Period: 6.35 s, Frequency: 0.1578 Hz, Wavelength: 34.5 m, Speed: 5.445 m/s, Amplitude: Not determinable from the given information.
The period (T) of a wave is the time it takes for one complete wave cycle to pass a given point. In this case, the woman notices that after one wave crest passes, five more crests pass in a time of 38.1 seconds. Therefore, the time for one wave crest to pass is 38.1 s divided by 6 (1 + 5). Thus, the period is T = 38.1 s / 6 = 6.35 s.(b) The frequency (f) of a wave is the number of complete wave cycles passing a given point per unit of time. Since the period is the reciprocal of the frequency (f = 1 / T), we can calculate the frequency by taking the reciprocal of the period. Thus, the frequency is f = 1 / 6.35 s ≈ 0.1578 Hz.(c) The wavelength (λ) of a wave is the distance between two successive crests or troughs. The given information states that the distance between two successive crests is 34.5 m. Therefore, the wavelength is λ = 34.5 m.
(d) The speed (v) of a wave is the product of its frequency and wavelength (v = f * λ). Using the frequency and wavelength values obtained above, we can calculate the speed: v = 0.1578 Hz * 34.5 m ≈ 5.445 m/s. (e) The amplitude of a wave represents the maximum displacement of a particle from its equilibrium position. Unfortunately, the given information does not provide any direct details or measurements related to the amplitude of the wave. Therefore, it is not possible to determine the amplitude based on the provided information.
To learn more about Wavelength:
https://brainly.com/question/31143857
#SPJ11
Using the quantum particle in a box model, describe how the possible energies of the
particle are related to the size of the box. Draw the wave function and probability distribution
of the particle upto n =4.
In the quantum particle in a box model, the possible energies of the particle are directly related to the size of the box. As the size of the box decreases, the energy levels become more closely spaced.
The wave function and probability distribution of the particle can be described by standing waves with specific nodal patterns that correspond to different energy levels. Drawing the wave function and probability distribution up to n = 4 reveals the increasing complexity and number of nodes as the energy levels increase.
In the quantum particle in a box model, the size of the box determines the possible energies that the particle can have. The energy levels are quantized and can only take on specific values determined by the boundary conditions of the box. As the size of the box decreases, the energy levels become more closely spaced.
The wave function of the particle represents the probability distribution of finding the particle at different positions inside the box. For each energy level, there is a corresponding wave function with a specific nodal pattern. The number of nodes in the wave function increases as the energy level increases.
Drawing the wave function and probability distribution up to n = 4 would reveal four distinct energy levels with different nodal patterns. The wave functions would have an increasing number of nodes as the energy level increases, leading to a more complex spatial distribution of the particle's probability.
Overall, the quantum particle in a box model demonstrates the relationship between the size of the box, the possible energies of the particle, and the corresponding wave functions and probability distributions.
Learn more about wave function from the given link:
https://brainly.com/question/32239960
#SPJ11
Question 3 1 pts The average translational kinetic energy of the molecules of one sample of gas is twice the average translational kinetic energy of a second sample of gas. Which sample of gas has the
The sample of gas with the higher average translational kinetic energy (and hence higher temperature) is the first sample.
The average translational kinetic energy of gas molecules is directly related to their temperature. According to the kinetic theory of gases, the average kinetic energy of gas molecules is proportional to the temperature of the gas.
Therefore, if the average translational kinetic energy of one sample of gas is twice that of another sample, it means that the first sample has a higher temperature than the second sample.
In conclusion, the sample of gas with the higher average translational kinetic energy (and hence higher temperature) is the first sample.
To learn more about kinetic energy click here:
brainly.com/question/32775799
#SPJ11
An airplane lands with an initial velocity of 90 m/s and then
decelerates at 2.0 m/s2 for 40 sec. What is its final velocity?
The final velocity of the airplane is 10 m/s. This means the airplane will be moving at a speed of 10 meters per second after 40 seconds when it has decelerated from its initial velocity of 90 meters per second.
Due to the negative acceleration and velocity acting in opposite directions, it means the airplane is slowing down or decelerating.
The formula for finding the final velocity is given as:
v = u + at
Where:
v = final velocity
u = initial velocity
a = acceleration
t = time
Substitute the given values into the formula:
v = 90 + (-2.0 × 40)
v = 90 - 80
v = 10 m/s
Therefore, the final velocity of the airplane is 10 m/s. This means the airplane will be moving at a speed of 10 meters per second after 40 seconds when it has decelerated from its initial velocity of 90 meters per second.
Learn more About velocity from the given link
https://brainly.com/question/80295
#SPJ11
Set up the spring apparatus. Hang a little bit of mass on the spring so that the coils are separated. Record the height position of the bottom of the weight hanger.
The height position of the bottom of the weight hanger should be recorded. By recording the height position of the bottom of the weight hanger, you can document the initial displacement of the spring.
To set up the spring apparatus, follow these steps:
1. Attach the spring to a stable support, such as a stand or clamp.
2. Hang a weight hanger or a small mass from the bottom end of the spring.
3. Allow the spring to stretch and reach a state of equilibrium.
4. Measure and record the height position of the bottom of the weight hanger from a reference point, such as the tabletop or the floor.
By recording the height position of the bottom of the weight hanger, you can document the initial displacement of the spring. This measurement is essential for conducting further experiments or calculations related to the spring's behavior, such as determining the spring constant or investigating the relationship between displacement and restoring force.
To know more about position visit:
https://brainly.com/question/28180944
#SPJ11
An oak tree has a resonant frequency of 11 Hz. If you wanted to knock the tree over with relatively little power, you would want to repeatedly hit the oak tree at a rate of...
A. 11 Hz
B. 22 Hz
C. Not enough info!
D. 15 Hz
The frequency of the periodic force that drives the vibration and the frequency of the natural oscillation are called resonant frequency.
The resonant frequency refers to the frequency at which an object or system naturally vibrates or oscillates with the greatest amplitude. It is also known as the natural frequency.
In various physical systems, such as mechanical systems, electrical circuits, or acoustic systems, the resonant frequency is determined by the system's inherent properties and characteristics. For example, in a simple pendulum, the resonant frequency depends on the length of the pendulum and the acceleration due to gravity. In an electrical circuit, the resonant frequency can be influenced by the inductance, capacitance, and resistance values. When an external force or stimulus is applied to a system at its resonant frequency, it can cause the system to vibrate with a large amplitude. This phenomenon is called resonance.
