An isotope of Sodium undergoes β decay by emitting a
positron (positively charged electron) and this must become:

Answers

Answer 1

An isotope of Sodium undergoing β decay by emitting a positron (positively charged electron) will transform into a different element. Specifically, it will become an isotope of Magnesium.

β decay involves the transformation of a neutron into a proton within the nucleus of an atom. In this process, a high-energy electron, called a beta particle (β-), is emitted when a neutron is converted into a proton. However, in the case of β+ decay, a proton within the nucleus is converted into a neutron, and a positron (β+) is emitted.

Since the isotope of Sodium undergoes β decay by emitting a positron, one of its protons is converted into a neutron. This transformation changes the atomic number of the nucleus, and the resulting element will have one fewer proton. Sodium (Na) has an atomic number of 11, while Magnesium (Mg) has an atomic number of 12. Therefore, the isotope of Sodium, after β+ decay, becomes an isotope of Magnesium.

learn more about "electron":- https://brainly.com/question/860094

#SPJ11


Related Questions

Constants Part A If the humidity in a room of volume 450 m³ at 25 °C is 77 %, what mass of water can still evaporate from an open pan? Express your answer to two significant figures and include the appropriate units. HA ? m= Value Units Submit Provide Feedback Next > Request Answer

Answers

the mass of water that can still evaporate from an open pan in a room of volume 450 m³ at 25°C and 77% humidity is approximately 8.2 kg.

The mass of water that can still evaporate from an open pan in a room of volume 450 m³ at 25°C and 77% humidity can be calculated using the following formula:

where HA is the humidity mixing ratio of water vapor and air, C is the concentration of water vapor in the room, and V is the volume of the room.

Here, we have the value of HA which is 0.0185 kg/kg and the volume of the room which is 450 m³. We can calculate the concentration of water vapor using the following formula:

where P is the atmospheric pressure and PH2O is the partial pressure of water vapor.

PH2O can be calculated using the following formula:

where RH is the relative humidity, Psat is the saturation vapor pressure at the given temperature, and Pa is the partial pressure of dry air. Psat can be looked up from a table or calculated using an appropriate formula. Here, we will assume that it has been calculated and found to be 3.17 kPa at 25°C.The atmospheric pressure at sea level is 101.3 kPa. Therefore, the partial pressure of dry air is 0.23 × 101.3 = 23.3 kPa.

Substituting these values in the formula for PH2O, we get:

Now we can substitute the values of PH2O and HA in the formula for C to get:

Finally, we can substitute the values of C and V in the formula for the mass of water that can still evaporate from an open pan to get:

Therefore, the mass of water that can still evaporate from an open pan in a room of volume 450 m³ at 25°C and 77% humidity is approximately 8.2 kg.

learn more about vapor pressure here

https://brainly.com/question/2693029

#SPJ11

A voltage source E-5V is connected in series to a capacitance of 1 x 10 farad and a resistance of 4 ohms. What is the appropriate equation to model the behavior of the charge. Q. 100+ 4Q = 5 4 + 10 "Q-5 540 +10°Q = 4 de 04+109Q = 5 dr

Answers

The appropriate equation to model the behavior of the charge is Q - 5 + 10⁹Q = 4.

In this circuit, a voltage source of 5V is connected in series to a capacitance of 1 × 10⁻⁹ Farad (1 nanoFarad) and a resistance of 4 ohms. The behavior of the charge in the circuit can be described by the equation Q - 5 + 10⁹Q = 4.

Let's break down the equation:

Q represents the charge in Coulombs on the capacitor.

The first term, Q, accounts for the charge stored on the capacitor.

The second term, -5, represents the voltage drop across the resistor (Ohm's law: V = IR).

The third term, 10⁹Q, represents the voltage drop across the capacitor (Q/C, where C is the capacitance).

The sum of these terms, Q - 5 + 10⁹Q, is equal to the applied voltage from the source, which is 4V.

By rearranging the terms, we have the equation Q - 5 + 10⁹Q = 4, which models the behavior of the charge in the circuit.

This equation can be used to determine the value of the charge Q at any given time in the circuit, considering the voltage source, capacitance, and resistance.

To know more about voltage refer here:

https://brainly.com/question/32002804#

#SPJ11

Consider a container of nitrogen gas molecules at 900 K . Calculate.(b) the average speed.

Answers

The formula to calculate the average speed of gas particles is:Average speed of gas particles = √(8RT/πM) where R is the universal gas constant (8.31 J/Kmol), T is the temperature in Kelvin, and M is the molar mass of the gas.

Nitrogen gas molecules are present in a container at a temperature of 900K. The average speed of gas particles is to be calculated. We know that: Molar mass of nitrogen (N2) = 28 g/mol

R = 8.31 J/Kmol

T = 900 K

Now, we can substitute these values in the formula mentioned above.Average speed of gas particles = √(8RT/πM)

= √[(8 × 8.31 × 900)/(π × 28)]≈ 506.2 m/s

Therefore, the average speed of nitrogen gas molecules at a temperature of 900 K is approximately 506.2 m/s. The average speed of gas particles is the root mean square speed of the gas particles.

The formula for calculating the average speed of gas particles is:Average speed of gas particles = √(8RT/πM)

where R is the universal gas constant,

T is the temperature in Kelvin, and

M is the molar mass of the gas.

In this problem, we have nitrogen gas molecules present in a container at a temperature of 900K. The molar mass of nitrogen is 28 g/mol and the value of R is 8.31 J/Kmol. By substituting these values in the formula, we can calculate the average speed of nitrogen gas molecules which is approximately 506.2 m/s.

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

The propagation of uncertainty formula for the equation y=mx+b is (∂m∂y​δm)2+(∂x∂y​δx)2+(∂b∂y​δb)2​ where for example δm is the uncertainty on m and ∂m∂y​ is the partial derivative of y with respect to m. If m=0.4+1−0.9⋅x=−0.7+/−0.1 and b=−3.9+/−0.6 then what is the uncertainty on y QUESTION 6 Find the uncertainty in kinetic energy. Kinetic energy depends on mass and velocity according to this function E(m,v)=1/2mv2. Your measured mass and velocity have the following uncertainties δm=0.47 kg and δV=1.05 m/s. What is is the uncertainty in energy, δE, if the measured mass, m=4.55 kg and the measured velocity, v= −0.32 m/s ? Units are not needed in your answer.

Answers

The uncertainty on y is 0.392.The formula for kinetic energy is E(m,v)=1/2mv^2. The propagation of uncertainty formula for the equation y=mx+b is given by:

(∂m/∂y * δm)^2 + (∂x/∂y * δx)^2 + (∂b/∂y * δb)^2

where δm is the uncertainty on m and ∂m/∂y is the partial derivative of y with respect to m, δx is the uncertainty on x and ∂x/∂y is the partial derivative of y with respect to x, and δb is the uncertainty on b and ∂b/∂y is the partial derivative of y with respect to b.

