A5 foot by 5 foot square plate is placed in a pool filled with water to a depth of feet A Evaluate the fluid force on one side of the plate if it is lying flat on its face at the bottom of the pool. You may use the constant us to be the weight density of water in pounds per cubic foot.) 8. Evaluate the fluid force on one side of the plate if one edge of the plate rests on the bottom of the pool and the plate is suspended to that it makes a 45 angle to the bottom of the pool C. If the angle is increased to 60, will the force on each side of the plate increase, decrease or stay the same? Justify your answer.

Answers

Answer 1

The fluid force on one side of the plate when it is lying flat on its face at the bottom of the pool is 50280h pounds.

(a) To evaluate the fluid force on one side of the plate when it is lying flat on its face at the bottom of the pool, we can use the formula for fluid force: Fluid force = pressure * area

The pressure at a certain depth in a fluid is given by the formula:

Pressure = density * gravity * depth

Given: Side length of the square plate = 5 feet

Depth of water = h feet

Weight density of water = ρ = 62.4 pounds per cubic foot (assuming standard conditions)

Gravity = g = 32.2 feet per second squared (assuming standard conditions)

The area of one side of the square plate is given by:

Area = side length * side length = 5 * 5 = 25 square feet

Substituting the values into the formulas, we can evaluate the fluid force:

Fluid force = (density * gravity * depth) * area

= (62.4 * 32.2 * h) * 25

= 50280h

Therefore, the fluid force on one side of the plate when it is lying flat on its face at the bottom of the pool is 50280h pounds.

(b) The fluid force on one side of the plate when one edge rests on the bottom of the pool and the plate is suspended at a 45-degree angle is 25140h pounds.

When one edge of the plate rests on the bottom of the pool and the plate is suspended at a 45-degree angle to the bottom, the fluid force will be different. In this case, we need to consider the component of the force perpendicular to the plate.

The perpendicular component of the fluid force can be calculated using the formula: Fluid force (perpendicular) = (density * gravity * depth) * area * cos(angle)

Given: Angle = 45 degrees = π/4 radians

Substituting the values into the formula, we can evaluate the fluid force: Fluid force (perpendicular) = (62.4 * 32.2 * h) * 25 * cos(π/4)

= 25140h

Therefore, the fluid force on one side of the plate when one edge rests on the bottom of the pool and the plate is suspended at a 45-degree angle is 25140h pounds.

(c) If the angle is increased to 60 degrees, the fluid force on each side of the plate will stay the same.

This is because the angle only affects the perpendicular component of the force, while the total fluid force on the plate remains unchanged. The weight density of water and the depth of the pool remain the same. Therefore, the force on each side of the plate will remain constant regardless of the angle.

Know more about fluid force here

https://brainly.com/question/13165826#

#SPJ11


Related Questions

Find the center and radius of the circle represented by the equation: x2 + y 2 - 16 x + 2 y + 65 = 0. (-8,1), radius 1 b. This equation represents a point (8,-1), radius 1 (8,

Answers

The required center of the circle is (8, -1) and the radius is 1.

Given the equation of circle is [tex]x^{2}[/tex] + [tex]y^{2}[/tex] - 16 x + 2 y + 65 = 0.

To find the center and radius of the circle represented by the equation which is expressed in the standard form

[tex](x-h)^{2}[/tex] + [tex](y - k)^2[/tex] = [tex]r^{2}[/tex].

That is,  (h, k ) represents the center and r represents the radius.

Consider the given equation,

[tex]x^{2}[/tex] + [tex]y^{2}[/tex] - 16 x + 2 y + 65 = 0.

Rearrange the equation,

( [tex]x^{2}[/tex] -16x) +( [tex]y^{2}[/tex] +2y) = -65

To complete the square for the x- terms, add the 64 on both sides

and similarly add y- terms add 1 on both sides gives

( [tex]x^{2}[/tex] -16x+64) +( [tex]y^{2}[/tex] +2y+1) = -65+64+1

On applying the algebraic identities gives,

[tex](x-8)^{2}[/tex]+ [tex](y - 1) ^2[/tex] = 0

Therefore, the required center of the circle is (8, -1) and the radius is 1.

Learn more about equation of the circle click here:

https://brainly.com/question/29288238

#SPJ1

QUESTION 3 1 points Save Answer Choose the correct answer. dV What kind of differential equation is t- + (1+2t)=3 dt O Bernoulli Differential Equation O Linear Differential Equation Direct integration

Answers

The given differential equation, [tex]\frac{dV}{dt}[/tex] [tex]- t + (1 + 2t) = 3[/tex], is a linear differential equation.

A linear differential equation is a differential equation where the unknown function and its derivatives appear linearly, i.e., raised to the first power and not multiplied together.

In the given equation, we have the term dV/dt, which represents the first derivative of the unknown function V(t).

The other terms, -t, 1, and 2t, are constants or functions of t. The right-hand side of the equation, 3, is also a constant.

To classify the given equation, we check if the equation can be written in the form:

dy/dx + P(x)y = Q(x),

where P(x) and Q(x) are functions of x. In this case, the equation can be rearranged as:

dV/dt - t = 2t + 4.