In resonance, the amplitude of oscillation of the object is increased because of an energy transfer from the driving force to the object's oscillations.
To knock over an oak tree with relatively little power, one must hit the tree repeatedly at a rate of its resonant frequency, which is 11Hz. Therefore, the correct option is A. 11 Hz.
Let's learn more about resonant frequency:
https://brainly.com/question/254161
#SPJ11
Consider a one-dimensional Harmonic Oscillator in its ground state perturbed by the following time-dependent interaction: H'(t)=-cxe", where c and are constants. If H '(t) is acting from t=0 to t=00, what is the firs-order probability that the oscillator is found at t=0 a) in the ground state? b) in the first excited state?
The first-order probability that the oscillator is found at t=0 in the ground state is 1 - 3πc²/4ω.
Given:
One-dimensional harmonic oscillator in its ground state.
Perturbation: H'(t) = -cxe, where c and are constants.
Perturbation acts from t=0 to t=00.
First-Order Probability:
The first-order probability represents the probability of a transition from the initial state (ground state) to a neighboring state (first excited state). It is calculated using the following formula:
P_1(A->B) = (2π)|V_(AB)|²ρ(E_A)∆E
Where:
P_1(A->B) is the probability of transition from state A to state B.
|V_(AB)| is the matrix element of the Hamiltonian operator H' between states A and B.
ρ(E_A) is the density of states at the energy E_A, which is the energy of the initial state.
∆E is the spread of energy levels.
Solution:
Hamiltonian Operator:
The Hamiltonian operator for a one-dimensional harmonic oscillator is given by:
H = ½ p² + ½ kx²
Ground State Energy:
The energy of the ground state (n = 0) is given by:
E_0 = ½ω = ½k/m
First Excited State Energy:
The energy of the first excited state (n = 1) is given by:
E_1 = (3/2)ω
Matrix Element |V_(AB)|²:
The matrix element of the perturbation H' between the ground state and the first excited state is:
|V_(10)|² = |<ψ_1|H'|ψ_0>|² = c²/2
Density of States ρ(E_A):
The density of states at the energy E_A is given by:
ρ(E_A) = (1/π)(E_A/ω)^(1/2)
Calculating P_1(0->1):
Substituting the given values into the formula, we get:
P_1(0->1) = (2π)|V_(10)|²ρ(E_0)∆E
= (2π)(c²/2){(1/π)(E_0/ω)^(1/2)}(E_1 - E_0)
= 3πc²/4ω
Calculating P_1(0):
The first-order probability that the oscillator is found in the ground state at t=0 is given by:
P_1(0) = 1 - P_1(0->1)
= 1 - 3πc²/4ω
a) The first-order probability that the oscillator is found at t=0 in the ground state is 1 - 3πc²/4ω.
Learn more about Harmonic Oscillator here:
brainly.com/question/33357905
#SPJ11
At what temperature must a hot reservoir operate in order to achieve a 30% Carnot efficiency when the cold reservoir operates at 200 °C?
The Carnot efficiency formula is given by : η=1-(Tc/Th), where η is the Carnot efficiency, Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.
In order to achieve a 30% Carnot efficiency when the cold reservoir operates at 200 °C, the hot reservoir must operate at 406.7 °C.The explanation:According to the Carnot efficiency formula, the Carnot efficiency is given by:η=1-(Tc/Th)where η is the Carnot efficiency,
Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.Substituting the given values, we get:0.3=1-(200/Th)0.3=Th/Th - 200/Th0.3=1-200/Th200/Th=0.7Th=200/0.7Th=285.7+121Th=406.7Thus, the hot reservoir must operate at 406.7 °C to achieve a 30% Carnot efficiency when the cold reservoir operates at 200 °C.
TO know more about that efficiency visit:
https://brainly.com/question/30861596
#SPJ11
Workers at a packing factory shove a 10 kg crate against a horizontal spring. The crate has a speed of 1 m/s as it hits the spring. If the spring constant is 50 N/m and the coefficient of kinetic friction between the crate and the floor is 0.10, what is the maximum compression of the spring?
When a 10 kg crate is pushed against a horizontal spring with a speed of 1 m/s, the maximum compression of the spring can be determined. To find this value, we need to consider the work done on the crate by external forces and the energy stored in the spring.
First, let's calculate the work done by external forces. The only external force acting on the crate is the frictional force between the crate and the floor. The work done by friction can be calculated using the equation: Work = Force × Distance.
The frictional force is given by the coefficient of kinetic friction (μk) multiplied by the normal force (mg), where m is the mass of the crate and g is the acceleration due to gravity. The distance over which the frictional force acts is the displacement of the crate, which can be calculated using the kinematic equation: Displacement = (Velocity^2 - Initial Velocity^2) / (2 × Acceleration). The acceleration here is the negative acceleration due to friction, given by μk × g.
Next, we need to calculate the elastic potential energy stored in the spring. The formula for the elastic potential energy is: Potential Energy = (1/2) × k × Compression^2, where k is the spring constant and Compression is the maximum compression of the spring.
Now, equating the work done by friction to the potential energy stored in the spring, we can solve for the maximum compression. By substituting the values into the equations, we can find the unknown variable.
In summary, to determine the maximum compression of the spring when the 10 kg crate is pushed against it with a speed of 1 m/s, we need to calculate the work done by friction and equate it to the potential energy stored in the spring. By solving this equation, we can find the value of the maximum compression.
Learn more about compression here :
brainly.com/question/22170796
#SPJ11
Given the following simple circuit having 10.06 volts and a current of 2.52 amps, calculate the resistance in units of ohms. 1 Amp of current - 1 coulomb of charge 1 Volt - 1 Joule/Coulomb 1 Ohm - 1 Volt/1 Amp Report you numerical answer in the box below using two decimal places.
The resistance of the circuit is approximately 3.98 ohms. The resistance of the circuit can be calculated by dividing the voltage (10.06 volts) by the current (2.52 amps).
To calculate the resistance of the circuit, we can use Ohm's Law, which states that resistance (R) is equal to the ratio of voltage (V) to current (I), or R = V/I.
The formula for calculating resistance is R = V/I, where R is the resistance, V is the voltage, and I is the current. In this case, the voltage is given as 10.06 volts and the current is given as 2.52 amps.
Substituting the given values into the formula, we have R = 10.06 volts / 2.52 amps.