Given that m=0.4+1−0.9⋅x=−0.7+/−0.1 and b=−3.9+/−0.6, the uncertainty on y can be found by substituting the values in the above formula.

(∂m/∂y * δm)^2 + (∂x/∂y * δx)^2 + (∂b/∂y * δb)^2

= (∂(0.4+1−0.9⋅x−3.9)/∂y * δm)^2 + (∂(0.4+1−0.9⋅x−3.9)/∂y * δx)^2 + (∂(0.4+1−0.9⋅x−3.9)/∂y * δb)^2

= (-0.9 * δm)^2 + (-0.9 * δx)^2 + δb^2

= (0.81 * 0.1^2) + (0.81 * 0.1^2) + 0.6^2

= 0.0162 + 0.0162 + 0.36

= 0.392

The uncertainty in energy δE can be found by using the formula:

(∂E/∂m * δm)^2 + (∂E/∂v * δv)^2

= (1/2 * v^2 * δm)^2 + (mv * δv)^2

= (1/2 * (-0.32)^2 * 0.47)^2 + (4.55 * (-0.32) * 1.05)^2

= 0.0192 + 2.1864

= 2.2056

Thus, the uncertainty in energy δE is 2.2056.

Learn more about kinetic energy: https://brainly.com/question/999862

#SPJ11

7. A piece of 95.3 g iron (CPm = 25.10 J mol¹ K¹) at a temperature of 281 °C is placed in 500.0 mL of water (CPsp = 4.186 Jg¹ °C¹) at 15.0 °C and the iron and water are allowed to come to thermal equilibrium. What is the final temperature of the water and iron? Assume that the heat capacities of the water and iron are constant over this temperature range and that the density of water is 1.00 g per mL. Assume that no heat is lost due to evaporation of the water, in other words, assume that this process occurs in an isolated system.

Answers

The final temperature of the water and iron is determined by solving the equation m_iron * CP_iron * (T_initial - T_final) = m_water * CP_water * (T_final - T_initial) using the given values for mass, specific heat capacities, and initial temperatures.

What is the final temperature of a 95.3 g iron piece and 500.0 mL of water when they come to thermal equilibrium, given their respective masses, specific heat capacities, and initial temperatures?

To find the final temperature of the water and iron at thermal equilibrium, we can use the principle of conservation of energy. The heat lost by the iron (Q_iron) will be equal to the heat gained by the water (Q_water).

The heat lost by the iron can be calculated using the equation Q_iron = m_iron * CP_iron * (T_initial - T_final), where m_iron is the mass of iron, CP_iron is the specific heat capacity of iron, T_initial is the initial temperature of the iron, and T_final is the final temperature of the system.

The heat gained by the water can be calculated using the equation Q_water = m_water * CP_water * (T_final - T_initial), where m_water is the mass of water, CP_water is the specific heat capacity of water, and T_final is the final temperature of the system.

Since Q_iron = -Q_water (as energy is conserved), we can set the equations equal to each other and solve for T_final.

m_iron * CP_iron * (T_initial - T_final) = m_water * CP_water * (T_final - T_initial)

Plugging in the given values, we can solve for T_final.

Assuming all the values are given, the explanation would end here. However, if the values are not given, you would need to provide them to proceed with the calculations.

Learn more about  temperature

brainly.com/question/7510619

#SPJ11

An 76-kg jogger is heading due east at a speed of 3.2 m/s. A 67-kg jogger is heading 56 ∘
north of east at a speed of 2.7 m/s. Find (a) the magnitude and (b) the direction of the sum of the momenta of the two joggers. Describe the direction as an angle with respect to due east.

Answers

The magnitude of the sum of the

momenta

can be found using the vector addition of the individual momenta.


The direction of the sum of the momenta can be described as an angle with respect to due east.

(a) To find the

magnitude

of the sum of the momenta, we need to add the individual momenta vectorially.

Momentum of the first jogger (J1):

Magnitude = Mass ×

Velocity

= 76 kg × 3.2 m/s = 243.2 kg·m/s

Momentum of the second jogger (J2):

Magnitude =

Mass

× Velocity = 67 kg × 2.7 m/s = 180.9 kg·m/s

Sum of the momenta (J1 + J2):

Magnitude = 243.2 kg·m/s + 180.9 kg·m/s = 424.1 kg·m/s

Therefore, the magnitude of the sum of the momenta is 424.1 kg·m/s.

(b) To find the direction of the sum of the momenta, we can use

trigonometry

to determine the angle with respect to due east.

Given that the second jogger is heading 56° north of east, we can subtract this angle from 90° to find the direction angle with respect to due east.

Direction angle = 90° - 56° = 34°

Therefore, the direction of the sum of the momenta is 34° with respect to due east.

To learn more about

momenta

click here.

brainly.com/question/32847939

#SPJ11

Explain how stellar evolution, and the universe would be
different if carbon was the most bound element instead of Iron.

Answers

If carbon were the most bound element instead of iron, stellar evolution and the universe would be significantly different. Carbon-based life forms would be more common, and the formation of heavy elements through stellar nucleosynthesis would be altered.

If carbon were the most bound element instead of iron, several implications would arise:

Stellar Evolution: Carbon fusion would become the primary process in stellar nucleosynthesis, leading to a different sequence of stellar evolution. Stars would undergo carbon burning, producing heavier elements and releasing energy.

The life cycle of stars, their sizes, lifetimes, and eventual fates would be modified.

Abundance of Carbon:

Carbon-based molecules, essential for life as we know it, would be more prevalent throughout the universe.

Carbon-rich environments would be more common, potentially supporting a wider range of organic chemistry and the development of carbon-based life forms.

Element Formation: The synthesis of heavier elements through stellar nucleosynthesis would be affected.

Iron is a crucial element for the formation of heavy elements through processes like supernova explosions. If carbon were the most bound element, alternative mechanisms for heavy element formation would emerge, potentially leading to a different abundance and distribution of elements in the universe.

Overall, the universe's composition, the prevalence of carbon-based life, and the processes involved in stellar evolution and element formation would be significantly different if carbon were the most bound element instead of iron.

To learn more about stellar evolution click here.

brainly.com/question/32251110

#SPJ11

What is the energy Ej and Eev of a photon in joules (J) and electron volts (eV), respectively, of green light that has a wavelength of 520 nm? Ej = = What is the wave number k of the photon? k = J rad

Answers

The energy of a photon of green light with a wavelength of 520 nm is  2.39 eV and the wave number (k) of the photon is 1.21 x 10^7 rad/m.

The energy of a photon can be calculated using the equation E = hc/λ, where E is the energy, h is Planck's constant (6.626 x 10^-34 J s), c is the speed of light (3.00 x 10^8 m/s), and λ is the wavelength.

First, let's calculate the energy (Ej) in joules:

Ej = (6.626 x 10^-34 J s * 3.00 x 10^8 m/s) / (520 x 10^-9 m)

Ej = 3.82 x 10^-19 J

Next, to convert the energy to electron volts (eV), we use the conversion factor: 1 eV = 1.6 x 10^-19 J.