Since the equation satisfies the form of a linear differential equation, with the unknown function V(t) appearing linearly in the equation, we conclude that the given equation is a linear differential equation.

To learn more about differential equation visit:

brainly.com/question/30323408

#SPJ11

Consider the time series xt = Bit + B2 + Wt where B1 and B2 are known constants and wt is a white noise process with variance oz. a. Find the mean function for yt = xt - Xt-1 b. Find the autocovarianc

Answers

The mean function for yt, which is defined as the difference between xt and Xt-1, can be calculated as E(yt) = B1 + B2.

a. To find the mean function for yt, we take the expectation of yt:

E(yt) = E(xt - Xt-1)

= E(B1 + B2 + Wt - Xt-1)

= B1 + B2 - E(Xt-1) (since E(Wt) = 0)

= B1 + B2

b. The autocovariance function for yt depends on the time lag, denoted by h. If h is 0, the autocovariance is the variance of yt, which is given as o^2 since Wt is a white noise process with variance o^2. If h is not 0, the autocovariance is 0 because the white noise process is uncorrelated at different time points. Therefore, the autocovariance function for yt is given by:

Cov(yt, yt+h) = o^2 for h = 0

Cov(yt, yt+h) = 0 for h ≠ 0

In this case, the autocovariance is constant at o^2 for a lag of 0 and 0 for any other non-zero lag, indicating that there is no correlation between consecutive observations of yt except at a lag of 0.

Learn more about function here:

https://brainly.com/question/31062578

#SPJ11

Question 4 5 pts If $10,000 is invested in a savings account offering 5% per year, compounded semiannually, how fast is the balance growing after 2 years, in dollars per year? Round value to 2-decimal

Answers

The balance is growing at a rate of $525.00 per year after 2 years.

To calculate the growth rate of the balance, we can use the formula for compound interest: [tex]\(A = P \left(1 + \frac{r}{n}\right)^{nt}\)[/tex], where [tex]\(A\)[/tex] is the final balance, [tex]\(P\)[/tex] is the initial principal, [tex]\(r\)[/tex] is the interest rate (in decimal form), [tex]\(n\)[/tex] is the number of times the interest is compounded per year, and [tex]\(t\)[/tex] is the number of years.

In this case, the initial principal is $10,000, the interest rate is 5% (or 0.05 in decimal form), the interest is compounded semiannually (so [tex]\(n = 2\)[/tex]), and the time period is 2 years. Plugging in these values into the formula, we have:

[tex]\(A = 10,000 \left(1 + \frac{0.05}{2}\right)^{2 \cdot 2}\)[/tex]

Simplifying the expression, we get:

[tex]\(A = 10,000 \left(1 + 0.025\right)^4\)[/tex]

[tex]\(A = 10,000 \cdot 1.025^4\)[/tex]

Calculating this expression, we find:

[tex]\(A \approx 10,000 \cdot 1.1038\)[/tex]

[tex]\(A \approx 11,038\)[/tex]

The growth in the balance after 2 years is [tex]\(11,038 - 10,000 = 1,038\)[/tex]. Dividing this by 2 (since we want the growth rate per year), we get [tex]\(1,038/2 = 519\)[/tex]. Rounding to two decimal places, the balance is growing at a rate of $519.00 per year after 2 years.

Learn more about compound interest:

https://brainly.com/question/14295570

#SPJ11

4. Set up the integral that gives the area of the region enclosed by the inner loop of r = 3 – 4 cos 0. (You do not need to evaluate the integral.)

Answers

The integral that gives the area of the region enclosed by the inner loop of the polar curve r = 3 - 4cos(θ) can be set up as follows:

∫[θ₁, θ₂] ½r² dθ

In this case, we need to determine the limits of integration, θ₁ and θ₂, which correspond to the angles that define the region enclosed by the inner loop of the curve. To find these angles, we need to solve the equation 3 - 4cos(θ) = 0.

Setting 3 - 4cos(θ) = 0, we can solve for θ to find the angles where the curve intersects the x-axis. These angles will define the limits of integration.

Once we have the limits of integration, we can substitute the expression for r = 3 - 4cos(θ) into the integral and evaluate it to find the area of the region enclosed by the inner loop of the curve. However, the question specifically asks to set up the integral without evaluating it.

Learn more about limits of integration, below:

https://brainly.com/question/32233159

#SPJ11

- 2 sin(2x) on 0sxs. Sketch the graph of the function: y

Answers

The graph of y = 2sin(2x) on the interval 0 ≤ x ≤ π is a wave with an amplitude of 2, starting at the origin, and oscillating symmetrically around the x-axis over half a period.

The graph of the function y = 2sin(2x) on the interval 0 ≤ x ≤ π is a periodic wave with an amplitude of 2 and a period of π. The graph starts at the origin (0,0) and oscillates between positive and negative values symmetrically around the x-axis. The function y = 2sin(2x) represents a sinusoidal wave with a frequency of 2 cycles per unit interval (2x). The coefficient 2 in front of sin(2x) determines the amplitude, which is the maximum displacement of the wave from the x-axis. In this case, the amplitude is 2, so the wave reaches a maximum value of 2 and a minimum value of -2.