Performing the division, we get R ≈ 3.98 ohms.
To learn more about ohms law-
brainly.com/question/23579474
#SPJ11
Which of the following is not allowed in radioactive decay? A. emission of an electron by the nucleus B. emission of a positron by the nucleus C. absorption of an electron by the nucleus D. emission of a proton
C. absorption of an electron by the nucleus is not allowed in radioactive decay.
Radioactive decay involves the spontaneous emission of particles or radiation from an unstable nucleus to attain a more stable state. The common types of radioactive decay include alpha decay, beta decay, and gamma decay. In these processes, the nucleus emits particles such as alpha particles (helium nuclei), beta particles (electrons or positrons), or gamma rays (high-energy photons).
Option C, absorption of an electron by the nucleus, contradicts the concept of radioactive decay. In this process, an electron would be captured by the nucleus, resulting in an increase in atomic number and a different element altogether. However, in radioactive decay, the nucleus undergoes transformations that lead to the emission of particles or radiation, not the absorption of particles.
learn more about "absorption ":- https://brainly.com/question/26061959
#SPJ11
A parallel-plate capacitor with circular plates and a capacitance of 13.3 F is connected to a battery
which provides a voltage of 14.9 V
a) What is the charge on each plate?
b) How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery
c) How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled with changing their separation
The charge on each plate of the capacitor is 197.77 Coulombs.
a) To calculate the charge on each plate of the capacitor, we can use the formula:
Q = C * V
where:
Q is the charge,
C is the capacitance,
V is the voltage.
Given:
Capacitance (C) = 13.3 F,
Voltage (V) = 14.9 V.
Substituting the values into the formula:
Q = 13.3 F * 14.9 V
Q ≈ 197.77 Coulombs
Therefore, the charge on each plate of the capacitor is approximately 197.77 Coulombs.
b) If the separation between the plates is doubled while the capacitor remains connected to the battery, the capacitance (C) would change.
However, the charge on each plate remains the same because the battery maintains a constant voltage.
c) If the radius of each plate is doubled while the separation between the plates remains unchanged, the capacitance (C) would change, but the charge on each plate remains the same because the battery maintains a constant voltage.
Learn more about charge from the given link
https://brainly.com/question/18102056
#SPJ11
Ohanian H.C. Classical el... X 1. M. VISLIO anu w. L. mains, Am. J. rnys. 47, (1919). • Problems 1. Calculate the ratio of the strengths of the electric and gravitational forces between an electron and proton placed some distance apart.
The ratio of the strengths of the electric and gravitational forces between an electron and proton placed some distance apart is approximately 2.3 × 10³⁹. This means that the electric force is much stronger than the gravitational force for particles of this size and distance.
The ratio of the strengths of the electric and gravitational forces between an electron and proton placed some distance apart can be calculated using the formula for electric force and the formula for gravitational force, as shown below:
The electric force (Fe) between two charged objects can be calculated using the formula:
Fe = kq₁q₂/r²
where k is Coulomb's constant (k = 9 × 10⁹ Nm²/C²), q₁ and q₂ are the magnitudes of the charges on the two objects, and r is the distance between them.
On the other hand, the gravitational force (Fg) between two objects with masses m₁ and m₂ can be calculated using the formula:
Fg = Gm₁m₂/r²
where G is the universal gravitational constant (G = 6.67 × 10⁻¹¹ Nm₂/kg²).
To calculate the ratio of the strengths of the electric and gravitational forces between an electron and proton, we can assume that they are separated by a distance of r = 1 × 10 m⁻¹⁰, which is the typical distance between the electron and proton in a hydrogen atom.
We can also assume that the magnitudes of the charges on the electron and proton are equal but opposite
(q₁ = -q₂ = 1.6 × 10⁻¹⁹ C). Then, we can substitute these values into the formulas for electric and gravitational forces and calculate the ratio of the two forces as follows:
Fe/Fg = (kq₁q₂/r²)/(Gm₁m₂/r²)
= kq₁q₂/(Gm₁m₂)
Fe/Fg = (9 × 10⁹ Nm²/C²)(1.6 × 10⁻¹⁹ C)²/(6.67 × 10-11 Nm²/kg²)(9.1 × 10⁻³¹ kg)(1.67 × 10⁻²⁷ kg)
Fe/Fg = 2.3 × 10³⁹
The ratio of the strengths of the electric and gravitational forces between an electron and proton placed some distance apart is approximately 2.3 × 10³⁹. This means that the electric force is much stronger than the gravitational force for particles of this size and distance.
To know more about gravitational forces, visit:
https://brainly.com/question/32609171
#SPJ11
An amusement park ride rotates around a fixed axis such that the angular position of a point on the ride follows the equation: θ(t) = a + bt2 – ct3 where a = 3.2 rad, b = 0.65 rad/s2 and c = 0.035 rad/s3.
Randomized Variablesa = 3.2 rad
b = 0.65 rad/s2
c = 0.035 rad/s3
What is the magnitude of the angular displacement of the ride in radians between times t = 0 and t = t1?
The magnitude of the angular displacement of the ride in radians between times t = 0 and t = t1 is given by [tex]|0.65(t1)^2 - 0.035(t1)^3|,[/tex] where t1 represents the specific time interval of interest.
The magnitude of the angular displacement of the ride between times t = 0 and t = t1, we need to evaluate the difference in angular position at these two times.
Given the equation for angular position: θ(t) = a + bt^2 - ct^3, we can substitute t = 0 and t = t1 to find the angular positions at those times.
At t = 0:
θ(0) = a + b(0)² - c(0)³ = a
At t = t1:
θ(t1) = a + b(t1)² - c(t1)³
The magnitude of the angular displacement between these two times is then given by:
|θ(t1) - θ(0)| = |(a + b(t1)² - c(t1)³) - a|
Simplifying the expression, we have:
|θ(t1) - θ(0)| = |b(t1)² - c(t1)³
Substituting the given values:
|θ(t1) - θ(0)| = |0.65(t1)² - 0.035(t1)³|
This equation represents the magnitude of the angular displacement in radians between times t = 0 and t = t1.
