find x,y∈Z such that 123x + 360y = 99
The solution to the equation 123x + 360y = 99 is x = 22 and y = -11.
What is Linear Diophantine Equation?
An equation with two or more integer unknowns that are all to a maximum degree of one is known as a linear diophantine equation (LDE).
To solve the equation 123x + 360y = 99, we can use the extended Euclidean algorithm, which is a method for finding the greatest common divisor (GCD) of two integers and expressing it as a linear combination of those integers. We can use the same algorithm to find a solution to the given equation.
First, we need to find the GCD of 123 and 360. We can use the Euclidean algorithm for this:
gcd(123, 360) = gcd(123, 360 - 123*2) = gcd(123, 114)
gcd(123, 114) = gcd(123 - 114, 114) = gcd(9, 114)
gcd(9, 114) = gcd(9, 114 - 9*12) = gcd(9, 6)
gcd(9, 6) = gcd(9 - 6*1, 6) = gcd(3, 6)
gcd(3, 6) = gcd(3, 6 - 3*2) = gcd(3, 0)
gcd(3, 0) = 3
Therefore, the GCD of 123 and 360 is 3.
Now we can use the extended Euclidean algorithm to find integers s and t such that 123s + 360t = 3. This is done by working backwards through the Euclidean algorithm and expressing each remainder as a linear combination of the previous two integers:
gcd(123, 360) = 3
3 = 123s + 360t
3 = 9 - 114
= 9 - (360 - 123*2)
= 123*2 - 360*1
s = 2, t = -1
Now we can multiply both sides of the equation by 33 to get a solution to the original equation:
123x + 360y = 99
123*2*33 + 360*(-1)*33 = 3*33
123*66 + 360*(-33) = 99
Finally, we can divide both sides by 3 to get a solution in integers:
123*22 + 360*(-11) = 33
Therefore, x = 22 and y = -11 is a solution to the equation 123x + 360y = 99.
Learn more about Linear Diophantine Equation on:
https://brainly.com/question/14869013
#SPJ1
Simplify: m² ∙ m⁶ ∙ m =
Answer:
Option A) m^9.
Step-by-step explanation:
To simplify the given expression, we can use the rules of exponents which state that when we multiply powers with the same base, we can add their exponents.
So, m² ∙ m⁶ ∙ m can be simplified as:
m² × m⁶ × m = m^(2+6+1) = m^9
Therefore, the simplified form of m² ∙ m⁶ ∙ m is m^9.
ABC is an isosceles triangle. AB=BC and angle BAC = 40°.
Answer: ABC = 70°, ACB = 70°
Step-by-step explanation:
I think the question asks the other two angles
ABC = (180 - 40)/2
ABC = 70
ABC = ACB since isosceles triangle
ACB = 70
What is 1/2% to a ratio ?
To convert 1/2% to a ratio, we first convert it to a decimal by dividing by 100:
1/2% = 1/2 ÷ 100 = 0.005
Then we express this decimal as a ratio by putting it in the form of x:y:
0.005 = x:y
To simplify this ratio, we can multiply both sides by a factor that will make x and y whole numbers. For example, we can multiply both sides by 100:
0.005 × 100 = x:y × 100
0.5 = x:y
So 1/2% as a ratio is 1:200.
1/2% is equivalent to 0.5% or 0.005 as a decimal.
To express 0.005 as a ratio, you can write it as a fraction with a numerator of 0.005 and a denominator of 1. Then, you can multiply both the numerator and denominator by 100 to get rid of the decimal and express it as a ratio.
0.005/1 = (0.005
Therefore, 1/2% is equivalent to the ratio 0.5:100 or 1:200.
which two expressions are equivalent? ANSWER ASAPP!
Hence, the expressions 8 x + 1 and 5/x are equal. F) 8x+(66) and J) 5x + (101) are the two equivalent expressions.
what is expression ?A mathematical sentence without an equal sign that comprises numbers, quantities, and operations is known as an expression. By changing variables with constants and using the order of actions, it can be evaluated or made simpler. For instance, the phrases "3x + 7" and "4y - 2" are equations, whereas "3x + 7 = 16" is an expression.
given
F and J are the two expressions that are equivalent.
