Choose one answer. A system with input z(t) and output y(t) is described by y" (t) + y(y) = x(t) This system is 2 1) over-damped 2) under-damped 3) critically damped 4) undamped hoose one answer. What is the linear differential equation with constant coefficients that represent. the relation between the input z(t) and y(t) of the LTI system whose impulse response h(t)= 3 + 3 z(t)h(t)= -21 3 →y(t) 1) +(t) + 2y(t)=z(t) 2) vy(t) + 2y(t) = x(t) 3) v+v(t)-2y(t)=z(t) Let the LTI system z(t)H(s) **+*+16 →y(t) This system is 1) stable and under-damped 2) stable and critically-damped 3) stable and over-damped 4) unstable. Choose one answer.

Answers

Answer 1

The given system with input z(t) and output y(t) is described by y"(t) + y(t) = x(t). This system is underdamped. Therefore, option 1 is correct.

The general form of the linear differential equation with constant coefficients that represent the relation between the input z (t) and y (t) is given by v2+2nv+v2n = 0, where n is the natural frequency, v = d/dt, and  is the damping ratio.Now, the given impulse response is h(t) = 3 + 3u(t) and y(t) = 3*h(t) - 21(t).

Here, u(t) is the unit step function, and (t) is the delta function. Now, by using the convolution property of LTI system and Laplace transform, we get z(t)H(s) = Y(s)H(s) => Y(s) = z(s)/(s^2 + 1) Now, by using partial fraction method, we getY(s) = (3z(s) - 21)/(s^2 + 1) => y(t) = 3cos(t)z(t) - 21sin(t)z(t)Here, we can see that the system is stable and underdamped. Therefore, option 1 is correct.

To know more about underdamped systems. visit :

https://brainly.com/question/31474433

#SPJ11


Related Questions

Prove the following entailment in three different ways. a) Prove that (A → ¬B) = b) Prove that (A → ¬B) = c) Prove that (A → ¬B) = (BA A) with truth tables. [2 points] (BA A) with logical equivalences. [2 points] (BA A) with the resolution algorithm. [3 points]

Answers

Answer:

To prove (A → ¬B) = (BA A), we can use the following three methods:

Method 1: Truth tables

Constructing the truth tables for both propositions, we get:

A | B | ¬B | A → ¬B | BA A | (A → ¬B) = (BA A)

-----------------------------------------------

T | T |  F |    F    |  T  |           F

T | F |  T |    T    |  T  |           T

F | T |  F |    T    |  F  |           F

F | F |  T |    T    |  F  |           F

Since both truth tables have identical truth values for each row, we can conclude that (A → ¬B) = (BA A) is a logically valid proposition.

Method 2: Logical equivalences

Using logical equivalences, we can transform (BA A) into (A → (¬B)), as follows:

BA A = ¬B ∨ A          (definition of material implication)

   = A → ¬B         (definition of material implication)

Therefore, (A → ¬B) = (BA A) is a logically valid proposition.

Method 3: Resolution algorithm

Using the resolution algorithm, we can derive the empty clause from the negation of (A → ¬B) = (BA A), as follows:

1. ¬(A → ¬B) ∨ BA A              (negation of (A → ¬B) = (BA A))

2. ¬(¬A ∨ ¬B) ∨ BA A            (definition of material implication)

3. (A ∧ B) ∨ BA A                (De Morgan's law)

4. (B ∨ BA) ∧ (A ∨ BA)           (distribution)

5. (A ∨ BA) ∧ (B ∨ BA)           (commutativity)

6. (¬A ∨ BA) ∧ (¬B ∨ BA)         (De Morgan's law)

7. (¬B ∨ ¬A ∨ BA) ∧ (B ∨ ¬A ∨ BA) (distribution)

8. (¬B ∨ BA) ∧ (B ∨ ¬A ∨ BA)     (resolution on clauses 6 and 7)

9. BA                             (resolution on clauses 5 and 8)

10. ¬BA ∨ BA                     (

Explanation:

Please explain how 1000g of
natural uranium produce 85g of enriched uranium?
Question:
What is the depleted and enriched
uranium mass of 300grams of uranyl nitrate?