Learn more about ”angular displacement” here:
brainly.com/question/12972672
#SPJ11
A 50.0 Hz generator with a rms voltage of 240 V is connected in series to a 3.12 k ohm resistor and a 1.65 -M F capacitor. Find a) the rms current in the circuit b) the maximum
current in the circuit and c) the power factor of the circuit.
a) The rms current in the circuit is approximately 0.077 A.
b) The maximum current in the circuit is approximately 0.109 A.
c) The power factor of the circuit is approximately 0.9999, indicating a nearly unity power factor.
a) The rms current in the circuit can be calculated using Ohm's Law and the impedance of the circuit, which is a combination of the resistor and capacitor. The formula for calculating current is:
I = V / Z
where I is the current, V is the voltage, and Z is the impedance.
First, let's calculate the impedance of the circuit:
Z = √(R^2 + X^2)
where R is the resistance and X is the reactance of the capacitor.
R = 3.12 kΩ = 3,120 Ω
X = 1 / (2πfC) = 1 / (2π * 50.0 * 1.65 x 10^-6) = 19.14 Ω
Z = √(3120^2 + 19.14^2) ≈ 3120.23 Ω
Now, substitute the values into the formula for current:
I = 240 V / 3120.23 Ω ≈ 0.077 A
Therefore, the rms current in the circuit is approximately 0.077 A.
b) The maximum current in the circuit is equal to the rms current multiplied by the square root of 2:
Imax = Irms * √2 ≈ 0.077 A * √2 ≈ 0.109 A
Therefore, the maximum current in the circuit is approximately 0.109 A.
c) The power factor of the circuit can be calculated as the ratio of the resistance to the impedance:
Power Factor = R / Z = 3120 Ω / 3120.23 Ω ≈ 0.9999
Therefore, the power factor of the circuit is approximately 0.9999, indicating a nearly unity power factor.
For more such questions on current , click on:
https://brainly.com/question/24858512
#SPJ8
An ideal step-down transformer has a primary coil of 700 turns and a secondary coil of 30 turns. Its primary coil is plugged into an outlet with 120 V(AC), from which it draws an rms current of 0.19 A. What is the voltage and rms current in the secondary coil?
In an ideal step-down transformer with a primary coil of 700 turns and a secondary coil of 30 turns, connected to an outlet with 120 V (AC) and drawing an rms current of 0.19 A in the primary coil, the voltage in the secondary coil is 5.14 V (AC) and the rms current in the secondary coil is 5.67 A.
In a step-down transformer, the primary coil has more turns than the secondary coil. The voltage in the secondary coil is determined by the turns ratio between the primary and secondary coils. In this case, the turns ratio is 700/30, which simplifies to 23.33.
To find the voltage in the secondary coil, we can multiply the voltage in the primary coil by the turns ratio. Therefore, the voltage in the secondary coil is 120 V (AC) divided by 23.33, resulting in approximately 5.14 V (AC).
The current in the primary coil and the secondary coil is inversely proportional to the turns ratio. Since it's a step-down transformer, the current in the secondary coil will be higher than the current in the primary coil. To find the rms current in the secondary coil, we divide the rms current in the primary coil by the turns ratio. Hence, the rms current in the secondary coil is 0.19 A divided by 23.33, which equals approximately 5.67 A.
Therefore, in this ideal step-down transformer, the voltage in the secondary coil is 5.14 V (AC) and the rms current in the secondary coil is 5.67 A.
Learn more about Step-down Transformer here:
brainly.com/question/15200241
#SPJ11
Find the required constant angular speed in rpm of a rotating drum that can spin an object at 2.5 cm from the axis at an acceleration of 400,000 g (ie 400,000 x 9.8).
The required constant angular speed of the rotating drum is approximately 139,392.76 rpm.
To find the required constant angular speed (ω) of a rotating drum, we can use the centripetal acceleration formula:
[tex]\[ a = r\omega^2 \][/tex]
where a is the acceleration, r is the distance from the axis, and ω is the angular speed.
Given:
Distance from the axis (r) = 2.5 cm = 0.025 m
Acceleration (a) = 400,000 g = 400,000 [tex]\times 9.8 m/s^2[/tex]
We need to convert the acceleration from g to [tex]m/s^2[/tex]:
[tex]\[ a = 400,000 \times 9.8 \, \text{m/s}^2\\\\ = 3,920,000 \, \text{m/s}^2 \][/tex]
Now we can rearrange the formula to solve for ω:
[tex]\[ \omega = \sqrt{\frac{a}{r}} \]\\\\\ \omega = \sqrt{\frac{3,920,000 \, \text{m/s}^2}{0.025 \, \text{m}}} \]\\\\\ \omega = \sqrt{156,800,000} \, \text{rad/s} \][/tex]
To convert the angular speed from rad/s to rpm, we can use the conversion factor:
[tex]\[ \text{rpm} = \frac{\omega}{2\pi} \times 60 \]\\\\\ \text{rpm} = \frac{\sqrt{156,800,000}}{2\pi} \times 60 \]\\\\\ \text{rpm} \approx 139,392.76 \, \text{rpm} \][/tex]
Therefore, the required constant angular speed of the rotating drum is approximately 139,392.76 rpm.
Know more about angular speed:
https://brainly.com/question/29058152
#SPJ4
The required constant angular speed is 2672 rpm.
Given that:
Radius of the rotating drum, r = 2.5 cm = 0.025 m
Acceleration, a = 400,000 x 9.8 m/s² = 3.92 x 10⁹ m/s²
We know that,
The formula for centripetal acceleration is,
a = rω² where,
ω is the angular velocity of the object
Rearranging the above formula, we get;
ω² = a / rω²
= 3.92 x 10⁹ / 0.025
ω = √(3.92 x 10⁹ / 0.025)
ω = 8.85 x 10⁴ rad/s
Now, we have angular velocity in rad/s
We know that,1 rev = 2π rad
hence,
ω = 2πN/60 Where
N is the speed of the rotating drum in rpm.
Substituting the value of ω in the above formula, we get;
8.85 x 10⁴ = 2πN/60N
= (8.85 x 10⁴ x 60) / (2π)N
= 2672 rpm (approx)
Learn more about angular speed from the given link
https://brainly.com/question/6860269
#SPJ11
What is the voltage of a battery that will charge a 2.0 μF capacitor to ± 54 μC?
The voltage of a battery that will charge a 2.0 μF capacitor to ± 54 μC is 54 V. The capacitance formula is Q = CV where Q is the charge stored in the capacitor, C is the capacitance of the capacitor and V is the voltage across the capacitor.