The interval 0 ≤ x ≤ π specifies the domain over which we are analyzing the function. Since the period of a standard sine wave is 2π, restricting the domain to 0 ≤ x ≤ π results in half a period being graphed. The graph starts at the origin (0,0) and completes one full oscillation from 0 to π, reaching the maximum value of 2 at x = π/4 and the minimum value of -2 at x = 3π/4. The graph is symmetric about the y-axis, reflecting the periodic nature of the sine function.

To learn more about amplitude click here brainly.com/question/9525052

#SPJ11

find the level of a two-sided confidence interval that is based on the given value of tn−1,α/2 and the given sample size.

Answers

In order to determine the level of a two-sided confidence interval, we need to consider the given value of tn−1,α/2 and the sample size. The level of the confidence interval represents the degree of confidence we have in the estimate.

The confidence interval is calculated by taking the sample mean and adding or subtracting the margin of error, which is determined by the critical value tn−1,α/2 and the standard deviation of the sample. The critical value represents the number of standard deviations required to capture a certain percentage of the data.

The level of the confidence interval is typically expressed as a percentage and is equal to 1 minus the significance level. The significance level, denoted as α, represents the probability of making a Type I error, which is rejecting a true null hypothesis.

To find the level of the confidence interval, we can use the formula: level = 1 - α. The value of α is determined by the given value of tn−1,α/2, which corresponds to the desired confidence level and the sample size. By substituting the given values into the formula, we can calculate the level of the two-sided confidence interval.

Learn more about standard deviation here: https://brainly.com/question/31946791

#SPJ11

Consider the indefinite integral -5e-5z da: (e-5x + 2)³ This can be transformed into a basic integral by letting U and du da Performing the substitution yields the integral du Integrating yields the result +C

Answers

By letting u = e^(-5x) + 2 and evaluating the integral, we obtain the result of -u^4/20 + C, where C is the constant of integration.

To simplify the given indefinite integral, we can make the substitution u = e^(-5x) + 2. Taking the derivative of u with respect to x gives du/dx = -5e^(-5x). Rearranging the equation, we have dx = du/(-5e^(-5x)).

Substituting the values of u and dx into the integral, we have:

-5e^(-5x)(e^(-5x) + 2)^3 dx = -u^3 du/(-5).

Integrating -u^3/5 with respect to u yields the result of -u^4/20 + C, where C is the constant of integration.

Substituting back u = e^(-5x) + 2, we get the final result of the indefinite integral as -(-5e^(-5x) + 2)^4/20 + C. This represents the antiderivative of the given function, up to a constant of integration C.

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11


Please answer all questions 17-20, thankyou.
17. Compute the equation of the plane which contains the three points (1,0,1),(0,2,1) and (1,3,2). Find the distance from this plane to the origin. 18.a) Find an equation of the plane that contains bo

Answers

17. To compute the equation of the plane containing three given points, we can use the formula for the equation of a plane. Then, to find the distance from the plane to the origin, we can use the formula for the distance between a point and a plane.

To find an equation of a plane containing two given vectors and a specific point, we can use the cross product of the vectors to find the normal vector of the plane, and then substitute the point and the normal vector into the equation of a plane.

17. Given the three points (1,0,1), (0,2,1), and (1,3,2), we can use the formula for the equation of a plane, which is Ax + By + Cz + D = 0. By substituting the coordinates of any of the three points into the equation, we can determine the values of A, B, C, and D. Once we have these values, we obtain the equation of the plane. To find the distance from the plane to the origin, we can use the formula for the distance between a point and a plane, which involves substituting the coordinates of the origin into the equation of the plane.

To find the equation of a plane that contains two given vectors and a specific point, we can first find the normal vector of the plane by taking the cross-product of the two vectors. The normal vector gives us the coefficients A, B, and C in the equation of the plane. To determine the constant term D, we substitute the coordinates of the given point into the equation. Once we have the values of A, B, C, and D, we can write the equation of the plane in the form Ax + By + Cz + D = 0.

Learn more about cross-product  here:

https://brainly.com/question/29097076

#SPJ11








5. n² Verify that the infinite series is divergent: En=11 3n²+2

Answers

To determine if the series ∑ (11 / (3n² + 2)) is convergent or divergent, we can use the divergence test.  The divergence test states that if the limit of the terms of a series does not approach zero, then the series is divergent.

Let's calculate the limit of the terms: lim (n → ∞) (11 / (3n² + 2))

As n approaches infinity, the denominator 3n² + 2 also approaches infinity. Therefore, the limit can be simplified as:

lim (n → ∞) (11 / ∞)

Since the denominator approaches infinity, the limit is zero. However, this does not confirm that the series is convergent. It only indicates that the divergence test is inconclusive. To determine if the series is convergent or divergent, we need to use other convergence tests, such as the integral test, comparison test, or ratio test. Therefore, based on the divergence test, we cannot conclude whether the series ∑ (11 / (3n² + 2)) is convergent or divergent. Further analysis using other convergence tests is needed.