Eev = (3.82 x 10^-19 J) / (1.6 x 10^-19 J/eV)

Eev ≈ 2.39 eV

Therefore, the energy of a photon of green light with a wavelength of 520 nm is approximately 3.82 x 10^-19 J and 2.39 eV.

To calculate the wave number (k) of the photon, we use the equation k = 2π/λ, where k represents the wave number and λ is the wavelength. Substituting the values:

k = 2π / (520 x 10^-9 m)

k ≈ 1.21 x 10^7 rad/m

To learn more about wavelength click here: brainly.com/question/30443986

#SPJ11

A diffraction grating contains 500 lines per millimetre. For normally incident light (i = 0) of wavelength 550 nm, at what angle would a first order diffraction maximum be observed. For which angles would a first order diffraction maximum be observed when light is incident at i = 15°?

Answers

Therefore, for light incident at an angle of 15°, a first-order diffraction maximum would be observed at an angle of approximately 23.75°.

To determine the angle at which a first-order diffraction maximum is observed using a diffraction grating, we can use the formula:

sinθ = mλ / d

Where:

θ is the angle of diffraction,

m is the order of the diffraction maximum,

λ is the wavelength of light, and

d is the spacing between the grating lines.

For normally incident light (i = 0) with a wavelength of 550 nm (or 550 × 10^(-9) meters) and a grating with 500 lines per millimeter (or 500 × 10^3 lines per meter), we have:

d = 1 / (500 × 10^3) meters

Substituting the values into the formula, we can solve for θ:

sinθ = (1 × 550 × 10^(-9)) / (1 / (500 × 10^3))

≈ 0.55

Taking the inverse sine of both sides, we find:

θ ≈ sin^(-1)(0.55)

≈ 33.59°

Therefore, for normally incident light, a first-order diffraction maximum would be observed at an angle of approximately 33.59°.

Now, let's consider the case where light is incident at an angle of i = 15°. We want to find the angles at which a first-order diffraction maximum would be observed.

Using the same formula, we can rearrange it to solve for the angle of diffraction θ:

θ = sin^(-1)((mλ / d) - sin(i))

θ = sin^(-1)((1 × 550 × 10^(-9)) / (1 / (500 × 10^3)) - sin(15°))

Calculating this expression for m = 1, we find:

θ ≈ sin^(-1)(0.55 - sin(15°))

≈ 23.75°

To learn more about diffraction: https://brainly.com/question/12290582

#SPJ11

(d) If a battery contains 2500 milliAmp-hours (mAh) of charge, how much total energy can it deliver while operating an electrical device at Z volts?

Answers

The total energy a battery can deliver at voltage Z is 2.5 Ah multiplied by Z.

To calculate the total energy that a battery can deliver while operating an electrical device at a specific voltage (Z), we need to convert the charge capacity of the battery from milliamp-hours (mAh) to amp-hours (Ah) and then multiply it by the voltage.

1. Convert the charge capacity from milliamp-hours (mAh) to amp-hours (Ah):

  Divide the given charge capacity (2500 mAh) by 1000 to convert it to amp-hours:

  2500 mAh / 1000 = 2.5 Ah

2. Calculate the total energy:

  Multiply the charge capacity in amp-hours (2.5 Ah) by the voltage (Z):

  Total Energy = Charge Capacity (Ah) × Voltage (Z)

  Total Energy = 2.5 Ah × Z

Therefore, the total energy the battery can deliver while operating an electrical device at Z volts is 2.5 Ah × Z.

To know more about voltage, click here:

brainly.com/question/32002804

#SPJ11

A ball of mass 0.5 kg is moving to the right at 1 m/s, collides
with a wall and rebounds to the left with a speed of 0.8 m/s.
Determine the impulse that the wall gave the ball.

Answers

The impulse that the wall gave the ball is equal to the change in momentum, so:

Impulse = Change in momentum = -0.9 kg m/s

The impulse that the wall gave the ball can be calculated using the impulse-momentum theorem. The impulse-momentum theorem states that the impulse exerted on an object is equal to the change in momentum of the object. Mathematically, this can be written as:

Impulse = Change in momentum

In this case, the ball collides with the wall and rebounds in the opposite direction. Therefore, there is a change in momentum from the initial momentum of the ball to the final momentum of the ball. The change in momentum is given by:

Change in momentum = Final momentum - Initial momentum

The initial momentum of the ball is:

Initial momentum = mass x velocity = 0.5 kg x 1 m/s = 0.5 kg m/s

The final momentum of the ball is:

Final momentum = mass x velocity

= 0.5 kg x (-0.8 m/s) = -0.4 kg m/s (note that the velocity is negative since the ball is moving in the opposite direction)

Therefore, the change in momentum is:

Change in momentum = -0.4 kg m/s - 0.5 kg m/s = -0.9 kg m/s

The impulse that the wall gave the ball is equal to the change in momentum, so:

Impulse = Change in momentum = -0.9 kg m/s

learn more about velocity here

https://brainly.com/question/25749514

#SPJ11

A wire of length 10 meters carrying a current of .6 amps to the left lies along the x-axis from (-5,0) to (5,0) meters. a) Find the Magnetic field created by this wire at (0,8) meters. b) Find the Magnetic field created by this wire at (10,0) meters. c) Find the Magnetic field created by this wire at (10,8) meters.

Answers

The magnetic field created by the 10m wire carrying a current of 6A to the left lies along the x-axis from (-5,0) to (5,0) meters at:

a) point (0,8) m is approximately 3.75 × 10⁻⁹ T,

b) point (10,0) m is approximately 3 × 10⁻⁹ T and

c) point (10,8) m is approximately 2.68 × 10⁻⁹ T.

To find the magnetic field created by the wire at the given points, we can use the formula for the magnetic field produced by a straight current-carrying wire.

The formula is given by:

B = (μ₀ × I) / (2πr),

where

B is the magnetic field,

μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A),

I is the current, and

r is the distance from the wire.

a) At point (0,8) meters:

The wire lies along the x-axis, and the point of interest is above the wire. The distance from the wire to the point is 8 meters. Substituting the values into the formula:

B = (4π × 10⁻⁷ T·m/A × 0.6 A) / (2π × 8 m),

B = (0.6 × 10⁻⁷ T·m) / (16 m),

B = 3.75 × 10⁻⁹ T.

Therefore, the magnetic field created by the wire at point (0,8) meters is approximately 3.75 × 10⁻⁹ T.

b) At point (10,0) meters:

The wire lies along the x-axis, and the point of interest is to the right of the wire. The distance from the wire to the point is 10 meters. Substituting the values into the formula:

B = (4π × 10⁻⁷ T·m/A ×0.6 A) / (2π × 10 m),

B = (0.6 * 10⁻⁷ T·m) / (20 m),

B = 3 × 10⁻⁹ T.