The charge of a capacitor is given as Q = ±54 μC, and the capacitance of the capacitor is given as C = 2.0 μF. Therefore, the formula can be rearranged to solve for voltage as follows:Q = CV ⇒ V = Q/C
Since the charge is ±54 μC and the capacitance is 2.0 μF, thenV = ±54 μC/2.0 μFV = ±27 VThe voltage across the capacitor is either 27 V or -27 V.
Thus, the voltage of a battery that will charge a 2.0 μF capacitor to ± 54 μC is 54 V.
Learn more about voltage at
https://brainly.com/question/32002804
#SPJ11
The battery required to charge a 2.0 μF capacitor to ± 54 μC will need to provide a voltage of 27 volts. This calculation is based on the formula Q=CV.
Explanation:The voltage of a battery used to charge a capacitor can be determined using the formula Q=CV where:
Q is the charge in Coulombs (C), C is the capacitance in farads (F), and V is the voltage in Volts (V).
Given that C = 2.0 μF and the absolute Q = 54 μC, we can rearrange the formula to solve for V:
V = Q/C
This gives us V = 54 μC/2.0 μF = 27 volts.
Therefore, a battery providing 27 volts will charge a 2.0 μF capacitor to ± 54 μC.
Learn more about Capacitor Charging here:https://brainly.com/question/29301875
#SPJ2
A hydrogen atom that is in the 6p state.
a) principle quantum number
b) Energy in (eV)
c) Orbital quantum number
d) Orbital angular momentum
3) Possible magnetic quantum numbers, find corresponding z component and angle the momentum makes with z axis
a) The principle quantum number (n) for a hydrogen atom in the 6p state is 6. the energy of the hydrogen atom in the 6p state is approximately -0.3778 eV. the orbital angular momentum of the hydrogen atom in the 6p state is [tex]\(\sqrt{2}\hbar\)[/tex].
The corresponding z components of angular momentum are [tex]-\hbar[/tex], 0, and [tex]\hbar[/tex], and the angles the momentum makes with the z-axis are 135 degrees, 90 degrees, and 45 degrees
b) To determine the energy of the hydrogen atom in the 6p state, we can use the formula:
[tex]\[ E = -\frac{{13.6 \, \text{eV}}}{{n^2}} \][/tex]
Substituting the value of n as 6:
[tex]\[ E = -\frac{{13.6 \, \text{eV}}}{{6^2}} \]\\\\\ E = -\frac{{13.6 \, \text{eV}}}{{36}} \]\\\\\ E \approx -0.3778 \, \text{eV} \][/tex]
Therefore, the energy of the hydrogen atom in the 6p state is approximately -0.3778 eV.
c) The orbital quantum number (l) corresponds to the shape of the orbital. For the 6p state, l = 1.
d) The orbital angular momentum (L) for a given orbital is given by the formula:
[tex]\[ L = \sqrt{l(l+1)} \hbar \][/tex]
Substituting the value of l as 1 and the value of Planck's constant [tex](\hbar)[/tex]:
[tex]\[ L = \sqrt{1(1+1)} \hbar \]\\\\\ L = \sqrt{2} \hbar \][/tex]
Therefore, the orbital angular momentum of the hydrogen atom in the 6p state is [tex]\(\sqrt{2}\hbar\)[/tex].
3) For the 6p state, the possible magnetic quantum numbers [tex](m_l)[/tex] range from -1 to +1. The corresponding z component of angular momentum [tex](m_l \hbar)[/tex] and the angle the momentum makes with the z-axis (θ) can be calculated as follows:
For [tex]m_l[/tex] = -1:
Z component of angular momentum: [tex]-1 \hbar[/tex]
Angle with z-axis: θ = [tex]arccos(-1/\sqrt{2})[/tex] = 135 degrees
For [tex]m_l[/tex] = 0:
Z component of angular momentum: [tex]0 \hbar[/tex]
Angle with z-axis: θ = arccos(0) = 90 degrees
For [tex]m_l[/tex] = 1:
Z component of angular momentum: [tex]1 \hbar[/tex]
Angle with z-axis: θ = arccos[tex](1/\sqrt{2})[/tex] = 45 degrees
Therefore, for the 6p state, the possible magnetic quantum numbers are -1, 0, and 1. The corresponding z components of angular momentum are -[tex]\hbar[/tex], 0, and [tex]\hbar[/tex], and the angles the momentum makes with the z-axis are 135 degrees, 90 degrees, and 45 degrees, respectively.
Know more about magnetic quantum:
https://brainly.com/question/14920144
#SPJ4
A rock band playing an outdoor concert produces sound at 80 dB, 45 m away from their single working loudspeaker. What is the power of this speaker? 1.5 W 2.5 W 15 W 25 W 150 W 250 W none of the above
The power of the speaker is approximately 8.27 W. None of the given answer choices match this result.
To calculate the power of the speaker, we need to use the inverse square law for sound intensity. The sound intensity decreases with distance according to the inverse square of the distance. The formula for sound intensity in decibels (dB) is:
Sound Intensity (dB) = Reference Intensity (dB) + 10 × log10(Intensity / Reference Intensity)
In this case, the reference intensity is the threshold of hearing, which is 10^(-12) W/m^2.
We can rearrange the formula to solve for the intensity:
Intensity = 10^((Sound Intensity (dB) - Reference Intensity (dB)) / 10)
In this case, the sound intensity is given as 80 dB, and the distance from the speaker is 45 m.
Using the inverse square law, the sound intensity at the distance of 45 m can be calculated as:
Intensity = Intensity at reference distance / (Distance)^2
Now let's calculate the sound intensity at the reference distance of 1 m:
Intensity at reference distance = 10^((Sound Intensity (dB) - Reference Intensity (dB)) / 10)
= 10^((80 dB - 0 dB) / 10)
= 10^(8/10)
= 10^(0.8)
≈ 6.31 W/m^2
Now let's calculate the sound intensity at the distance of 45 m using the inverse square law:
Intensity = Intensity at reference distance / (Distance)^2
= 6.31 W/m^2 / (45 m)^2
≈ 0.00327 W/m^2
Therefore, the power of the speaker can be calculated by multiplying the sound intensity by the area through which the sound spreads.
Power = Intensity × Area
Since the area of a sphere is given by 4πr^2, where r is the distance from the speaker, we can calculate the power as:
Power = Intensity × 4πr^2
= 0.00327 W/m^2 × 4π(45 m)^2
≈ 8.27 W
Therefore, the power of the speaker is approximately 8.27 W. None of the given answer choices match this result.