Answers

Without information regarding the enrichment level of the uranyl nitrate, it is not possible to determine the exact masses of depleted and enriched uranium in 300 grams of uranyl nitrate. The calculation requires knowledge of the specific enrichment process and the composition of uranyl nitrate.

The calculation requires knowledge of the specific enrichment process and the composition of uranyl nitrate. The process of enriching uranium involves increasing the concentration of the fissile isotope Uranium-235 (U-235) in natural uranium. In this case, starting with 1000 grams of natural uranium, it is stated that 85 grams of enriched uranium is produced. The remaining mass after enrichment is referred to as depleted uranium. For the question regarding the mass of depleted and enriched uranium in 300 grams of uranyl nitrate, the exact quantities cannot be determined without additional information. The composition of uranyl nitrate and the specific enrichment process used are needed to calculate the resulting masses accurately. However, it can be assumed that the enrichment process may lead to a decrease in the overall mass of uranium due to the removal of some U-238 during the enrichment process. To determine the mass of depleted and enriched uranium in 300 grams of uranyl nitrate, one would need to know the enrichment level of the uranyl nitrate, which represents the concentration of U-235. With this information, the mass of enriched uranium can be calculated based on the enrichment level and the total mass of uranyl nitrate. The mass of depleted uranium can be calculated by subtracting the mass of enriched uranium from the total mass of uranyl nitrate.

Learn more about isotope here:

https://brainly.com/question/28039996

#SPJ11

Discussions List View Topic Control system Subscribe Discuss the importance of the control system the development of the industrial system.

Answers

Control systems are vital for the development of industrial systems as they provide precise regulation, automation, and optimization of processes. They enhance productivity, quality, and safety, contributing to the overall efficiency and success of industrial operations.

Control systems are essential in the development of industrial systems as they enable effective regulation and optimization of processes. These systems ensure that industrial operations function within desired parameters, achieving efficient and reliable performance. Control systems utilize sensors and actuators to monitor and control variables such as temperature, pressure, flow rate, and speed. By continuously measuring these variables and comparing them to desired setpoints, control systems provide feedback that allows for necessary adjustments. Industrial control systems offer several benefits. They enhance productivity by automating and optimizing processes, reducing human error, and increasing efficiency. Control systems also contribute to the quality and consistency of industrial output, ensuring products meet desired specifications. Moreover, they improve safety by monitoring and controlling critical parameters, preventing hazardous conditions and accidents. By providing real-time monitoring and quick response capabilities, control systems enable timely detection and correction of deviations, minimizing downtime and optimizing resource utilization.

Learn more about Control systems here:

https://brainly.com/question/28136844

#SPJ11

A nickel resistance thermometer has a resistance of 150 ohm at 0°C. When measuring the temperature of a heating element, a resistance value of 225 ohm is measured. Given that the temperature coefficient of resistance of nickel is 0.0067/°C, calculate the temperature of the heat process. [15 Marks] b) Distinguish the difference between actuators and sensors. [6 Marks] c) With the aid of diagrams, describe hysteresis.

Answers

A nickel resistance thermometer has a resistance of 150 ohm at 0°C. When measuring the temperature of a heating element, a resistance value of 225 ohm is measured.

Given that the temperature coefficient of resistance of nickel is 0.0067/°C, calculate the temperature of the heat process. A nickel resistance thermometer has a resistance of 150 ohm at 0°C. When measuring the temperature of a heating element, a resistance value of 225 ohm is measured.

Given that the temperature coefficient of resistance of nickel is 0.0067/°C, calculate the temperature of the heat process. Assuming that the temperature is θ in degrees Celsius, we have 150 ohms for a resistance thermometer at 0°C and a coefficient of 0.0067/°C for nickel's temperature coefficient of resistance.

To know more about resistance visit:

https://brainly.com/question/29427458

#SPJ11

Based on wave attenuation and reflection measurements conducted at 1 MHz, it was determined that the intrinsic impedance of a certain medium is nc = 28.1e/45 and the skin depth is 5 m. Determine the conductivity of the material, the wavelength in the medium and the phase velocity.