Learn more about divergent here: brainly.com/question/32386970

#SPJ11

A benefactor wishes to establish a trust fund to pay a researcher's salary for (exactly) T years. The salary is to start at S dollars per year and increase at a fractional rate of a per year. Find the amount
of money Po that the benefactor must deposit in a trust fund paying interest at a rate r per year. To simplify the problem, assume that the researcher's salary is paid continuously, the interest is
compounded continuously, and the salary increases are granted continuously.

Answers

The benefactor must deposit $Po. Answer: $Po based on the rate.

Given data: A benefactor wants to establish a trust fund to pay a researcher's salary for (exactly) T years.

The salary is to start at S dollars per year and increase at a fractional rate of a per year.The benefactor needs to find the amount of money Po that the benefactor must deposit in a trust fund paying interest at a rate r per year. Let us denote the amount the benefactor must deposit as Po.

The salary of the researcher starts at S dollars and increases at a fractional rate of a dollars per year. Therefore, after n years the salary of the researcher will be.

So, the total salary paid by the benefactor over T years can be written as,  (1)We know that, the interest is compounded continuously, and the salary increases are granted continuously.

Hence, the rate of interest and fractional rate of the salary increase are continuous compound rates. Let us denote the total continuous compound rate of interest and rate as q. Then, (2)To find Po, we need to set the present value of the total salary paid over T years to the amount of money that the benefactor deposited, Po.

Hence, the amount Po can be found by solving the following equation:  Hence, the benefactor must deposit $Po. Answer: $Po

Learn more about rate here:

https://brainly.com/question/28207316


#SPJ11

...................what is 30 + 5?

Answers

Answer: Your anwer would be 35.

Answer:35

Step-by-step explanation:

add 5 to 30 and boom! you get 35




1. Consider the parallelogram with vertices A=(1,1,2), B = (0,2,3), C = (2,6,1), and D=( 1,013,4), where c is a real-valued constant. (a) (5 points) Use the cross product to find the area of parallelo

Answers

To find the area of the parallelogram, we can use the cross product of two adjacent sides. Let's consider the vectors AB and AC. Answer : the area of the parallelogram is 2√13.

Vector AB = B - A = (0, 2, 3) - (1, 1, 2) = (-1, 1, 1)

Vector AC = C - A = (2, 6, 1) - (1, 1, 2) = (1, 5, -1)

Now, we can take the cross product of AB and AC to find the area:

Cross product: AB × AC = (-1, 1, 1) × (1, 5, -1)

To calculate the cross product, we use the following formula:

(AB × AC) = (i, j, k)

i = (1 * 1) - (5 * 1) = -4

j = (-1 * 1) - (1 * -1) = 0

k = (-1 * 5) - (1 * 1) = -6

Therefore, AB × AC = (-4, 0, -6).

The magnitude of the cross product gives us the area of the parallelogram:

|AB × AC| = √((-4)^2 + 0^2 + (-6)^2) = √(16 + 36) = √52 = 2√13.

Hence, the area of the parallelogram is 2√13.

Learn more about  Vector  : brainly.com/question/24256726

#SPJ11

Find the Taylor polynomials P.,P1, P2, P3, and P4 for f(x) = ln(x3) centered at c = 1. 0 )

Answers

The Taylor polynomials for f(x) = ln(x³) centered at c = 1 are P₀(x) = 0, P₁(x) = 3x - 3, P₂(x) = -6(x - 1)² + 3x - 3, P₃(x) = -6(x - 1)² + 3x - 3 + 27(x - 1)³, and P₄(x) = -6(x - 1)² + 3x - 3 + 27(x - 1)³ - 81(x - 1)⁴.

For the Taylor polynomials for f(x) = ln(x^3) centered at c = 1, we need to find the derivatives of f(x) and evaluate them at x = 1.

First, let's find the derivatives of f(x):

f(x) = ln(x^3)

f'(x) = (1/x^3) * 3x^2 = 3/x

f''(x) = -3/x^2

f'''(x) = 6/x^3

f''''(x) = -18/x^4

Next, let's evaluate these derivatives at x = 1:

f(1) = ln(1^3) = ln(1) = 0

f'(1) = 3/1 = 3

f''(1) = -3/1^2 = -3

f'''(1) = 6/1^3 = 6

f''''(1) = -18/1^4 = -18

Now, we can use these values to construct the Taylor polynomials:

P0(x) = f(1) = 0

P1(x) = f(1) + f'(1)(x - 1) = 0 + 3(x - 1) = 3x - 3

P2(x) = P1(x) + f''(1)(x - 1)^2 = 3x - 3 - 3(x - 1)^2 = 3x - 3 - 3(x^2 - 2x + 1) = -3x^2 + 9x - 6

P3(x) = P2(x) + f'''(1)(x - 1)^3 = -3x^2 + 9x - 6 + 6(x - 1)^3 = -3x^2 + 9x - 6 + 6(x^3 - 3x^2 + 3x - 1) = 6x^3 - 9x^2 + 9x - 7

P4(x) = P3(x) + f''''(1)(x - 1)^4 = 6x^3 - 9x^2 + 9x - 7 - 18(x - 1)^4

Therefore, the Taylor polynomials for f(x) = ln(x^3) centered at c = 1 are:

P0(x) = 0

P1(x) = 3x - 3

P2(x) = -3x^2 + 9x - 6

P3(x) = 6x^3 - 9x^2 + 9x - 7

P4(x) = 6x^3 - 9x^2 + 9x - 7 - 18(x - 1)^4

To know more about Taylor polynomials refer here:

https://brainly.com/question/30551664#

#SPJ11

Find all points of inflection of f (x) = ln(1 + x2) = 0 (-1, In2), (1, In2) O (-1/sqrt(2), In(3/2)), (1/sqrt(2), In(3/2)) O (0,0) O (1, In2) None of these

Answers

To find the points of inflection of the function[tex]f(x) = ln(1 + x^2),[/tex]we need to find the values of x where the concavity changes.

First, we find the second derivative of f(x):

[tex]f''(x) = 2x / (1 + x^2)^2[/tex]

Next, we set the second derivative equal to zero and solve for x:

[tex]2x / (1 + x^2)^2 = 0[/tex]

Since the numerator can never be zero, the only possibility is when the denominator is zero:

[tex]1 + x^2 = 0[/tex]

This equation has no real solutions since x^2 is always non-negative. Therefore, there are no points of inflection for the function [tex]f(x) = ln(1 + x^2).[/tex]

Hence, the correct answer is "None of these."

learn more about:- inflection here

https://brainly.com/question/29017999

#SPJ11

find the indicated z score. the graph depicts the standard normal distribution with mean 0 and standard deviation 1. .9850

Answers

Therefore, the indicated z-score is 2.45.

To find the indicated z-score, we need to use a standard normal distribution table. From the graph, we can see that the area to the right of the z-score is 0.9850.
Looking at the standard normal distribution table, we find the closest value to 0.9850 in the body of the table is 2.45. This means that the z-score that corresponds to an area of 0.9850 is 2.45.
It's important to note that the standard deviation of the standard normal distribution is always 1. This is because the standard normal distribution is a normalized version of any normal distribution, where we divide the difference between the observed value and the mean by the standard deviation.

To know more about standard deviation visit:

https://brainly.com/question/31516010

#SPJ11

use function notation to represent how much the volume of the box (in cubic inches) changes by if the cutout length increases from 0.5 inches to 1.4 inches.

Answers

The change in volume of the box (in cubic inches) as the cutout length increases from 0.5 inches to 1.4 inches can be represented as ΔV(c) or V(1.4) - V(0.5) using function notation.

Let's assume that the volume of the box is represented by the function V(c), where c is the length of the cutout in inches.

To represent how much the volume of the box changes as the cutout length increases from 0.5 inches to 1.4 inches, we can use the notation ΔV(c) or V(1.4) - V(0.5). This represents the difference between the volume of the box when the cutout length is 1.4 inches and when it is 0.5 inches.

To know more about function notation,

https://brainly.com/question/13387831

#SPJ11

Evaluate the integral by making the given substitution. (Use C for the constant of integration.) COS / (vi) dt, u= vt Vi

Answers

When we evaluate the integral ∫cos(vt) dt using the given substitution u = vt, we need to express dt in terms of du, the evaluated integral is (1/v) sin(vt) + C.

Differentiating both sides of the substitution equation u = vt with respect to t gives du = v dt. Solving for dt, we have dt = du / v.

Now we can substitute dt in terms of du / v in the integral:

∫cos(vt) dt = ∫cos(u) (du / v)

Since v is a constant, we can take it out of the integral:

(1/v) ∫cos(u) du

Integrating cos(u) with respect to u, we get:

(1/v) sin(u) + C

Finally, substituting back u = vt, we have:

(1/v) sin(vt) + C

Therefore, the evaluated integral is (1/v) sin(vt) + C.

To know more about integrals, visit:
brainly.com/question/31059545

#SPJ11

y2 = 21 – x x = 5



The solutions to the system of equation above are (a1, b1) and (a2, b2). What are the values of b1 and b2 ?

Answers
A: -5 and 5
B: 4.58 and 5.09
C: undefined and 4.58
D: -4 and 4

Answers

Answer:

  D.  -4 and 4

Step-by-step explanation:

You want the y-coordinates of the solutions to the system ...

y² = 21 -xx = 5

Solutions

Substituting the given value of x into the first equation gives ...

  y² = 16

  y = ±√16 = ±4 . . . . . . take the square root

The values of b1 and b2 are -4 and 4.

<95141404393>

During the month of January, "ABC Appliances" sold 37 microwaves, 21 refrigerators and 20 stoves, while "XYZ Appliances" sold 58 microwaves, 28 refrigerators and 48 stoves. During the month of February, "ABC Appliances" sold 44 microwaves, 40 refrigerators and 23 stoves, while "XYZ Appliances" sold 52 microwaves, 27 refrigerators and 38 stoves. a. Write a matrix summarizing the sales for the month of January. (Enter in the same order that the information was given.) Preview b. Write a matrix summarizing the sales for the month of February. (Enter in the same order that the information was given.) Preview c. Use matrix addition to find a matrix summarizing the total sales for the months of January and February Preview Get Help: VIDEO Written Example

Answers

(a) The matrix summarizing the sales for the month of January is:

  [37   21   20]

  [58   28   48]

The first row represents the sales of ABC Appliances, and the second row represents the sales of XYZ Appliances. The columns represent the number of microwaves, refrigerators, and stoves sold, respectively.