Learn more about power https://brainly.com/question/8120687
#SPJ11
A wave function ... can be written as a sum of numerous eigenvectors each with coefficient 1 O contains eigenstates which are not measured. O is a superposition of all possible measurable states of the system. can be written as a sum of numerous eigenvectors each with coefficient 1 only if all states are equally likely to occur. O cannot be written as a sum of eigenvectors. O remains undisturbed after measurement.
The correct statement is: O is a superposition of all possible measurable states of the system.
In quantum mechanics, a wave function represents the state of a quantum system. The wave function can be expressed as a superposition of eigenstates, which are the possible measurable states of the system. Each eigenstate corresponds to a specific observable quantity, such as position or energy, and has an associated eigenvalue.
When the wave function is in a superposition of eigenstates, it means that the system exists in a combination of different states simultaneously. The coefficients in front of each eigenstate represent the probability amplitudes for measuring the system in that particular state.
The statement that the wave function can be written as a sum of numerous eigenvectors, each with coefficient 1, only if all states are equally likely to occur is incorrect. The coefficients in the superposition do not necessarily have to be equal. The probabilities of measuring the system in different states are determined by the square of the coefficients, and they can have different values.
Therefore, the correct statement is that the wave function O is a superposition of all possible measurable states of the system.
To know more about wave function, please visit
https://brainly.com/question/32239960
#SPJ11
A2. Describe Pauli paramagnetism. Sketch the relevant density of states curves and explain why Pauli paramagnetism only gives rise to weak magnetisation in solids. [4]
Pauli electromagnetism refers to the weak magnetization exhibited by solids due to the alignment of electron spins in the presence of a magnetic field. This phenomenon arises from the Pauli exclusion principle, which states that no two electrons can occupy the same quantum state simultaneously.
In solids, the density of states curves describe the distribution of available energy levels for electrons. In the presence of a magnetic field, these energy levels split into two bands known as spin-up and spin-down states. According to the Pauli exclusion principle, each energy level can accommodate two electrons with opposite spins.
In a paramagnetic material, the electrons with unpaired spins tend to align their spins parallel to the applied magnetic field. This alignment leads to a slight excess of spin-up electrons, resulting in a net magnetic moment and weak magnetization. However, Pauli paramagnetism only produces a weak magnetic effect because the number of unpaired spins in most materials is relatively small, and the alignment of spins is easily disrupted by thermal fluctuations.
The weak magnetization in Pauli paramagnetism is a consequence of the limited number of unpaired electron spins available in solids and the vulnerability of their alignment to thermal disturbances. While the presence of unpaired spins allows for a net magnetic moment, the low density of unpaired spins and the thermal energy present at room temperature prevent a significant overall magnetization from occurring. As a result, Pauli paramagnetism typically exhibits only weak magnetic properties in solids.
Learn more about Electromagnetism:
https://brainly.com/question/29597588
#SPJ11
A particle with a velocity of 5.00x 10^3 m/s enters a region of
uniform magnetic fields. Calculate the magnitude and direction of
the electric field if the particle is to pass through the
undeflected.
The required magnitude and direction of the electric field to pass the particle undeflected is given by:|E| = 5.00 x 10³ x B (upwards)
A particle with a velocity of 5.00 x 10³ m/s enters a region of uniform magnetic fields. The magnitude and direction of the electric field if the particle is to pass through undeflected can be calculated through the following steps:
Step 1:Identify the given information
In the given problem, we are given:
Particle velocity, v = 5.00 x 10³ m/s
Magnetic field, B = given
Direction of magnetic field,
let’s assume it to be perpendicular to the plane of paper
Magnitude of electric field, E = to be calculated
Step 2:Find the magnetic force exerted on the particle
The magnetic force on the charged particle moving in a magnetic field is given by:
F = q(v x B) where,q is the charge on the particle
v is the velocity of the particle
B is the magnetic field acting on the particle
By the right-hand rule, it can be determined that the magnetic force, F acts perpendicular to the plane of the paper in this problem.
The direction of magnetic force can be found by the Fleming’s Left-hand rule. In this case, the particle is negatively charged as it is an electron. So the direction of force on the particle would be opposite to that of the direction of velocity of the particle in the magnetic field. Therefore, the magnetic force on the particle would be directed downwards as shown in the figure below.
Step 3: Find the electric field to counterbalance the magnetic force. In order to counterbalance the magnetic force on the electron, there must be an electric force acting on it as well. The electric force on the charged particle moving in an electric field is given by:
F = qE where, E is the electric field acting on the particle
By the right-hand rule, the direction of electric force on the particle can be found to be upwards in this case. Since the electron is undeflected, the magnetic force on it must be equal and opposite to the electric force on it. Hence,
q(v x B) = qE
Dividing by q, we get: v x B = E
Also, we know that the magnitude of the magnetic force on the particle is given by:
F = Bqv
where, v is the magnitude of velocity of the particle
Substituting the value of the magnetic force from this equation in the equation above, we get:
v x B = (Bqv)/qv = E
The magnitude of the electric field required to counterbalance the magnetic force is given by:
|E| = vB= 5.00 x 10³ x B
As we know the direction of the electric field is upwards, perpendicular to both the direction of the magnetic field and the velocity of the particle. Therefore, the required magnitude and direction of the electric field to pass the particle undeflected is given by:
|E| = 5.00 x 10³ x B (upwards)
The magnitude of the electric field required to counterbalance the magnetic force is given by |E| = 5.00 x 10³ x B (upwards).
Learn more about electric field https://brainly.com/question/19878202
#SPJ11
Part A How long does it take light to reach us from the Sun, 1.50 x X10 8km away? t =
The speed of light is 299,792,458 meters per second or approximately 3.00 x 10^8 meters per second.
We can use the equation "speed = distance/time" to find the time it takes for light to travel a certain distance, t = d/s, where t is the time, d is the distance, and s is the speed.
To find the time it takes light to reach us from the Sun, we need to convert the distance from kilometers to meters:
1.50 x 10^8 km = 1.50 x 10^11 m
Now we can use the equation:
t = d/s = (1.50 x 10^11 m) / (3.00 x 10^8 m/s)
t = 500 seconds
Therefore, it takes approximately 500 seconds or 8 minutes and 20 seconds for light to reach us from the Sun.
Learn more about light energy: https://brainly.com/question/21288390
#SPJ11
A quantum simple harmonic oscillator consists of an electron bound by a restoring force proportional to its position relative to a certain equilibrium point. The proportionality constant is 9.21 N/m. What is the longest wavelength of light that can excite the oscillator?