Answers

By performing the calculations using the provided formulas and given values, we can determine the conductivity of the material, the wavelength in the medium, and the phase velocity.

To determine the conductivity of the material, the wavelength in the medium, and the phase velocity based on the given information, we can use the following formulas:

Conductivity (σ):

Calculation for Conductivity:

σ = πfμ0(1+j)/nc²

where f is the frequency, μ0 is the permeability of free space, and nc is the intrinsic impedance of the medium.

Frequency (f) = 1 MHz

= 1 × 10^6 Hz

Intrinsic Impedance (nc) = 28.1e/45

Using these values and the formula, we can calculate the conductivity (σ).

Wavelength (λ):

Calculation for Wavelength:

λ = 2π/β

where β is the propagation constant, which is related to the skin depth.

Skin Depth (δ) = 5 m

Using the skin depth, we can calculate the propagation constant (β) and then determine the wavelength (λ).

Phase Velocity (v):

Calculation for phase velocity:

v = ω/β

where ω is the angular frequency.

Frequency (f) = 1 MHz

= 1 × 10^6 Hz

Using the frequency, we can calculate the angular frequency (ω) and then determine the phase velocity (v).

Now, let's calculate each of these quantities step by step:

Conductivity (σ):

Using the given frequency (f) and intrinsic impedance (nc), we can calculate the conductivity (σ) as follows:

σ = (π × 1 × 10^6 × 4π × 10^(-7) × (1+j)) / (28.1e/45)²

Wavelength (λ):

Using the given skin depth (δ), we can calculate the propagation constant (β) and then determine the wavelength (λ) as follows:

β = 1 / δ

λ = 2π / β

Phase Velocity (v):

Using the given frequency (f), we can calculate the angular frequency (ω) and then determine the phase velocity (v) as follows:

ω = 2π × 1 × 10^6

v = ω / β

Therefore, by performing the calculations using the provided formulas and given values, we can determine the conductivity of the material, the wavelength in the medium, and the phase velocity.

To know more about Velocity, visit

brainly.com/question/21729272

#SPJ11

Provide an example that clearly describes differences among stacks, queues, and hash tables. This can be an example described in layman’s terms or a visual description (i.e., a stack of dishes); please do not provide a non-technical analogy.

Answers

Stacks, queues, and hash tables are different types of data structures each with unique properties.

Stacks follow a Last-In-First-Out (LIFO) principle, queues follow a First-In-First-Out (FIFO) principle, while hash tables allow for quick lookup based on keys. Consider a deck of cards as a stack. If you add a card to the top (push), the only card you can remove (pop) is the top card, thus it's LIFO. Imagine a line of people waiting to buy tickets as a queue. The person who arrived first will buy their ticket first - this is FIFO. Now think of a dictionary as a hash table. When you want to find a meaning, you look up the word (key) directly rather than scanning every single word.

Learn more about data structures here:

https://brainly.com/question/32132541

#SPJ11

write java code that completes this assginment
The goal of this coding exercise is to create two classes BookstoreBook and LibraryBook. Both classes have these attributes:
author: String
tiltle: String
isbn : String
- The BookstoreBook has an additional data member to store the price of the book, and whether the book is on sale or not. If a bookstore book
is on sale, we need to add the reduction percentage (like 20% off...etc). For a LibraryBook, we add the call number (that tells you where the
book is in the library) as a string. The call number is automatically generated by the following procedure:
The call number is a string with the format xx.yyy.c, where xx is the floor number that is randomly assigned (our library has 99
floors), yyy are the first three letters of the author’s name (we assume that all names are at least three letters long), and c is the last
character of the isbn.
- In each of the classes, add the setters, the getters, at least three constructors (of your choosing) and override the toString method (see sample
run below). Also, add a static variable is each of the classes to keep track of the number of books objects being created in your program.
- Your code should handle up to 100 bookstore books and up to 200 library books. Use arrays to store your objects.
- Your code should display the list of all books keyed in by the user
Sample Run
The user’s entry is marked in boldface
Welcome to the book program!
Would you like to create a book object? (yes/no): yes
Please enter the author, title ad the isbn of the book separated by /: Ericka Jones/Java made Easy/458792132
Got it!
Now, tell me if it is a bookstore book or a library book (enter BB for bookstore book or LB for library book): BLB
Oops! That’s not a valid entry. Please try again: Bookstore
Oops! That’s not a valid entry. Please try again: bB
Got it!
Please enter the list price of JAVA MADE EASY by ERICKA JONES: 14.99
Is it on sale? (y/n): y
Deduction percentage: 15%
Got it!
Here is your bookstore book information
[458792132-JAVA MADE EASY by ERICKA JONES, $14.99 listed for $12.74]
Would you like to create a book object? (yes/no): yeah
I’m sorry but yeah isn’t a valid answer. Please enter either yes or no: yes
Please enter the author, title and the isbn of the book separated by /: Eric Jones/Java made Difficult/958792130
Got it!
Now, tell me if it is a bookstore book or a library book (enter BB for bookstore book or LB for library book): LB
Got it!
Here is your library book information
[958792130-JAVA MADE DIFFICULT by ERIC JONES-09.ERI.0]
Would you like to create a book object? (yes/no): yes
Please enter the author, title and the isbn of the book separated by /: Erica Jone/Java made too Difficult/958792139
Got it!
Now, tell me if it is a bookstore book or a library book (enter BB for bookstore book or LB for library book): LB
Got it!
Here is your library book information
[958792139-JAVA MADE TOO DIFFICULT by ERICA JONE-86.ERI.9]
Would you like to create a book object? (yes/no): no
Sure!
Here are all your books...
Library Books (2)
[958792130-JAVA MADE DIFFICULT by ERIC JONES-09.ERI.0]
[958792139-JAVA MADE TOO DIFFICULT by ERICA JONE-86.ERI.9]
_ _ _ _
Bookstore Books (1)
[458792132-JAVA MADE EASY by ERICKA JONES, $14.99 listed for $12.74]
_ _ _ _
Take care now!

Answers

Java is an object-oriented, network-centric, multi-platform language that may be used as a platform by itself.

It is a quick, safe, and dependable programming language for creating everything from server-side technologies and large data applications to mobile apps and business software.

The Java coding has been given below and in the attached image:

package com.SaifPackage;   import java.util.Scanner;    class BookstoreBook {     //private data members     private String author;     private String title;     private String isbn;     private double price;     private boolean onSale;     private double discount;      // to keep track of number of books     private static int numOfBooks = 0;      // constructor with 6 parameters      public BookstoreBook(String author, String title, String isbn, double price, boolean onSale, double discount) {         // set all the data members         this.author = author;         this.title = title;         this.isbn = isbn;         this.price = price;         this.onSale = onSale;         this.discount = discount;      }      // constructor with 4 parameters where on sale is false and discount is 0     public BookstoreBook(String author, String title, String isbn, double price) {         // call the constructor with 6 parameters with the values false and 0   (onSale, discount)         this(author, title, isbn, price, false, 0);     }      // constructor with 3 parameters where only author title and isbn  are passed     public BookstoreBook(String author, String title, String isbn) {         // call the constructor with 4 parameters         // set the price to 0 ( price is not set yet)         this(author, title, isbn, 0);     }       // getter function to get the author     public String getAuthor() {         return author;     }      // setter function to set the author     public void setAuthor(String author) {         this.author = author;     }      // getter function to get the title     public String getTitle() {         return title;     }       public void setTitle(String title) {         this.title = title;     }      // getter function to get the isbn     public String getIsbn() {         return isbn;     }      // setter function to set the isbn     public void setIsbn(String isbn) {         this.isbn = isbn;     }      // getter function to get the price     public double getPrice() {         return price;     }      // setter function to set the price     public void setPrice(double price) {         this.price = price;     }      // getter function to get the onSale     public boolean isOnSale() {         return onSale;     }      // setter function to set the onSale     public void setOnSale(boolean onSale) {         this.onSale = onSale;     }      // getter function to get the discount     public double getDiscount() {         return discount;     }      // setter function to set the discount     public void setDiscount(double discount) {         this.discount = discount;     }      // get price after discount     public double getPriceAfterDiscount() {         return price - (price * discount / 100);     }      // toString method to display the book information     public String toString(){         // we return in this pattern         // [458792132-JAVA MADE EASY by ERICKA JONES, $14.99 listed for $12.74]         return "[" + isbn + "-" + title + " by " + author + ", $" + price + " listed for $" + getPriceAfterDiscount() + "]";     }  }  class LibraryBook {     // private data members     private String author;     private String title;     private String isbn;     private String callNumber;     private static int numOfBooks;      // a int variable to store the floor number in which the book will be located     private int floorNumber;      // constructor with 3 parameters     public LibraryBook(String author, String title, String isbn) {         // set all the data members         this.author = author;         this.title = title;         this.isbn = isbn;         // generate the floor number and set the floor number         floorNumber = (int) (Math.random() * 99 + 1);          //call the generateCallNumber method to generate the call number and set the returned value to the callNumber         this.callNumber = generateCallNumber();         numOfBooks++;     }      // constructor with 2 parameters where the isbn is not passed     public LibraryBook(String author, String title) {         // call the constructor with 3 parameters         // we need to set isbn to the string notavailable         this(author, title, "notavailable");     }      // constructor with no parameters (default constructor)     public LibraryBook() {         // call the constructor with 3 parameters         // we need to set isbn to the string notavailable         // we need to set the author to the string notavailable         // we need to set the title to the string notavailable         this("notavailable", "notavailable", "notavailable");     }        // function to generate the call number     private String generateCallNumber() {         // we return in this pattern         // xx-yyy-c         // where xx is the floor number         // yyy is the first 3 letters of the author's name         // c is the last character of the isbn.           // if floorNumber is less than 10, we add a 0 to the front of the floor number         if (floorNumber < 10) {             return "0" + floorNumber + "-" + author.substring(0, 3) + "-" + isbn.charAt(isbn.length() - 1);         } else {             return floorNumber + "-" + author.substring(0, 3) + "-" +