F: 8 ÷ x + (6/6)
6/6 reduced to 1: 8 x + 1
J: 5 x x 1 Converting 5 x to 5x-1, 5x-1 x 1 equals 5/x
Hence, the expressions 8 x + 1 and 5/x are equal. F) 8x+(66) and J) 5x + (101) are the two equivalent expressions.
To know more about expressions visit :-
brainly.com/question/14083225
#SPJ1
The complete question is:-
Which two expressions are equivalent?
(6.7D | Lesson 6)
F 8÷x+(6'6) and 8÷x. 1
G 6-2 (x - x) and 6 ÷ 2
H 14 ÷ 7. (xx) and 14 ÷ 7
J 5÷x(101)10+and 5 x 1•
Un chef observó que el 65 % de todos sus clientes consume mayonesa, el 70 % consume kétchup y el 80 % consume mayonesa o kétchup. ¿Cuál es la probabilidad de que un cliente consuma las dos salsas al mismo tiempo
The probability that a customer Consumes both mayonnaise and ketchup at the same time is 0.55 or 55%.
To find the probability that a customer consumes both mayonnaise and ketchup at the same time, we need to use the concept of intersection in probability theory. The intersection represents the overlap or commonality between two events, in this case, the consumption of mayonnaise and ketchup.
Given that 80% of customers consume either mayonnaise or ketchup, we can assume that this includes the customers who consume both. Let's call the event of consuming mayonnaise "M" and the event of consuming ketchup "K". Therefore, we know that P(M U K) = 0.8.
To find the probability of consuming both, we can use the formula P(M ∩ K) = P(M) + P(K) - P(M U K), where ∩ represents the intersection. We can substitute the values we have been given to get:
P(M ∩ K) = 0.65 + 0.70 - 0.8 = 0.55
Therefore, the probability that a customer consumes both mayonnaise and ketchup at the same time is 0.55 or 55%. This means that more than half of the customers consume both, indicating that the chef could consider offering dishes that combine both sauces to cater to this preference.
To Learn More About Consumes
https://brainly.com/question/1213062
SPJ11
Select the correct answer.
f(x) =2x + 4,
4 + 1⁄2x,
-x + 5,
x < -2
-2 < x < 2
2 ≤ x
Which of the following is the graph of the function shown above?
The identified graph of the function is graph Y (bottom left)
How to determine the graph of the functionFrom the question, we have the following parameters that can be used in our computation:
f(x) = 2x + 4, x ≤ -2
4 + 1⁄2x, -2 < x < 2
-x + 5, 2 ≤ x
The above function is a piecewise function
By the domain of the functions, we have the following endpoints
f(x) = 2x + 4, x < -2 = closed endpoint
4 + 1⁄2x, -2 < x < 2 = open endpoint
-x + 5, 2 ≤ x = closed endpoint
When the above endpoints and functions are compared to the graph, we have the graph to be graph Y (bottom left)
Read more about piecewise function at
https://brainly.com/question/27262465
#SPJ1
Darrius is single and lives in Pennsylvania, which has a state income tax rate of 3.07%. He earns an annual salary of $42,350. Calculate his monthly take-home pay.
Answer:
To calculate Darrius' monthly take-home pay, we first need to calculate his annual state income tax. We do this by multiplying his yearly salary by the state income tax rate:
$42,350 x 3.07% = $1,292.94
Next, we subtract the state income tax from his annual salary to get his annual net income:
$42,350 - $1,292.94 = $41,057.06
Finally, we divide his annual net income by 12 to get his monthly take-home pay:
$41,057.06 / 12 = $3,421.42
Therefore, Darrius' monthly take-home pay is $3,421.42.
Step-by-step explanation:
A cube wooden block measures 3 feet by 3 feet by 3 feet. Wedges 1 foot from each corner are cut out from the cube, the first cut of which is shown in the figure above. After all the wedges are removed, how many edges does the cube have?
Q27
Answer:
e
Step-by-step explanation:
Pete wants to put a fence around a rectangular section of his backyard.
The space he wants to enclosc measures 30 feet in length, and it is as
wide. How many feet of fencing does he need?