Therefore, the magnetic field created by the wire at point (10,0) meters is approximately 3 × 10⁻⁹ T.

c) At point (10,8) meters:

The wire lies along the x-axis, and the point of interest is above and to the right of the wire. The distance from the wire to the point is given by the diagonal distance of a right triangle with sides 8 meters and 10 meters. Using the Pythagorean theorem, we can find the distance:

r = √(8² + 10²) = √(64 + 100) = √164 = 4√41 meters.

Substituting the values into the formula:

B = (4π × 10⁻⁷ T·m/A × 0.6 A) / (2π × 4√41 m),

B = (0.6 × 10⁻⁷ T·m) / (8√41 m),

B ≈ 2.68 × 10⁻⁹ T.

Therefore, the magnetic field created by the wire at point (10,8) meters is approximately 2.68 × 10⁻⁹ Tesla.

Hence, the magnetic field created by the 10m wire carrying a current of 6A to the left lies along the x-axis from (-5,0) to (5,0) meters at a) point (0,8) meters is approximately 3.75 × 10⁻⁹ T, b) point (10,0) meters is approximately 3 × 10⁻⁹ T and c) point (10,8) meters is approximately 2.68 × 10⁻⁹ Tesla.

Learn more about Magnetic field from the given link:

https://brainly.com/question/30830460

#SPJ11

D Question 10 The self-inductance of a solenoid increases under which of the following conditions? Only the cross sectional area is decreased. Only the number of coils per unit length is decreased. Only the number of coils is increased. Only the solenoid length is increased. 1 pts

Answers

The self-inductance of a solenoid increases under the following conditions:

Increasing the number of turns

Increasing the length of the solenoid

Decreasing the cross-sectional area of the solenoid

Self-inductance is the property of an inductor that resists changes in current flowing through it. It is measured in henries.

The self-inductance of a solenoid can be increased by increasing the number of turns, increasing the length of the solenoid, or decreasing the cross-sectional area of the solenoid.

The number of turns in a solenoid determines the amount of magnetic flux produced when a current flows through it. The longer the solenoid, the more magnetic flux is produced.

The smaller the cross-sectional area of the solenoid, the more concentrated the magnetic flux is.

The greater the magnetic flux, the greater the self-inductance of the solenoid.

Here is a table that summarizes the conditions under which the self-inductance of a solenoid increases:

Condition                                  Increases self-inductance

Number of turns                                Yes

Length                                                   Yes

Cross-sectional area                                   No

To learn more about solenoid click here: brainly.com/question/21842920

#SPJ11

Light sails gain momentum from photons. However, photons have no mass. Explain how this is possible and the principles behind this.

Answers

Light sails gain momentum from photons through the transfer of momentum, despite photons having no mass. The energy associated with photons allows them to possess momentum, which is transferred to the light sail upon collision. This transfer follows the principles of conservation of momentum, similar to billiard ball collisions. The phenomenon is explained by the principles of electromagnetic radiation and the relativistic definition of momentum.

The phenomenon of light sails gaining momentum from photons, despite photons having no mass, is explained by the principles of electromagnetic radiation and the transfer of momentum.

Photons are particles of light and are considered to be massless. However, they do possess energy and momentum. According to Einstein's theory of relativity, the energy (E) of a photon is related to its frequency (f) by the equation E = hf, where h is Planck's constant.

In classical physics, momentum (p) is defined as mass (m) multiplied by velocity (v). However, in relativistic physics, momentum can also be defined as the ratio of energy (E) to the speed of light (c). Therefore, the momentum (p) of a photon can be expressed as p = E/c.

Since photons travel at the speed of light (c), their momentum (p) is non-zero, despite having no mass. This is due to the energy associated with the photon.

When a photon collides with an object, such as a light sail, it transfers its momentum to the object. The object absorbs the momentum of the photon, resulting in a change in its velocity or direction.

The transfer of momentum from photons to the light sail follows the principles of conservation of momentum. The total momentum of the system (photon + light sail) remains conserved before and after the interaction. Therefore, the photon imparts its momentum to the light sail, causing it to gain momentum and accelerate.

This process is similar to a billiard ball collision, where the momentum of one ball is transferred to another upon collision, even though the individual balls have different masses.

In summary, light sails gain momentum from photons through the transfer of momentum, even though photons have no mass. The energy associated with photons allows them to possess momentum, and this momentum is transferred to the light sail, causing it to accelerate.

To learn more about momentum visit : https://brainly.com/question/1042017

#SPJ11

what is the distance travelled ball that is hit by a Kino why 200Nm? SD N that work done bay a force, it is on

Answers

The distance travelled by a ball hit by Kino is directly

proportional

to the amount of work done on it by the applied force.

When a ball is hit by Kino, the force exerted by the bat causes the ball to accelerate in the direction of the force. The acceleration of the ball, in turn, causes it to move a certain distance.

In physics, the amount of

work done

on an object by a force is equal to the product of the force and the distance moved by the object in the direction of the force. This can be expressed mathematically as W = F × d, where W is the work done, F is the force, and d is the distance moved.

Work done by a

force

is measured in joules (J). One joule of work is done when a force of one newton (N) is applied over a distance of one meter (m) in the direction of the force. Therefore, if a ball hit by Kino moves a distance of 200 meters (m) and the force applied by the bat is 100 newtons (N), the work done on the ball is W = F × d = 100 N × 200 m = 20,000 J.

to know more about

proportional  

pls visit-

https://brainly.com/question/31548894

#SPJ11

ADVD disc has a radius 6.0 cm and mass 28 gram. The moment of inertia of the disc is % MR2 where M is the mass, R is the radius. While playing music, the angular velocity of the DVD is 160.0 rad/s. Calculate [a] the angular momentum of the disc [b] While stops playing, it takes 2.5 minutes to stop rotating. Calculate the angular deceleration. [C] Also calculate the torque that stops the disc.

Answers

Given that,Radius of the ADVDisc, r = 6.0 cm = 0.06 m

Mass of the disc, M = 28 g = 0.028 kg

Moment of Inertia of the disc,

I = MR² = 0.028 × 0.06² = 0.00010 kg m²

Angular Velocity, ω = 160.0 rad/s[a]

Angular Momentum, L = Iω= 0.00010 × 160.0 = 0.016 Nm s[b]

Angular deceleration, α = -ω/t, where t = 2.5 min = 150 sα = -160/150 = -1.07 rad/s²

[Negative sign indicates deceleration][c] Torque that stops the disc is given by,Torque = I αTorque = 0.00010 × (-1.07) = -1.07 × 10⁻⁵ NmAns:

Angular momentum of the disc, L = 0.016 Nm s;Angular deceleration, α = -1.07 rad/s²;Torque that stops the disc = -1.07 × 10⁻⁵ Nm.

to know more about Angular deceleration here:

brainly.com/question/22393514

#SPJ11

If the charge is -33_ μC, the speed is 1500_m/s, the strength of the magnetic field is 1_T, and the angle is 150∘, then find the force (magnitude and direction) on the charge. 2. magnitude A. 0.01548_N D. 0.02896_N B. 0.02475 N E. 0.03607 N C. 0.02817_N F. 0.02976_N 3. direction A. Left B. Into the paper C. Right D. Out of the paper

Answers

Given the charge, speed, magnetic field strength, and angle, we can calculate the force on the charge using the equation F = q * v * B * sin(θ). The magnitude of the force is 0.02896 N, and the direction is out of the paper.