The longest wavelength of light that can excite the quantum simple harmonic oscillator is approximately 1.799 x 10^(-6) meters.
To find the longest wavelength of light that can excite the oscillator, we need to calculate the energy difference between the ground state and the first excited state of the oscillator. The energy difference corresponds to the energy of a photon with the longest wavelength.
In a quantum simple harmonic oscillator, the energy levels are quantized and given by the formula:
Eₙ = (n + 1/2) * ℏω,
where Eₙ is the energy of the nth level, n is the quantum number (starting from 0 for the ground state), ℏ is the reduced Planck's constant (approximately 1.054 x 10^(-34) J·s), and ω is the angular frequency of the oscillator.
The angular frequency ω can be calculated using the formula:
ω = √(k/m),
where k is the proportionality constant (9.21 N/m) and m is the mass of the electron (approximately 9.11 x 10^(-31) kg).
Substituting the values into the equation, we have:
ω = √(9.21 N/m / 9.11 x 10^(-31) kg) ≈ 1.048 x 10^15 rad/s.
Now, we can calculate the energy difference between the ground state (n = 0) and the first excited state (n = 1):
ΔE = E₁ - E₀ = (1 + 1/2) * ℏω - (0 + 1/2) * ℏω = ℏω.
Substituting the values of ℏ and ω into the equation, we have:
ΔE = (1.054 x 10^(-34) J·s) * (1.048 x 10^15 rad/s) ≈ 1.103 x 10^(-19) J.
The energy of a photon is given by the equation:
E = hc/λ,
where h is Planck's constant (approximately 6.626 x 10^(-34) J·s), c is the speed of light (approximately 3.00 x 10^8 m/s), and λ is the wavelength of light.
We can rearrange the equation to solve for the wavelength λ:
λ = hc/E.
Substituting the values of h, c, and ΔE into the equation, we have:
λ = (6.626 x 10^(-34) J·s * 3.00 x 10^8 m/s) / (1.103 x 10^(-19) J) ≈ 1.799 x 10^(-6) m.
Therefore, the longest wavelength of light that can excite the oscillator is approximately 1.799 x 10^(-6) m.
Learn more about harmonic oscillator from the given link:
https://brainly.com/question/13152216
#SPJ11
Why is the stopping distance of a truck much shorter than for a train going the same speed? Problem 13: (10 Points) (a) Calculate the pressure in newtons per square meter at a depth of 2.5 m due to water in a swimming pool. (b) What is the total pressure at that depth?
The stopping distance of a truck is much shorter than that of a train going at the same speed due to the following reasons:The mass of the train is significantly larger than that of a truck. The heavier an object is, the more energy it needs to stop.
Since trains are much heavier than trucks, they require more time and distance to stop moving.
A truck has a better braking system than a train. It means that the truck's brakes work more effectively, and it has better control.
Additionally, trucks are closer to the ground than trains, and this provides more stability to the vehicle.
Therefore, it's easier to control a truck than a train going at the same speed.
A truck driver can see the road ahead of them. It means that they can easily spot hazards, such as obstacles on the road or other vehicles.
As a result, they can slow down and stop if necessary.
A train driver does not have this advantage. They rely on signals and radio communications to know what's happening ahead.
Therefore, they may not be able to stop the train quickly enough in case of an emergency.
The stopping distance of a vehicle is the distance required to bring the vehicle to a stop after the brakes have been applied.
It includes the distance covered during the driver's reaction time and the distance covered after the brakes have been applied.
To minimize the stopping distance, it's essential to have a good braking system and to maintain a safe distance from other vehicles.
To know more about distance visit;
brainly.com/question/31713805
#SPJ11
Fluid dynamics describes the flow of fluids, both liquids and gases. In this assignment, demonstrate your understanding of fluid dynamics by completing the problem set. Instructions Complete the questions below. For math problems, restate the problem, state all of the given values, show all of your steps, respect significant figures, and conclude with a therefore statement. Submit your work to the Dropbox when you are finished. Questions 1. Explain why the stream of water from a faucet becomes narrower as it falls. (3 marks) 2. Explain why the canvas top of a convertible bulges out when the car is traveling at high speed. Do not forget that the windshield deflects air upward. (3 marks) 3. A pump pumps fluid into a pipe at a rate of flow of 60.0 cubic centimetres per second. If the cross-sectional area of the pipe at a point is 1.2 cm?, what is the average speed of the fluid at this point in m/s? (5 marks) 4. In which case, is it more likely, that water will have a laminar flow - through a pipe with a smooth interior or through a pipe with a corroded interior? Why? (3 marks) 5. At a point in a pipe carrying a fluid, the diameter of the pipe is 5.0 cm, and the average speed of the fluid is 10 cm/s. What is the average speed, in m/s, of the fluid at a point where the diameter is 2.0 cm? (6 marks)
1. The stream of water from a faucet becomes narrower as it falls due to the effects of gravity and air resistance. As the water falls, it accelerates under the force of gravity. According to Bernoulli's principle, the increase in velocity of the water results in a decrease in pressure.
2. The canvas top of a convertible bulges out when the car is traveling at high speed due to the Bernoulli effect. As the car moves forward, the air flows over the windshield and creates an area of low pressure above the car. This low-pressure zone causes the canvas top to experience higher pressure from below, causing it to bulge outwards.
3. Given: Rate of flow = 60.0 cm³/s, Cross-sectional area = 1.2 cm². To find the average speed of the fluid, divide the rate of flow by the cross-sectional area: Speed = Rate of flow / Cross-sectional area = 60.0 cm³/s / 1.2 cm² = 50 cm/s = 0.5 m/s (to two significant figures). Therefore, the average speed of the fluid at this point is 0.5 m/s.
4. Water is more likely to have a laminar flow through a pipe with a smooth interior rather than a corroded interior. Laminar flow refers to smooth and orderly flow with layers of fluid moving parallel to each other.
Corrosion on the interior surface of a pipe creates roughness, leading to turbulent flow where the fluid moves in irregular patterns and mixes chaotically. Therefore, a smooth interior pipe promotes laminar flow and reduces turbulence.
5. Given: Diameter₁ = 5.0 cm, Average speed₁ = 10 cm/s, Diameter₂ = 2.0 cm. To find the average speed of the fluid at the point with diameter₂, we use the principle of conservation of mass. The product of cross-sectional area and velocity remains constant for an incompressible fluid.