(1) 10
(2) 30
(3) 40
(4) 80
(5) 120
The period p of a pendulum, or the time it takes for the pendulum to make one complete swing, varies directly as the square root of the length L of the pendulum. If the period of a pendulum is 1.8 s when the length is 2 ft, find the period when the length is 3 ft.
The period of the pendulum when the length is 3 ft is approximately 2.08 seconds.
What is the period?
We are given that the period P varies directly as the square root of the length L of the pendulum. We can write this as:
P ∝ √L
Using a proportionality constant k, we can write this as an equation:
P = k√L
To find the value of k, we can use the information given in the problem: when L = 2 ft, P = 1.8 s. Substituting these values into the equation, we get:
1.8 = k√2
To solve for k, we can isolate it by dividing both sides by √2:
k = 1.8 / √2
Now we can use this value of k to find the period when the length is 3 ft. Substituting L = 3 ft and the value of k we just found into the equation, we get:
P = k√L
P = (1.8 / √2) √3
P ≈ 2.08 seconds
Therefore, the period of the pendulum when the length is 3 ft is approximately 2.08 seconds.
To know more about pendulum, visit:
https://brainly.com/question/28972966
#SPJ1
?the scale on a map is the scale on a map is 3 is to 10 lakh the distance between two cities is 65 km how far apart are the two cities on the map
x value of {3x+4y=36y=−12x+8
Answer: x= -20
Step-by-step explanation:
There is a 20% chance that a particular volcano will erupt during any given decade. A random number generator generated 10 sets of random numbers from 1 to 5 as shown. The number 1 represents the volcano erupting. Find the experimental probability that the volcano will erupt in 1 or 2 of the next 5 decades
The experimental probability of the volcano erupting in 1 or 2 of the next 5 decades is 6/10 or 0.6.
We can do this by assigning a value of 1 to the numbers 1 and 2 (representing the volcano erupting) and a value of 0 to
the numbers 3, 4, and 5 (representing the volcano not erupting).
For each set of random numbers generated, we can count the number of times the volcano erupted (i.e. the sum of the
values assigned to the numbers 1 and 2).
Out of the 10 sets of random numbers generated, we might get results like this:
Set 1: 1 3 4 2 1 (2 eruptions)
Set 2: 2 1 5 4 3 (2 eruptions)
Set 3: 3 2 5 4 5 (1 eruption)
Set 4: 1 1 2 4 5 (3 eruptions)
Set 5: 4 4 4 4 4 (0 eruptions)
Set 6: 1 1 1 1 1 (5 eruptions)
Set 7: 3 3 3 3 3 (0 eruptions)
Set 8: 2 2 2 2 2 (0 eruptions)
Set 9: 1 2 1 2 1 (4 eruptions)
Set 10: 5 5 5 5 5 (0 eruptions)
Out of these 10 sets, we can see that there were 6 sets where the volcano erupted in 1 or 2 of the next 5 decades (sets
1, 2, 3, 4, 9, and 10). Therefore, the experimental probability of the volcano erupting in 1 or 2 of the next 5 decades is
6/10 or 0.6.
for such more question on experimental probability
https://brainly.com/question/13604758
#SPJ11
Help guys anyone please HELP!!!
The sum of the given expression is equal to 3.
What is numerical integration?The process of numerical integration involves applying numerical techniques to approximate the value of a determined integral of a function across a specified interval. To approximate integrals that are challenging or impossible to solve analytically, it is employed in calculus.
Numerical integration works by breaking the integration interval into smaller subintervals, approximating the function over each subinterval with a simple function, and then summing the areas under the curve of the approximating function over each subinterval to estimate the integral.
Determine the value of f(xi):
f(x1) = (0-2)^3 = (-2)³ = -8
f(x2) = (1-2)^3 = (-1)³ = -1
f(x3) = (2-2)^3 = 0³ = 0
f(x4) = (3-2)^3 = 1³ = 1
f(x5) = (4-2)^3 = 2³ = 8
f(x6) = (5-2)^3 = 3³ = 27
Substituting the value in the given summation we have:
Σ i = 1 to 6 f(xi) Δ x = f(x1) Δ x + f(x2) Δ x + f(x3) Δ x + f(x4) Δ x + f(x5) Δ x + f(x6) Δ x
= (-8)(0.1) + (-1)(0.1) + (0)(0.1) + (1)(0.1) + (8)(0.1) + (27)(0.1)
= -0.5 + (-0.1) + 0 + 0.1
= 3
Hence, the sum is equal to 3.