The equation to calculate the force (F) on a moving charge in a magnetic field is given by F = q * v * B * sin(θ), where q is the charge, v is the velocity, B is the magnetic field strength, and θ is the angle between the velocity and the magnetic field.

Given:

Charge (q) = -33 μC = -33 × 10^-6 C

Speed (v) = 1500 m/s

Magnetic field strength (B) = 1 T

Angle (θ) = 150°

First, we need to convert the charge from microcoulombs to coulombs:

q = -33 × 10^-6 C

Now we can substitute the given values into the equation to calculate the force:

F = q * v * B * sin(θ)

 = (-33 × 10^-6 C) * (1500 m/s) * (1 T) * sin(150°)

 ≈ 0.02896 N

Therefore, the magnitude of the force on the charge is approximately 0.02896 N.

To determine the direction of the force, we need to consider the right-hand rule. When the charge moves with a velocity (v) at an angle of 150° to the magnetic field (B) pointing into the paper, the force will be directed out of the paper.

Hence, the direction of the force on the charge is out of the paper.

To learn more about charge click here brainly.com/question/13871705

#SPJ11

Four objects are located on the Y axis: the 2.0 Kg object is 3.0 m from the origin; the 3.0 kg one is 2.5 m from the origin; the 2.5 kg one is at the origin; and the 4.0 Kg is located -0.50 m from the origin. Where is the center of mass of these objects?

Answers

The answer is, "The center of mass of these objects is located 0.83 meters from the origin."

To find out the center of mass of a set of objects, the following formula can be used:

[tex]\frac{\sum m_ix_i}{\sum m_i}[/tex]

where $m_i$ is the mass of the object, and $x_i$ is its distance from a reference point.

The values can be substituted into the formula to get the center of mass. So let's compute the center of mass of these objects:

[tex]\frac{(2.0\text{ Kg})(3.0\text{ m}) + (3.0\text{ Kg})(2.5\text{ m}) + (2.5\text{ Kg})(0.0\text{ m}) + (4.0\text{ Kg})(-0.50\text{ m})}{2.0\text{ Kg} + 3.0\text{ Kg} + 2.5\text{ Kg} + 4.0\text{ Kg}}\\=\frac{6.0\text{ Kg m}+7.5\text{ Kg m}-2.0\text{ Kg m}-2.0\text{ Kg m}}{11.5\text{ Kg}}\\=\frac{9.5\text{ Kg m}}{11.5\text{ Kg}}\\=0.83\text{ m}[/tex]

Therefore, the center of mass of the four objects is located at 0.83 meters from the origin.

The answer is, "The center of mass of these objects is located 0.83 meters from the origin."

To know more about center of mass, visit:

https://brainly.com/question/27549055

#SPJ11

what must be the radius (in cm) of a disk of mass 9kg, so that it
has the same rotational inertia as a solid sphere of mass 5g and
radius 7m?
Give your answer to two decimal places

Answers

The radius (in cm) of a disk of mass 9kg, so that it has the same rotational inertia as a solid sphere of mass 5g and radius 7m should be 6.13 cm (approximately).

To determine the radius of a disk that has the same rotational inertia as a solid sphere, we need to equate their rotational inertias. The rotational inertia of a solid sphere is given by the formula:

I sphere = (2/5) * m * r_sphere^2

where m is the mass of the sphere and r_sphere is the radius of the sphere.

To find the radius of the disk, we rearrange the equation and solve for r_disk:

r_disk = sqrt((5/2) * I_sphere / m_disk)

where m_disk is the mass of the disk.

Substituting the given values into the equation, we have:

r_disk = sqrt((5/2) * (5g * 7m)^2 / 9kg) = 6.13 cm (approximately)

Therefore, the radius of the disk should be approximately 6.13 cm to have the same rotational inertia as the given solid sphere.

Learn more about rotational inertia here:

brainly.com/question/31369161

#SPJ11

The radius (in cm) of a disk of mass 9kg, so that it has the same rotational inertia as a solid sphere of mass 5g and radius 7m should be 6.13 cm (approximately).

To determine the radius of a disk that has the same rotational inertia as a solid sphere, we need to equate their rotational inertias. The rotational inertia of a solid sphere is given by the formula:

I sphere = (2/5) * m * r_sphere^2

where m is the mass of the sphere and r_sphere is the radius of the sphere. To find the radius of the disk, we rearrange the equation and solve for r_disk:

r_disk = sqrt((5/2) * I_sphere / m_disk)

where m_disk is the mass of the disk.

Substituting the given values into the equation, we have:

r_disk = sqrt((5/2) * (5g * 7m)^2 / 9kg) = 6.13 cm (approximately)

Therefore, the radius of the disk should be approximately 6.13 cm to have the same rotational inertia as the given solid sphere.

Learn more about rotational inertia here:

brainly.com/question/31369161

#SPJ11

How high would the level be in an alcohol barometer at normal atmospheric pressure? Give solution with three significant numbers.

Answers

The height of the liquid column in an alcohol barometer at normal atmospheric pressure would be 13.0 meters

In an alcohol barometer, the height of the liquid column is determined by the balance between atmospheric pressure and the pressure exerted by the column of liquid.

The height of the liquid column can be calculated using the equation:

h = P / (ρ * g)

where h is the height of the liquid column, P is the atmospheric pressure, ρ is the density of the liquid, and g is the acceleration due to gravity.

For alcohol barometers, the liquid used is typically ethanol. The density of ethanol is approximately 0.789 g/cm³ or 789 kg/m³.

The atmospheric pressure at sea level is approximately 101,325 Pa.

Substituting the values into the equation, we have:

h = 101,325 Pa / (789 kg/m³ * 9.8 m/s²)

Calculating the expression gives us:

h ≈ 13.0 m

Therefore, the height of the liquid column in an alcohol barometer at normal atmospheric pressure would be approximately 13.0 meters.

Learn more about barometer from the given link

https://brainly.com/question/3083348

#SPJ11

Mary applies a force of 25 N to push a box with an acceleration of 0.45 ms. When she increases the pushing force to 86 N, the box's acceleration changes to 0.65 m/s2 There is a constant friction force present between the floor and the box (a) What is the mass of the box? kg (b) What is the confident of Kinetic friction between the floor and the box?

Answers

The mass of the box is approximately 55.56 kg, and the coefficient of kinetic friction between the floor and the box is approximately 0.117.

To solve this problem, we'll use Newton's second law of motion, which states that the force applied to an object is equal to the product of its mass and acceleration (F = ma). We'll use the given information to calculate the mass of the box and the coefficient of kinetic friction.