Learn more about Java Coding here:

https://brainly.com/question/31569985

#SPJ4

A star emits a signal that, over a period of an hour, is an essentially constant sinusoid. Over time, the frequency can drift slightly, but the frequency will always lie between 9 kHz and 11 kHz. Page 2 of 3 (a) (5 points) Assume this signal is sampled at 32 kHz. Explain the discrete-time algorithm you would use to determine (approximately) the current frequency of the signal. If the algorithm depends on certain choices (e.g., parameters, filter lengths etc), provide sensible choices along with justification. (b) (5 points) Now assume the signal is only sampled at 8 kHz. Explain the discrete-time algorithm you would use to determine the current frequency of the signal. As above, justify any choices made.

Answers

Assuming the given signal is sampled at 32 kHz, a discrete-time algorithm can be utilized to approximate the current frequency of the signal.

Once the filter is applied, the signal can then be sampled at 8 kHz and the same DFT algorithm can be applied to compute the frequency of the signal. In this case, the frequency resolution will be approximately 125 Hz.

The sampling frequency will be given by 8 kHz, which is equal to 2π/128 radians per sample. The sampling frequency is approximately 0.049 radians.

To know more about signal visit:

https://brainly.com/question/31473452

#SPJ11

1. (10 Pts) A hospital wishes to maintain database of all the doctors and the patients in the hospital. For each doctor, the hospital is required to store the following information: 1. Name of the doctor 2. ID of the doctor 3. Telephone number of the doctor Also, for each patient, the hospital is required to maintain the following information: 1. Name of the patient 2. Ward number in which the patient is admitted 3. Fees charged to the patient 4. ID of the doctor who is treating the patient Write a C++ program that will create necessary classes to store this data. 2. (10Pts) Create a class to represent a dimension of a line segment that is specified in terms of centimeters and millimeters. The program should read the dimensions of two-line segments and calculate a resultant dimension, which is the addition of two dimensions. For example, if the two dimensions are d1= 10 cm and 5 mm d2 = 15 cm 7 mm, then the resultant dimension should be calculated as: 26 cm and 2 mm.

Answers

C++ program with classes to store doctor and patient data. 2. C++ program for line segment dimensions in cm and mm, with addition and display functions.