Learn more about numerical integration here:
https://brainly.com/question/24354427
#SPJ1
A group consists of four Democrats and six Republicans. Three people are selected to attend a conference.
a. In how many ways can three people be selected from this group of ten?
b. In how many ways can three Republicans be selected from the six Republicans?
c. Find the probability that the selected group will consist of all Republicans.
a. The number of ways to select three people from the group of ten is.
b. The number of ways to select three Republicans from the group of six Republicans is.
c. The probability is
(Type an integer or a simplified fraction.
a. The number of ways to select three people from the group of ten is 120.
b. The number of ways to select three Republicans from the group of six Republicans is 20.
c. The probability is 1/6.
What is probability?
Probability refers to potential. A random event's occurrence is the subject of this area of mathematics. The range of the value is 0 to 1. Mathematics has incorporated probability to forecast the likelihood of various events. The degree to which something is likely to happen is essentially what probability means.
a. The number of ways to select three people from a group of ten is given by the combination formula:
C(10,3) = 10! / (3! * (10 - 3)!) = 120
Therefore, there are 120 ways to select three people from this group of ten.
b. The number of ways to select three Republicans from the six Republicans is given by the combination formula:
C(6,3) = 6! / (3! * (6 - 3)!) = 20
Therefore, there are 20 ways to select three Republicans from the six Republicans.
c. The probability of selecting all Republicans is the number of ways to select three Republicans divided by the total number of ways to select three people:
P(all Republicans) = C(6,3) / C(10,3) = 20/120 = 1/6
Therefore, the probability that the selected group will consist of all Republicans is 1/6.
Learn more about probability on:
https://brainly.com/question/13604758
#SPJ1
If I watch tv 4 days out of 7 each and I watch 28 days how many days will I watch tv i NEED THIS ASAP
you will watch TV for approximately 16 days out of the 28 days.
If you watch TV for 4 days out of 7 each week, then the fraction of the week that you spend watching TV is:
4/7
To find the total number of days you will watch TV over 28 days, you can use the proportion:
4/7 = x/28
where x is the number of days you will watch TV.
To solve for x, you can cross-multiply:
4 * 28 = 7 * x
112 = 7x
x = 112/7
x ≈ 16
Therefore, you will watch TV for approximately 16 days out of the 28 days.
What is proportion?
Proportion is a mathematical concept that expresses the relationship between two quantities or values. It is often represented as a fraction, with the numerator and denominator representing the values being compared.
In a proportion, the two ratios are equal. For example, if you have a bag of marbles containing 6 red marbles and 4 blue marbles, the proportion of red to blue marbles is 6:4, or 3:2. This can also be written as a fraction: 3/2.
Proportions are useful in many areas of mathematics and everyday life, including geometry, statistics, and finance. They are also used in problem-solving to find missing values or to determine if two values are proportional to each other.
To know more about proportion, visit:
https://brainly.com/question/7096655
#SPJ1
[tex] \frac{ \sqrt{5} }{ \sqrt{5} + 2} [/tex]
express surd fraction with rational denominator
Answer:
Step-by-step explanation:
We will rationalize the denominator:
[tex]\frac{\sqrt{5} }{\sqrt{5} +2} =\frac{\sqrt{5} }{\sqrt{5} +2} \times \frac{\sqrt{5} -2}{\sqrt{5} -2}[/tex]
[tex]=\frac{\sqrt{5} (\sqrt{5} -2)}{(\sqrt{5} +2)(\sqrt{5} -2)}[/tex]
[tex]=\frac{5-2\sqrt{5} }{5-2\sqrt{5} +2\sqrt{5} -4}[/tex]
[tex]=\frac{5-2\sqrt{5} }{1}[/tex]
[tex]=5-2\sqrt{5}[/tex]
1 The points (-8, 5) and (-4, r) lie on a line with slope 1/4. Find the missing coordinate r.
Answer:
Step-by-step explanation:
We can use the slope formula to find the slope of the line passing through the two given points:
slope = (y2 - y1) / (x2 - x1)
where (x1, y1) = (-8, 5) and (x2, y2) = (-4, r).