(b) The matrix summarizing the sales for the month of February is:

  [44   40   23]

  [52   27   38]

Again, the first row represents the sales of ABC Appliances, and the second row represents the sales of XYZ Appliances. The columns represent the number of microwaves, refrigerators, and stoves sold, respectively.

(c) To find the matrix summarizing the total sales for the months of January and February, we perform matrix addition by adding the corresponding elements of the January and February matrices. The resulting matrix is:

  [37+44   21+40   20+23]

  [58+52   28+27   48+38]

Simplifying the calculations, we have:

  [81   61   43]

  [110  55   86]

This matrix represents the total number of microwaves, refrigerators, and stoves sold by both ABC Appliances and XYZ Appliances for the months of January and February. The values in each cell indicate the total sales for the corresponding product category.

learn more about matrix  here:

https://brainly.com/question/28180105

#SPJ11

What is the absolute value of -7?

Answers

The absolute value just means the literal value. So the absolute value of -7 is 7

Answer:

7

Step-by-step explanation:

Absolute value means however many numbers the value is from zero. When thinking of a number line, count every number until you reach zero. Absolute numbers will always be positive.

Prove that if n is odd, then n? – 1 is divisible by 8. (4) Prove that if a and b are positive integers satisfying (a, b) = [a, b], then 1=b. = a

Answers

If n is odd, then n^2 - 1 is divisible by 8.

Let's assume n is an odd integer. We can express n as n = 2k + 1, where k is an integer. Now, we can calculate n^2 - 1:

n^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4k(k + 1)

Since k(k + 1) is always even, we can further simplify the expression to:

n^2 - 1 = 4k(k + 1) = 8k(k/2 + 1/2)

Therefore, n^2 - 1 is divisible by 8, as it can be expressed as the product of 8 and an integer.

If a and b are positive integers satisfying (a, b) = [a, b], then 1 = b.

If (a, b) = [a, b], it means that the greatest common divisor of a and b is equal to their least common multiple. Since a and b are positive integers, the only possible value for (a, b) to be equal to [a, b] is when they have no common factors other than 1. In this case, b must be equal to 1 because the greatest common divisor of any positive integer and 1 is always 1. Therefore, 1 = b.

LEARN MORE ABOUT integer here: brainly.com/question/490943

3SPJ11

1. SC2LT1: Given square ABCD, find the
perimeter.
A
(4x+12) cm
D
(x+30) cm
B
C

Answers

The  Perimeter of Square is (4x+ 12) cm.

We have a square ABCD whose sides are x + 3 cm.

The perimeter of a square is the total length of all its sides. In a square, all sides are equal in length.

If we denote the length of one side of the square as "s", then the perimeter can be calculated by adding up the lengths of all four sides:

Perimeter = 4s

So, Perimeter of ABCD= 4 (x+3)

= 4x + 4(3)

= 4x + 12

Thus, the Perimeter of Square is (4x+ 12) cm.

Learn more about Perimeter here:

https://brainly.com/question/7486523

#SPJ1

9x + 2 Find the limit of f(x) = as x approaches and as x approaches - 8x + 8 lim f(x)= X-00 (Type a simplified fraction.) lim f(x) = X--00 (Type a simplified fraction.)

Answers

The limit of f(x) as x approaches positive infinity is +∞, and the limit as x approaches negative infinity is -∞. This indicates that the function f(x) becomes arbitrarily large (positive or negative) as x moves towards infinity or negative infinity.

To find the limits of the function f(x) = (9x + 2) as x approaches positive infinity and negative infinity, we evaluate the function for very large and very small values of x.

As x approaches positive infinity (x → +∞), the value of 9x dominates the function, and the constant term 2 becomes negligible in comparison. Therefore, we can approximate the limit as:

lim(x → +∞) f(x) = lim(x → +∞) (9x + 2) = +∞

This means that as x approaches positive infinity, the function f(x) grows without bound.

On the other hand, as x approaches negative infinity (x → -∞), the value of 9x becomes very large in the negative direction, making the constant term 2 insignificant. Therefore, we can approximate the limit as:

lim(x → -∞) f(x) = lim(x → -∞) (9x + 2) = -∞

This means that as x approaches negative infinity, the function f(x) also grows without bound, but in the negative direction.

Learn more about limits of the function  here:

https://brainly.com/question/7446469

#SPJ11

Partial Derivatives
I. Show that the function f defined by f(x, y) = is not continuous at (1,-1). 1, x² + y x+y " (x, y) = (1,-1) (x, y) = (1, -1)

Answers

To determine the continuity of a function at a specific point, we need to check if the limit of the function exists as the input approaches that point and if the limit is equal to the value of the function at that point. Let's evaluate the limit of the function f(x, y) = (1 + x² + y)/(x + y) as (x, y) approaches (1, -1).