Therefore, A₁V₁ = A₂V₂. Solving for V₂, we get V₂ = (A₁V₁) / A₂ = (π(5.0 cm)²(10 cm/s)) / (π(2.0 cm)²) = 125 cm/s = 1.25 m/s. Therefore, the average speed of the fluid at the point where the diameter is 2.0 cm is 1.25 m/s.
To learn more about velocity click here brainly.com/question/24259848
#SPJ11
A 24.5-kg child is standing on the outer edge of a horizontal merry-go-round that has a moment of inertia of about a vertical axis through its center and a radius of 2.40 m. The entire system (including the child) is initially rotating at 0.180 rev/s.
a. What is the moment of inertia of the child + merry go round when standing at the edge?
b. What is the moment of inertial of the child + merry go round when standing 1.10 m from the axis of rotation?
c. Find the angular velocity if the child moves to a new position 1.10 m from the center of the merry-go-round.
d. What is the change in rotational kinetic energy between the edge and 2.40 m distance?
a.The moment of inertia of the child + merry-go-round when standing at the edge is 14.7 kg·m².
b. The moment of inertia of the child + merry-go-round when standing 1.10 m from the axis of rotation is 20.2 kg·m².
c. The angular velocity if the child moves to a new position 1.10 m from the center of the merry-go-round is 0.165 rev/s.
d. The change in rotational kinetic energy between the edge and 2.40 m distance is 54.6 J.
a. To calculate the moment of inertia when the child is standing at the edge, we use the equation:
I =[tex]I_mg + m_cr^2[/tex]
where I_mg is the moment of inertia of the merry-go-round, m_c is the mass of the child, and r is the radius of the merry-go-round. Plugging in the given values, we find the moment of inertia to be 14.7 kg·m².
b. To calculate the moment of inertia when the child is standing 1.10 m from the axis of rotation, we use the parallel axis theorem. The moment of inertia about the new axis is given by:
I' = [tex]I + m_c(h^2)[/tex]
where I is the moment of inertia about the axis through the center of the merry-go-round, m_c is the mass of the child, and h is the distance between the new axis and the original axis. Plugging in the values, we find the moment of inertia to be 20.2 kg·m².
c. When the child moves to a new position 1.10 m from the center of the merry-go-round, the conservation of angular momentum tells us that the initial angular momentum is equal to the final angular momentum. We can write the equation as:
Iω = I'ω'
where I is the initial moment of inertia, ω is the initial angular velocity, I' is the final moment of inertia, and ω' is the final angular velocity. Rearranging the equation, we find ω' to be 0.165 rev/s.
d. The change in rotational kinetic energy can be calculated using the equation:
ΔKE_rot = (1/2)I'ω'^2 - (1/2)Iω^2
Plugging in the values, we find the change in rotational kinetic energy to be 54.6 J.
Learn more about moment of inertia
brainly.com/question/15461378
#SPJ11
The diffusion constant of ATP is 3 × 10−10 m2s−1. How long would it take for an ensemble of ATP molecules to diffuse a rms distance equal to the diameter of an average cell (diameter ~20 μm)? Express your answer in ms. (Hint: movement is in 3-dimension.)
It would take approximately 3.3 milliseconds for an ensemble of ATP molecules to diffuse a root mean square (rms) distance equal to the diameter of an average cell.
The time required for diffusion can be calculated using the formula:
t = (r^2) / (6D)
where t is the time, r is the distance, and D is the diffusion constant.
Given that the diameter of an average cell is 20 μm (or 20 × 10^-6 m), the rms distance is half the diameter, which is 10 μm (or 10 × 10^-6 m).
Plugging in the values, we have:
t = (10^2) / (6 × 3 × 10^-10)
Simplifying the expression, we get:
t = (100) / (1.8 × 10^-9)
t ≈ 5.56 × 10^7 milliseconds
Therefore, it would take approximately 3.3 milliseconds (or 3.3 × 10^-3 seconds) for an ensemble of ATP molecules to diffuse a root mean square (rms) distance equal to the diameter of an average cell.
To learn more about diffusion constant
Click here brainly.com/question/13092368
#SPJ11
With two charges, if one charge has a larger magnitude than the other, which charge experiences more force?
The answer is "the charge with the larger magnitude experiences more force."
According to Coulomb's law, the force of attraction or repulsion between two charged particles is directly proportional to the magnitude of their charges and inversely proportional to the square of the distance between them. Hence, if one charge has a larger magnitude than the other, the charge with the larger magnitude will experience more force.
As a result, the answer is "the charge with the larger magnitude experiences more force."
Coulomb's law is given by:
F = k (q1q2) / r²
Where, k is Coulomb's constant, q1 and q2 are the magnitudes of the two charges, and r is the distance between the two charges.
Learn more about "Coulomb's Law" refer to the link : https://brainly.com/question/506926
#SPJ11
Question 21 of 26 < > 0.6 / 6 III : View Policies Show Attempt History Current Attempt in Progress Your answer is partially correct. Flying Circus of Physics A sling-thrower puts a stone (0.260 kg) in the sling's pouch (0.0300 kg) and then begins to make the stone and pouch move in a vertical circle of radius 0.680 m. The cord between the pouch and the person's hand has negligible mass and will break when the tension in the cord is 34.0 N or more. Suppose the sling-thrower could gradually increase the speed of the stone. (a) Will the breaking occur at the lowest point of the circle or at the highest point? (b) At what speed of the stone will that breaking occur? (a) the lowest point (b) Number i 8.89 Units m/s
(a) The breaking will occur at the highest point of the circle.
(b) To determine the speed at which the breaking occurs, we can analyze the forces acting on the stone and pouch at the highest point of the circle. At the highest point, the tension in the cord will be at its maximum and will provide the centripetal force required to keep the stone and pouch moving in a circular path.
The centripetal force is given by the equation:
Tension = (mass of stone + mass of pouch) * acceleration
Since the stone and pouch move in a vertical circle, the acceleration is equal to the gravitational acceleration (9.8 m/s^2) minus the centripetal acceleration.
The centripetal acceleration is given by:
Centripetal acceleration = (velocity^2) / radius
34 N = (0.260 kg + 0.030
0 kg) * (9.8 m/s^2 - (velocity^2) / 0.680 m)
Learn more about breaking here : brainly.com/question/31357546
#SPJ11