Design a C++ class to represent line segment dimensions in centimeters and millimeters, including addition and display functions?

1. Here's a C++ program that creates classes to store the required data for doctors and patients in a hospital:

```cpp

#include <iostream>

#include <string>

class Doctor {

private:

   std::string name;

   int id;

   std::string telephone;

public:

   void setData(const std::string& doctorName, int doctorID, const std::string& doctorTelephone) {

       name = doctorName;

       id = doctorID;

       telephone = doctorTelephone;

   }

   void displayData() const {

       std::cout << "Doctor Name: " << name << std::endl;

       std::cout << "Doctor ID: " << id << std::endl;

       std::cout << "Doctor Telephone: " << telephone << std::endl;

   }

};

class Patient {

private:

   std::string name;

   int wardNumber;

   double fees;

   int doctorID;

public:

   void setData(const std::string& patientName, int patientWardNumber, double patientFees, int patientDoctorID) {

       name = patientName;

       wardNumber = patientWardNumber;

       fees = patientFees;

       doctorID = patientDoctorID;

   }

   void displayData() const {

       std::cout << "Patient Name: " << name << std::endl;

       std::cout << "Ward Number: " << wardNumber << std::endl;

       std::cout << "Fees Charged: " << fees << std::endl;

       std::cout << "Doctor ID: " << doctorID << std::endl;

   }

};

int main() {

   Doctor doctor;

   doctor.setData("John Doe", 1234, "123-456-7890");

   doctor.displayData();

   std::cout << std::endl;

   Patient patient;

   patient.setData("Jane Smith", 101, 500.0, 1234);

   patient.displayData();

   return 0;

}

```

Explanation:

- The program defines two classes, `Doctor` and `Patient`, to store the required information for doctors and patients, respectively.

- Each class has private member variables to store the specific data.

- Public member functions `setData` and `displayData` are defined for setting and displaying the data.

- In the `main` function, an instance of the `Doctor` class is created, and the `setData` function is called to set the doctor's information. Then, the `displayData` function is called to display the stored data.

- Similarly, an instance of the `Patient` class is created, and its information is set and displayed using the respective member functions.