(a) Calculating the mass of the box:

Using the first scenario where Mary applies a force of 25 N with an acceleration of 0.45 m/s²:

F₁ = 25 N

a₁ = 0.45 m/s²

We can rearrange Newton's second law to solve for mass (m):

F₁ = ma₁

25 N = m × 0.45 m/s²

m = 25 N / 0.45 m/s²

m ≈ 55.56 kg

Therefore, the mass of the box is approximately 55.56 kg.

(b) Calculating the coefficient of kinetic friction:

In the second scenario, Mary applies a force of 86 N, and the acceleration of the box changes to 0.65 m/s². Since the force she applies is greater than the force required to overcome friction, the box is in motion, and we can calculate the coefficient of kinetic friction.

Using Newton's second law again, we'll consider the net force acting on the box:

F_net = F_applied - F_friction

The applied force (F_applied) is 86 N, and the mass of the box (m) is 55.56 kg. We'll assume the coefficient of kinetic friction is represented by μ.

F_friction = μ × m × g

Where g is the acceleration due to gravity (approximately 9.81 m/s²).

F_net = m × a₂

86 N - μ × m × g = m × 0.65 m/s²

Simplifying the equation:

μ × m × g = 86 N - m × 0.65 m/s²

μ × g = (86 N/m - 0.65 m/s²)

Substituting the values:

μ × 9.81 m/s² = (86 N / 55.56 kg - 0.65 m/s²)

Solving for μ:

μ ≈ (86 N / 55.56 kg - 0.65 m/s²) / 9.81 m/s²

μ ≈ 0.117

Therefore, the coefficient of kinetic friction between the floor and the box is approximately 0.117.

To know more about kinetic friction refer to-

https://brainly.com/question/30886698

#SPJ11

It can be argued that the photoelectric effect is simply a restatement of one of the 10 physics principles. Identify the relevant principle and then explain why the photoelectric effect is an example of this principle.

Answers

The photoelectric effect is an example of the conservation of energy and the quantization of energy, demonstrating that energy is conserved and exists in discrete packets known as photons.

According to the conservation of energy principle, the total energy of a system is conserved. In the context of the photoelectric effect, this principle states that the total energy of the incident photon is equal to the sum of the kinetic energy of the emitted electron and the energy required to overcome the binding energy of the electron within the material.

The energy of a photon is shown by the equation E = hf, where E is the energy, h is Planck's constant, and f is the frequency of the light.

In the photoelectric effect, electrons are emitted from the material when they absorb photons with energy greater than or equal to the work function (ϕ) of the material. The work function represents the minimum amount of energy required to remove an electron from the material.

If the energy of the incident photon (hf) is greater than the work function (hf ≥ ϕ), the excess energy is converted into the kinetic energy of the emitted electron. The kinetic energy of the emitted electron (KE) is given by KE = hf - ϕ.

This relationship between the energy of photons, the work function, and the kinetic energy of emitted electrons is a direct consequence of the conservation of energy principle and provides evidence for the quantization of energy.

Therefore, the photoelectric effect can be understood as a restatement of the conservation of energy principle, highlighting the quantized nature of energy and the discrete behavior of photons.

Learn more about the photoelectric effect here:

https://brainly.com/question/33463799

#SPJ4

Question 7 1 pts When moving from air to glass a beam of light is which of the following Bent away from the normal Undeflected Bent towards the normal It depends on the type of glass Question 8 1 pts

Answers

When moving from air to glass a beam of light is bent towards the normal.What is refraction?The bending of light as it passes from one medium to another is known as refraction. A ray of light that passes from a less dense medium to a denser medium bends toward the normal or perpendicular to the surface separating the two mediums.

In the same way, a ray of light that passes from a more dense medium to a less dense medium bends away from the normal or perpendicular to the surface separating the two mediums.The degree to which light is refracted at a given angle of incidence is determined by the refractive index of the two materials. The speed of light in a material is determined by the refractive index of the material. The refractive index is calculated as the ratio of the speed of light in a vacuum to the speed of light in the material.Therefore, when moving from air to glass a beam of light is bent towards the normal.

To know more about refraction visit:

https://brainly.com/question/13088981

#SPJ11

A tangential force of 89789.9 N is applied to a 6.2mm copper cube as shown below, find the shear strain given that the shear modulus of brass is 4.2 X 1070 N/m?? A Shear strain rad

Answers

The shear strain of the copper cube is approximately 0.02144 radians.

To find the shear strain of the copper cube, we can use the equation:

Shear strain = Shear stress / Shear modulus

The applied tangential force is 89789.9 N and the shear modulus of brass (assuming it was mistakenly mentioned as copper) is 4.2 x 10^7 N/m², we need to convert the dimensions of the cube to obtain the shear stress.

The shear stress can be calculated using the formula:

Shear stress = Force / Area

The area of the cube's face can be determined by squaring the length of one side, which is given as 6.2 mm or 0.0062 m.

Now, let's calculate the shear stress:

Area = (0.0062 m)² = 3.844 x 10^-5 m²

Shear stress = 89789.9 N / 3.844 x 10^-5 m²

Next, we can calculate the shear strain:

Shear strain = Shear stress / Shear modulus

Shear strain = (89789.9 N / 3.844 x 10^-5 m²) / (4.2 x 10^7 N/m²)

Evaluating the expression, we find that the shear strain is approximately 0.02144 rad.

learn more about "copper ":- https://brainly.com/question/21406849

#SPJ11

A 20 gram hollow sphere rolls down a 25 cm high ramp from rest. The sphere has a radius of 1.5 cm. You can ignore air resistance. What is the sphere's linear speed at the bottom of the ramp? 3.46 m/s 0.87 m/s 1.73 m/s 4.65 m/s 2.05 m/s 1.34 m/s

Answers

The linear speed of a hollow sphere that rolls down a 25 cm high ramp from rest can be determined as follows:

Given data: mass of the sphere (m) = 20 g = 0.02 kg

The radius of the sphere (r) = 1.5 cm = 0.015 m

height of the ramp (h) = 25 cm = 0.25 m

Acceleration due to gravity (g) = 9.81 m/s².

Let's use the conservation of energy principle to calculate the linear speed of the sphere at the bottom of the ramp.

The initial potential energy (U₁) is given by: U₁ = mgh where m is the mass of the sphere, g is the acceleration due to gravity, and h is the height of the ramp.

U₁ = 0.02 kg × 9.81 m/s² × 0.25 m = 0.049 J.

The final kinetic energy (K₂) is given by: K₂ = (1/2)mv² where m is the mass of the sphere and v is the linear speed of the sphere.

K₂ = (1/2) × 0.02 kg × v².

Let's equate the initial potential energy to the final kinetic energy, that is:

U₁ = K₂0.049 = (1/2) × 0.02 kg × v²0.049

= 0.01v²v² = 4.9v = √(4.9) = 2.21 m/s (rounded to two decimal places).

Therefore, the sphere's linear speed at the bottom of the ramp is approximately 2.21 m/s.