First, let's consider approaching the point (1, -1) along the x-axis. In this case, y remains constant at -1. Therefore, the limit of f(x, y) as x approaches 1 can be calculated as follows:

lim(x→1) f(x, -1) = lim(x→1) [(1 + x² + (-1))/(x + (-1))] = lim(x→1) [(x² - x)/(x - 1)]

We can simplify this expression by canceling out the common factors of (x - 1):

lim(x→1) [(x² - x)/(x - 1)] = lim(x→1) [x(x - 1)/(x - 1)] = lim(x→1) x = 1

The limit of f(x, y) as x approaches 1 along the x-axis is equal to 1.

Next, let's consider approaching the point (1, -1) along the y-axis. In this case, x remains constant at 1. Therefore, the limit of f(x, y) as y approaches -1 can be calculated as follows:

lim(y→-1) f(1, y) = lim(y→-1) [(1 + 1² + y)/(1 + y)] = lim(y→-1) [(2 + y)/(1 + y)]

Again, we can simplify this expression by canceling out the common factors of (1 + y):

lim(y→-1) [(2 + y)/(1 + y)] = lim(y→-1) 2 = 2

The limit of f(x, y) as y approaches -1 along the y-axis is equal to 2.

Since the limit of f(x, y) as (x, y) approaches (1, -1) depends on the direction of approach (1 along the x-axis and 2 along the y-axis), the limit does not exist. Therefore, the function f(x, y) = (1 + x² + y)/(x + y) is not continuous at the point (1, -1).

To know more about Partial derivatives refer to this link-https://brainly.com/question/32387059?referrer=searchResults

#SPJ11

can someone help me with this

Answers

Answer:

RQ

Step-by-step explanation:

Since there are congruent, they are mirrored.

2. WXYZ is a parallelogram.
6a +10
W
X
Z
(18b-11)
(9b+ 2)°
b=
8a-4 Y
Write an equation to solve for b.
m m m m

Answers

The equation to solve for b is given as follows:

18b - 11 + 9b + 2 = 180.

The value of b is given as follows:

b = 7.

How to obtain the value of b?

In the context of a parallelogram, we have that the consecutive interior angles are supplementary, that is, the sum of their measures is of 180º.

The consecutive interior angles in this problem are given as follows:

18b - 11.9b + 2.

As these two angles are supplementary, the value of b is then obtained as follows:

18b - 11 + 9b + 2 = 180

27b = 189

b = 189/27

b = 7.

More can be learned about parallelograms at https://brainly.com/question/970600

#SPJ1

Let f be a function such that f(5)<6 (a) f is defined for all x
(b) f is increasing for all x.
(c) f is continuous for all x
(d) There is a value x=c in the interval [5,7][5,7] such that limx→cf(x)=6

Answers

The correct option is (a) function f is defined for all x.

Given that f(5) < 6, it only provides information about the specific value of f at x = 5 and does not provide any information about the behavior or properties of the function outside of that point. Therefore, we cannot infer anything about the continuity, increasing or decreasing nature, or the existence of a limit at any other point or interval. The only conclusion we can draw is that the function is defined at x = 5.

To know more about function,

https://brainly.com/question/13387831

#SPJ11

find the circulation of the vector field F(x, y, z) = (**, ) ound the curve C starting from the points P = (2,2,0), then to Q - (2,2,3), and to R=(-2,2,0), then =(-2,2, -3) then come back to P, negative oriented viewed from the positive y-axis.

Answers

The circulation of the vector field F(x, y, z) around the given curve C is 0.

To find the circulation of the vector field F(x, y, z) around the curve C, we need to evaluate the line integral of F along the closed curve C. The circulation is the net flow of the vector field around the curve. The given curve C consists of four line segments: P to Q, Q to R, R to S, and S back to P. The orientation of the curve is negative, viewed from the positive y-axis. Since the circulation is independent of the path taken, we can evaluate the line integrals along each segment separately and sum them up. However, upon evaluating the line integral along each segment, we find that the contributions from the line integrals cancel each other out. This results in a net circulation of 0. Therefore, the circulation of the vector field F(x, y, z) around the curve C, when viewed from the positive y-axis with the given orientation, is 0.

Learn more about line integrals here:

https://brainly.com/question/30763905

#SPJ11

The volume of the solid bounded below by the xy-plane, on the sides by p=18, and above by p= 16 is

Answers

The volume of the solid bounded below by the xy-plane, on the sides by p=18, and above by p=16 is 32π units cubed.

To find the volume of the solid, we need to integrate the function over the given region. In this case, the region is bounded below by the XY-plane, on the sides by p=18, and above by p=16.

Since the region is in polar coordinates, we can express the volume element as dV = p dp dθ, where p represents the distance from the origin to a point in the region, DP is the differential length along the radial direction, and dθ is the differential angle.

To integrate the function over the region, we set up the integral as follows:

V = ∫∫R p dp dθ,

where R represents the region in the polar coordinate system.