Substituting these values, we have:
1/4 = (r - 5) / (-4 - (-8))
1/4 = (r - 5) / 4
r - 5 = 1
r = 6
Therefore, the missing coordinate is r = 6.
Please help me this is for a homework
Answer:
{0, 1, 2}
Step-by-step explanation:
4x<8x+2
-4x<2
x<-1/2
Only {0, 1, 2} meets all critera
Question 7 of 10
In the triangle below, b=_ If necessary, round your
answer to two decimal places.
A
33.7°
C
Answer here
8
26.4
24
SUBMIT
The length of the missing side is approximately 4.73 units.
What is a triangle?
A polygon with three edges and three vertices is called a triangle. It is one of the fundamental geometric shapes. Triangle ABC is the designation for a triangle with vertices A, B, and C. In Euclidean geometry, any three points that are not collinear produce a distinct triangle and a distinct plane.
Here, we have
Given:
∠A = 33.7°
∠C = 26.4°
We have to find the value of b.
Let's label the missing side as b, and use sin(A) = opposite/hypotenuse to find the length of the side opposite angle A:
sin(A) = opposite/hypotenuse
sin(33.7°) = b/8
b = 8 × sin(33.7°)
b ≈ 4.726
Hence, the length of the missing side is approximately 4.73 units.
To learn more about the triangle from the given link
https://brainly.com/question/1058720
#SPJ1
PLEASE PLEASE HURRY I WILL MARK BRAILIEST!!!!!
What type of angles are angles 1 and 7?
Responses:
congruent vertical angles
supplementary same-side exterior angles
congruent corresponding angles
supplementary alternate exterior angles
angles 1 and 7 are congruent corresponding angles because they are in corresponding positions on two parallel lines intersected by a transversal, and they have the same measure or size. Thus, option C is correct.
What is the congruent corresponding angles?Angle 1 and angle 7 are corresponding angles because they are in the same position relative to the transversal and the parallel lines.
Specifically, they are in corresponding positions on the parallel lines, meaning that they are on the same side of the transversal.
in the same position relative to the intersection point of the transversal and the parallel lines, and they are both either interior m, or exterior angles. In this case, angles 1 and 7 are both interior angles.
Furthermore, angles 1 and 7 are congruent corresponding angles because they have the same measure or size.
Therefore, angles 1 and 7 are congruent corresponding angles because they are in corresponding positions on two parallel lines intersected by a transversal, and they have the same measure or size.
Learn more about angles here:
https://brainly.com/question/1597341
#SPJ1
two squares of length x are cut out of adjacent corners of an 18 inch by 18 inch piece of cardboard and two rectangles of length 9 and width x are cut out of the other two corners of the cardboard (see figure below) the resulting piece of cardboard is then folded along the dashed lines to form a closed box. Find the dimensions and volume of the largest box that can be formed in this way.
Answer:
3 in × 6 in × 12 in216 in³Step-by-step explanation:
You want the dimensions and volume of a cuboid that can be made from an 18 in square of cardboard when an x-inch square is cut from two adjacent corners, and an x-inch by 9-inch rectangle is cut from the other two corners.
DimensionsThe longest side of the cuboid will have length (18 -2x). The second longest side will have length (18 -9 -x) = (9 -x). The shortest side will have length x.
VolumeThe volume of the cuboid is the product of these side lengths:
V = (18 -2x)(9 -x)(x) = 2x(9 -x)²
Maximum volumeThe value of x that maximizes volume will be the value that makes the derivative with respect to x be zero.
V' = 2(9 -x)² -4x(9 -x) = (9 -x)(2(9 -x) -4x) = 2(9 -x)(9 -3x)
V' = 6(9 -x)(3 -x)
The derivative will be zero when its factors are zero, at x=9 and x=3. The value x=9 gives zero volume.
The value x=3 gives a volume of ...
V = 2·3(9 -3)² = 6³ = 216 . . . . . cubic inches
The dimensions are ...
x = 39 -x = 9 -3 = 618 -2x = 18 -6 = 12The dimensions for maximum volume are 3 inches by 6 inches by 12 inches. The maximum volume is 216 cubic inches.