Hence, the closest option (d) to this answer is 2.05 m/s.

The sphere's linear speed is 2.05 m/s.

Learn more about linear speed and hollow sphere https://brainly.com/question/15992647

#SPJ11

An evacuated tube uses an accelerating voltage of
3.100E−1MegaVolts to accelerate protons to hit a copper plate.
Non-relativistically, what would be the maximum speed of these
protons?

Answers

The maximum speed of the protons accelerated by the evacuated tube is approximately 2.188 x 10⁷ m/s.

To determine the maximum speed of protons accelerated by an evacuated tube with a given voltage, we can use the equation for the kinetic energy of a non-relativistic particle:

K.E. = (1/2)mv²

where K.E. is the kinetic energy, m is the mass of the proton, and v is the velocity of the proton.

Given:

Voltage (V) = 3.100E−1 MegaVolts = 3.100E5 Volts (converted to SI units)

To find the velocity (v), we need to equate the kinetic energy to the work done by the electric field:

K.E. = eV

where e is the elementary charge (1.602E-19 Coulombs).

Now, we can solve for v:

(1/2)mv² = eV

Rearranging the equation:

v² = (2eV)/m

Taking the square root of both sides:

v = √((2eV)/m)

Substituting the known values:

v = √((2 × 1.602E-19 C × 3.100E5 V) / (1.6726219E-27 kg))

Calculating the expression:

v ≈ 2.188 x 10⁷ m/s

Therefore, the maximum speed of the protons accelerated by the evacuated tube is approximately 2.188 x 10⁷ m/s.

Read more on acceleration here: https://brainly.com/question/25876659

#SPJ11

4. Follow the steps listed below to solve the following scenario: A plane flies 40 km East, then 30 km at 15 °
West of North, then 50 km at 30° South of West. What is its displacement (resultant) vector?
a. Assign a letter ("A", "B", "C", etc.) to each vector. Record the magnitudes and the angles of each
vector into your lab book.
b. Write an addition equation for your vectors. For example: A + B + C = R
c. Find the resultant vector by adding the vectors graphically:
i. Draw a Cartesian coordinate system.
ii. Determine the scale you want to use and record it (example: 1 cm=10 km).
iii. Add the vectors by drawing them tip-to-tail. Use a ruler to draw each vector to scale and
use a protractor to draw each vector pointing in the correct direction.
iv. Label each vector with the appropriate letter, magnitude, and angle. Make sure that the
arrows are clearly shown.
v. Draw the resultant vector.
vi. Use the ruler to determine the magnitude of the resultant vector. Show your calculation,
record the result, and draw a box around it. Label the resultant vector on your diagram.
vii. Use the protractor to determine the angle of the resultant vector with respect to the
positive x-axis. Record the value and draw a box around it. Label this angle on your diagram.
d. Find the resultant vector by adding the vectors using the analytical method:
i. Calculate the x and y-components of each vector.
ii. Find the x-component and the y-component of the resultant vector.
iii. Find the magnitude of the resultant vector. Draw a box around your answer.
iv. Find the angle that the resultant makes with the positive x-axis. Draw a box around your
answer.
e. Calculate the % difference between the magnitudes of your resultant vectors (graphical vs.
analytical).
f. Compare your two angles (measured vs. calculated).

Answers

a. Magnitudes and angles of each vector:

A: 40 km (East), B: 30 km (15° West of North), C: 50 km (30° South of West).

b. Addition equation: A + B + C = R.

c. Graphical method: Draw vectors A, B, and C to scale, measure magnitude and angle of R.

d. Analytical method: Calculate x and y-components of each vector, find magnitude and angle of R.

e. % difference between graphical and analytical magnitudes of R.

f. Comparison of measured and calculated angles of R.

To solve the scenario, follow these steps:

a. Assign letters and record magnitudes and angles:

Let A be the vector representing the plane flying 40 km East, B be the vector for 30 km at 15° West of North, and C represent 50 km at 30° South of West.

A: Magnitude = 40 km, Angle = 0° (East)

B: Magnitude = 30 km, Angle = 75° (15° West of North)

C: Magnitude = 50 km, Angle = 240° (30° South of West)

b. Write the addition equation: A + B + C = R

c. Find the resultant vector graphically:

- Draw a Cartesian coordinate system.

- Determine the scale (e.g., 1 cm = 10 km).

- Draw vectors A, B, and C to scale, tip-to-tail.

- Label each vector with letter, magnitude, and angle.

- Draw the resultant vector R.

- Measure the magnitude of R using a ruler and record it.

- Measure the angle of R with respect to the positive x-axis using a protractor and record it.

d. Find the resultant vector analytically:

- Calculate x and y-components of each vector.

- Find the x and y-components of R.

- Calculate the magnitude of R and record it.

- Determine the angle of R with the positive x-axis and record it.

e. Calculate the % difference between the magnitudes of the resultant vectors obtained graphically and analytically.

f. Compare the measured angle of R with the calculated angle obtained analytically.

Learn more about vector from this link:

https://brainly.com/question/25705666

#SPJ11

Show that whenever white light is passed through a diffraction grating of any spacing size, the violet end of the spectrum in the third order on a screen always overlaps the red end of the spectrum in the second order.

Answers

When the white light passes through the diffraction grating, the violet light will be deviated at a larger angle than the red light. This causes the violet light to overlap with the red light on the screen, as the violet light has a wider spread due to its larger angle of diffraction.

When white light passes through a diffraction grating, it undergoes diffraction, which causes the different colors of light to spread out. This creates a pattern of colored bands known as a spectrum. The spacing of the grating determines the angles at which different orders of the spectrum are observed on a screen.

To understand why the violet end of the spectrum in the third order overlaps with the red end of the spectrum in the second order, we need to consider the relationship between the angles of diffraction for different colors.

The angle at which a specific color is diffracted depends on its wavelength. The violet end of the spectrum has a shorter wavelength than the red end. Since the third order is associated with a higher angle of diffraction than the second order, we can deduce that the violet light will be diffracted at a larger angle than the red light.

As a result, when the white light passes through the diffraction grating, the violet light will be deviated at a larger angle than the red light. This causes the violet light to overlap with the red light on the screen, as the violet light has a wider spread due to its larger angle of diffraction.


To know more about diffraction visit:

https://brainly.com/question/12290582

#SPJ11

A 8.0μF capacitor, a 11μF capacitor, and a 14 Part A uF capacitor are connected in parallel. What is their equivalent capacitance? Express your answer in microfarads.

Answers

When capacitors are connected in parallel, their equivalent capacitance can be obtained using the formula below:

Ceq = C1 + C2 + C3 + ……… + Cn

Where Ceq is the equivalent capacitance and C1, C2, C3, and Cn are the capacitance values of individual capacitors.

Using the formula above, we can obtain the equivalent capacitance of the capacitors connected in parallel as follows:

Ceq = 8.0 μF + 11 μF + 14 μF= 33 μF

Therefore, the equivalent capacitance of the capacitors connected in parallel is 33 μF.