Since the region is bounded by p=18 and p=16, we can set up the integral as follows:

[tex]V = ∫[0,2π] ∫[16,18] p dp dθ.[/tex]

Evaluating the integral, we get:

[tex]V = ∫[0,2π] (1/2)(18^2 - 16^2) dθ[/tex]

[tex]= ∫[0,2π] (1/2)(324 - 256) dθ[/tex]

[tex]= (1/2)(324 - 256) ∫[0,2π] dθ[/tex]

 = (1/2)(68)(2π)

 = 68π.

Therefore, the volume of the solid bounded below by the xy-plane, on the sides by p=18, and above by p=16 is 68π units cubed, or approximately 213.628 units cubed.

learn more about integrate here:

https://brainly.com/question/31744185

#SPJ11

Other Questions
The price p (in dollars) and the demand x for a particular clock radio are related by the equation x = 5000 - 50p. (A) Express the price p in terms of the demand x, and find the domain of this functio In one of the original Doppler experiments, a tuba was played on a moving flat train car at a frequency of 69 Hz, and a second identical tuba played the same tone while at rest in the railway station. What beat frequency was heard if the train car approached the station at a speed of 13.8 m/s? Identify an accurate statement about performance appraisal forms:a. Most forms do not provide space for additional comments about the various aspects of an employee's performance. b. Performance appraisal forms tend to make the appraisal process less uniform. c. "Check-the-box" appraisal forms are somewhat more difficult and more time-consuming for supervisors to complete. d. Performance appraisal forms are usually prepared by the HR department with input from employees and supervisors. (1 point) Solve the initial value problem for r as a vector function of t. Differential equation: dr dt (t + 3t)i + (81)j + (51) Initial condition: 7(0) = 81 +1 Solution: F(t) = What is the volume of this rectangular prism? h = 11 inches B = 35 square inches S: (3 pts) Given a derivative function f'(a)-3r2, we know f(x) must have been of the form f(x) = 2+c, where c is a constant, since the derivative of ris 32. That is, if f(x)=r+c, then f'(x) = 3x The temperature at which water freezes is the same as the temperature at whichA) ice melts.B) water boils in a pressure cooker.C) both of theseD) neither of these What is risk assessment? What is the role of science in riskassessment and characterization? How does this impact policydevelopment? Give an example. [3 marks 5. (i) Find the gradient at the point (1, 2) on the curve given by: x + xy + y = 12 22 y? (ii) Find the equation of the tangent line to the curve going through the point (1,2) [2 marbry corporation has provided the following information concerning a capital budgeting project: after-tax discount rate 9% tax rate 30% expected life of the project 4 investment required in equipment $ 184,000 salvage value of equipment $ 0 annual sales $ 520,000 annual cash operating expenses $ 376,000 one-time renovation expense in year 3 $ 72,000 the company uses straight-line depreciation on all equipment. assume cash flows occur at the end of the year except for the initial investments. the company takes income taxes into account in its capital budgeting. the income tax expense in year 2 is: multiple choice $7,350 $44,100 $29,400 $22,050 The term used to describe male and female anatomical structures that derive from the same embryological structures ismesonephriczygoticgenitalhomologous Let E be the region that lies inside the cylinder x2 + y2 = 64 and outside the cylinder (x-4)2 + y2 = 16 and between the planes z = and z = 2. Then, the volume of the solid E is equal to 1601 + $?L25L8 rdr ddz. Scos) 21 -30 Select one: O True O False A property developer is considering taking advantage of thecurrent increase in people working from home. It believes that itis possible to create a block of 500 new personal distanceoffices w In the year 2000, population listen to simulation instructions you are the it security administrator for a small corporate network. you believe a hacker has penetrated your network and is using arp poisoning to infiltrate it. in this lab, your task is to discover whether arp poisoning is taking place as follows: use wireshark to capture packets on the enp2s0 interface for five seconds. analyze the wireshark packets to determine whether arp poisoning is taking place. use the ip address to help make your determination. answer the questions. Let U1, U2,... be IID Uniform(0, 1) random variables. Let M n = prod i = 1 to n U i be the product of the first n of them.(a) Show that ;= -log U; is distributed as an Exponential random variable with a certain rate.Hint: If U is Uniform(0, 1), then so is 1-U.(b) Find the PDF of S n = Sigma i = 1 ^ n xi i .(c) Finally, find the PDF of Mn. Hint: M = exp(-S) a diver jump off a pier at angle of 25 with an initial velocity of 3.2m/s. haw far from the pier will the diver hit the water? suppose in a random sample of 800 students from the university of x, 52% said that they plan to watch the super bowl. the 95% confidence interval has a margin of error of 3.5% points. does the confidence interval suggest that that the majority of students at the university of x plan to watch the super bowl? why? The 0.8?Mg car travels over the hill having the shape of a parabola. When the car is at point A, it is traveling at 9 m/s and increasing its speed at 3 m/s2. Determine the resultant normal force at this instant. Neglect the size of the car. Determine the resultant frictional force that all the wheels of the car exert on the road at this instant. which of the following skills would be considered high in task complexity? shooting a free-throw in basketball changing a flat tire trying to jump over a hurdle picking up a suitcase Steam Workshop Downloader