Summing all of the individual capacitances in a circuit based on the relationships between these capacitors yields the equivalent capacitance, which is the sum of all of the capacitance values. Condensers, in particular, can be in series or parallel.

The idea of equivalent capacitance is used to show how one capacitor can replace multiple capacitors in a circuit. Therefore, the voltage drop for both a circuit with multiple capacitors connected to it and another circuit with a single capacitor of equivalent capacitance will be the same.

Know more about equivalent capacitance:

https://brainly.com/question/30556846

#SPJ11

A Type la supernova has an effective temperature of 7000 K and the speed of the shells photosphere is 5000 km/s. What is its abolute magnitude if it is 62 days old? red d out of Select one: a.-18.9 b.-18.6 c. -18.0 d.-18.3 e.-19.2

Answers

The answer is b. -18.6. The absolute magnitude of a Type Ia supernova is about -19.3. However, the absolute magnitude decreases as the supernova ages. At 62 days old, the absolute magnitude is about -18.6.

The reason for this is that the supernova is expanding. As it expands, the surface area of the photosphere increases. This means that the same amount of energy is spread over a larger area, and the brightness of the supernova decreases.

The speed of the shells photosphere is not relevant to the question. The speed of the shell's photosphere only affects the width of the supernova's light curve. The light curve is a graph of the supernova's brightness over time. The width of the light curve is determined by the speed of the shell's photosphere and the amount of energy released in the explosion.

Here is a table of the absolute magnitude of a Type Ia supernova at different ages:

Age (days) Absolute magnitude

0                         -19.3

10                         -19.0

20                          -18.8

30                         -18.6

40                         -18.4

50                         -18.2

60                          -18.0

70                         -17.8

80                         -17.6

90                         -17.4

100                         -17.2

To learn more about supernova click here

https://brainly.com/question/31369072

#SPJ11

Other Questions
"Research a need for education or re-education: Inspiratoryspirometry teaching (The audience can be in the form of aclassroom, staff in-service, or individual student). Chose alearning theory .If Carolyn's consumption rises by $5,000 as her income increases from $32,000 to $38,000 per year, her marginal propensity to consume is: a. 0.16. b. 0.19. c. 0.60. d. 0.83. e. Impossible to determine from the data Kerri decides to invest $18,500 each year for retirement beginning next year, and would like to see her investments to grow to $1,430,000. Assuming the interest rate that applies here is 10.9% and it will compound annually, how many years will it take for Kerri to meet her retirement goal of $1,430,000? 22.57 years 43.36 years 21.68 years 20.63 years Understanding the characteristics of a successful research topicis critical when designing a research study. Discuss the maincharacteristics that Mr Bunda should be aware of when coming upwith a research topic A guitar string is vibrating at its 2nd overtone or 3rd fundamental mode of vibration. The note produced by the string is 587.33 Hz. The speed of the wave on the string is 350 m/s. What is the length of the string? 0.596 m 0.894 m 111 m 1.68 m A 2.860 kg, 60.000 cm diameter solid ball initially spins about an axis that goes through its center at 5.100 rev/s. A net torque of 1.070 N.m then makes the ball come to a stop. The average net power of the net torque acting on the ball as it stops the ball, in Watts and to three decimal places, is A sample of lead has a mass of 36 kg and a density of 11.3 x 103 kg/m at 0 degree Celcius. Given the average linear expansion coefficient of lead 29 x 10-K-1 (a) What is the density of lead at 90 degree Celcius? (in SI units) (b) What is the mass of the sample of lead at 90 degree Celcius? (in Sl units) A 1.0 kg ball is dropped from the roof of a building 40 meterstall. Ignoring air resistance, what is the approximate time offall An oil company instituted a new accounting system for its oil reserves. Suppose a random sample of 100 accounting transactions using the old method reveals 18 in error; and a random sample of 100 accounting transactions using the new method reveals 6 errors. Is the new method more effective? E The method ________ adds an item s into a combobox cbo. a. cbo.addchoice(s) b. cbo.addobject(s) c. cbo.additem(s) d. cbo.add(s) e. cbo.getitems().add(s) Which of the following would most likely increase the payableslevel?Select one:a.Increase in DPOb.Decrease in DPOc.Increase in DPO and decrease in daily CGSd.Decrease in DPO and decrease in Let each group take turns performing a song or playing recordings of ballads or folk songs from the trails west. During the process of diffusion, solute particles will generally move from an area of high solute concentration, to an area of low solute concentration. This happens because... solute particles are drawn to regions of high solvent concentration solute particles move away from regions of high solute concentration the random motion of particles suspended in a fluid results in their uniform distribution. solute particles tend to move until they are uniformly distributed within the solvent, and stop moving. What is the equation of the line that is perpendicular to the line y = 6 and passes through the point (-4,-3) This Year The Country Of Economia Had A Real GDP Of $115 Billion And The Population Was 0.9 Billion. Last Year Real GDP Was 105 Billion And The Population Was 0.85 Billion. Economia's Growth Rate Of Real GDP Per Person Is __________ Percent Ethical Standards for Human Services Professionals.Prepare to share in discussion the following points:Choose two standards contained within the code.Describe them in more detail and explain how they apply to you personally.STANDARD 6 Sexual or romantic relationships with current clients are prohibited. Before engaging in sexual or romantic relationships with former clients, friends, or family members of former clients, human service professionals carefully evaluate potential exploitation or harm and refrain from entering such a relationship.STANDARD 7 Human service professionals ensure that their values or biases are not imposed upon their clients.Read and discuss Standard 16.Why do you think it is important (Standard 16) to advocate for social justice and seek to eliminate oppression?STANDARD 16 Human service professionals advocate for social justice and seek to eliminate oppression. They raise awareness of underserved population in their communities and with the legislative system. Covered Interest Arbitrage.Assume the following information:Quoted PriceSpot rate (/$) 118.60180-day forward rate (/$) 117.801-year Japanese yen interest rate 3.40%1-year US dollar interest rate 4.80%Given this information, what would be the semiannual yield (percentage return) of a Tokyo investor who used covered interest arbitrage by investing in the U.S? (Assume the investor has /593,000,000 of arbitrage funds available) What would be the potential profit from doing coverage interest arbitrage Simon Sineks Main Point Is That You Need To Have Simple Language To Make A Strategy Stick. Describe A Business-Finance Degree To Someone That Has Never Gone To University And Is Not Familiar With This Degree. What Simple Language Would You Use? I have a young patient with hirsutism caused by polycystic ovarian syndrome. She's fed up with her symptoms, which haven't improved despite long-term treatment with oestrogens, spironolactone, and cyproterone. She has inquired as to whether surgery would be beneficial. A deuteron (the nucleus of an isotope of hydrogen) has a mass of 3.34x10-27 kg and a charge of 1.60 10-19 C. The deuteron travels in a circular path with a radius of 720 mm in a magnetic field with a magnitude of 2.80 T Find the speed of the deuteron Steam Workshop Downloader