2. Here's a C++ program that creates a class to represent line segment dimensions in centimeters and millimeters:

```cpp

#include <iostream>

class LineDimension {

private:

   int cm;

   int mm;

public:

   void setData(int centimeters, int millimeters) {

       cm = centimeters;

       mm = millimeters;

   }

   LineDimension add(const LineDimension& other) {

       LineDimension result;

       result.cm = cm + other.cm;

       result.mm = mm + other.mm;

       if (result.mm >= 10) {

           result.cm += result.mm / 10;

           result.mm = result.mm % 10;

       }

       return result;

   }

   void displayData() const {

       std::cout << "Dimension: " << cm << " cm " << mm << " mm" << std::endl;

   }

};

int main() {

   LineDimension d1, d2, result;

   d1.setData(10, 5);

   d2.setData(15, 7);

  Learn more about C++ program

brainly.com/question/14617927

#SPJ11

A worker is preparing to perform maintenance on an active solar installation on a very cloudy day. What MUST the worker do to ensure a safe work environment? Turn the inverter off to kill power to the modules, and proceed as normal. The modules are safe to touch. Treat the modules as an electrical hazard. Even without direct sunlight, they are still energized. Get right to work. There is no need for special precautions. The modules do not produce energy on cloudy days. Wear appropriate PPE.

Answers

To ensure a safe work environment while performing maintenance on an active solar installation on a cloudy day, the worker must e) Wear appropriate Personal Protective Equipment (PPE):

Even on cloudy days, solar modules can still generate electricity. The worker must wear appropriate PPE to protect against potential electrical hazards.

This typically includes insulated gloves, safety glasses, and non-conductive footwear. PPE helps to minimize the risk of electric shock and other injuries.

Options a), b), c), and d) are incorrect:

a) Turning off the inverter to kill power to the modules and proceeding as normal is not sufficient.

Solar panels generate electricity even without direct sunlight, so cutting off the power at the inverter alone does not guarantee safety. There may still be residual voltage in the system.

b) Treating the modules as an electrical hazard is the correct approach. The worker should consider the solar modules energized and hazardous, even if they are safe to touch under normal circumstances.

Any contact with live electrical components can pose a risk of electric shock.

c) Proceeding without taking special precautions because of the absence of direct sunlight is a dangerous assumption. Solar panels can still produce electricity even on cloudy days.

It is important to treat the installation as energized and follow proper safety protocols.

d) Assuming that there is no need for special precautions because the modules do not produce energy on cloudy days is incorrect.

As mentioned earlier, solar panels can generate electricity even in low light conditions, and the worker must adhere to safety measures.

For more questions on Personal Protective Equipment

https://brainly.com/question/13720623

#SPJ8

A DC battery is charged through a resistor R derive an expression for the average value of charging current on the assumption that SCR is fired continuously i. For AC source voltage of 260 V,50 Hz, find firing angle and the value of average charging current for R=5 óhms and battery voltage =100 V ii. Find the power supplied to the battery and that dissipated to the resistor

Answers

(i) The firing angle cannot be calculated without a specific value. It depends on the system configuration and control mechanism.

(ii) The average charging current is 8 A.

(iii) The power supplied to the battery is 800 W, and the power dissipated in the resistor is 320 W.

(i) The average value of the charging current can be derived by considering the charging process as a series of complete cycles. Since the SCR is fired continuously, we can assume that the charging current flows only during the positive half-cycle of the AC source voltage.

During the positive half-cycle, the charging current is given by Ohm's law:

I(t) = (V_source - V_battery) / R

where I(t) is the charging current, V_source is the AC source voltage, V_battery is the battery voltage, and R is the resistance.

To find the firing angle, we need to determine the point in the positive half-cycle at which the SCR is triggered. The firing angle is the delay in radians between the zero-crossing of the AC voltage and the SCR triggering point. For a 50 Hz AC source, the time period is T = 1/50 s.

The firing angle (α) can be calculated using the following formula:

α = 2πft

where f is the frequency and t is the firing angle in seconds.

To find the average charging current, we need to integrate the charging current over one half-cycle and divide it by the time period.

The average charging current (I_avg) can be calculated as:

I_avg = (1/T) ∫[0,T/2] I(t) dt

Substituting the expression for I(t), we get:

I_avg = (1/T) ∫[0,T/2] [(V_source - V_battery) / R] dt

(ii) To find the power supplied to the battery, we can multiply the battery voltage by the average charging current:

P_battery = V_battery * I_avg

To find the power dissipated in the resistor, we can use Ohm's law:

P_resistor = I_avg^2 * R

V_source = 260 V

Frequency (f) = 50 Hz

R = 5 Ω

V_battery = 100 V

(i) Firing angle calculation:

The time period (T) can be calculated as:

T = 1/f

= 1/50

= 0.02 s

Calculation for the firing angle:

α = 2πft

= 2π * 50 * t

For the given scenario, the firing angle is not provided, so a specific value cannot be calculated.

(ii) Average charging current calculation:

Using the given values, we can calculate the average charging current:

I_avg = (1/T) ∫[0,T/2] [(V_source - V_battery) / R] dt

= (1/0.02) ∫[0,0.01] [(260 - 100) / 5] dt

= (1/0.02) * [(260 - 100) / 5] * 0.01

= 8 A

(iii) Power calculations:

Using the average charging current and given values, we can calculate the power supplied to the battery and the power dissipated in the resistor:

P_battery = V_battery * I_avg

= 100 V * 8 A

= 800 W

P_resistor = I_avg^2 * R

= (8 A)^2 * 5 Ω

= 320 W

(i) The firing angle cannot be calculated without a specific value. It depends on the system configuration and control mechanism.

(ii) The average charging current is 8 A.

(iii) The power supplied to the battery is 800 W, and the power dissipated in the resistor is 320 W.

To know more about Current, visit

brainly.com/question/24858512

#SPJ11

Determine the DT-FT of the following signal: d) [5] Consider the following DT-FT pair: 1 x[n] → ejw -0.6 Determine the DT-FT of the following: i) ii) iii) x[n] = -² u[n-2] - 3¹u[-n − 1] x[n] *x[n] [* stands for convolution] nx[n] x[n]cos(0.1nn)

Answers

As the given DT-FT pair is 1 x[n] → ejw -0.6, we can find the DT-FT of the given signals as follows:

i) x[n] = -² u[n-2] - 3¹u[-n − 1]

The given signal can be written as: x[n] = -² u[n-2] + 3¹u[n+1]

Using the DT-FT properties, we have: DT-FT of x[n] = DT-FT of {-² u[n-2]} + DT-FT of {3¹u[n+1]}

Using the DT-FT pair, ejw n, we can find the DT-FT of x[n] as: DT-FT of {-² u[n-2]} = e-jw 2u[w] DT-FT of {3¹u[n+1]} = e-jw (-1) 3u[w]

Hence, the DT-FT of the given signal x[n] is given as: X(ejw) = e-jw 2u[w] + e-jw (-1) 3u[w]= e-jw 2u[w] - 3e-jw u[-w]ii) x[n] * x[n] [* stands for convolution]

The convolution of the given signal x[n] with itself can be written as: x[n] * x[n] = ∑ x[k] x[n-k]

Using the DT-FT properties, we have: DT-FT of {x[n] * x[n]} = DT-FT of {∑ x[k] x[n-k]}= DT-FT of {∑ x[k] e-jw k} * DT-FT of {∑ x[n-k] e-jw(n-k)}= X(ejw) X(ejw) = |X(ejw)|²

Hence, the DT-FT of the given signal x[n] * x[n] is given as:X1(ejw) = |X(ejw)|²iii) nx[n] x[n]cos(0.1nn)

The given signal can be written as: nx[n] x[n]cos(0.1nn) = ∑ n x[n] cos(0.1n)

Using the DT-FT properties, we have: DT-FT of {nx[n] x[n]cos(0.1nn)} = -j d/dw {X(ejw) * d/dw {cos(0.1w)}}

Hence, the DT-FT of the given signal nx[n] x[n]cos(0.1nn) is given as:X2(ejw) = -j d/dw {X(ejw) * d/dw {cos(0.1w)}}

Therefore, the DT-FT of the given signals are:

i) X(ejw) = e-jw 2u[w] - 3e-jw u[-w]

ii) X1(ejw) = |X(ejw)|²

iii) X2(ejw) = -j d/dw {X(ejw) * d/dw {cos(0.1w)}}

Know more about DT-FT here:

https://brainly.com/question/30408222

#SPJ11

Write a program that reads movie data from a CSV (comma separated values) file and output the data in a formatted table. The program first reads the name of the CSV file from the user. The program then reads the CSV file and outputs the contents according to the following requirements:
Each row contains the title, rating, and all showtimes of a unique movie.
A space is placed before and after each vertical separator ('|') in each row.
Column 1 displays the movie titles and is left justified with a minimum of 44 characters.
If the movie title has more than 44 characters, output the first 44 characters only.
Column 2 displays the movie ratings and is right justified with a minimum of 5 characters.
Column 3 displays all the showtimes of the same movie, separated by a space.
Each row of the CSV file contains the showtime, title, and rating of a movie. Assume data of the same movie are grouped in consecutive rows.
Hints: Use the fgets() function to read each line of the input text file. When extracting texts between the commas, copy the texts character-by-character until a comma is reached. A string always ends with a null character ('\0').
Ex: If the input of the program is:

Answers

The program reads movie data from a CSV file and outputs the data in a formatted table. It prompts the user to enter the name of the CSV file, reads the file, and processes the contents according to the given requirements. Each row in the output table includes the movie title, rating, and showtimes. The columns are formatted as specified, with proper justification and separators. The program utilizes fgets() to read each line of the input file and extracts the necessary information by copying the characters until a comma is encountered.

To implement the program, the following steps can be followed:
Prompt the user to enter the name of the CSV file.
Open the file using fopen() and handle any errors if the file does not exist or cannot be opened.
Read the file line by line using fgets().
For each line, extract the movie title, rating, and showtimes by copying the characters until a comma is encountered.
Format the data according to the requirements, ensuring proper justification and separators.
If the movie title has more than 44 characters, truncate it to 44 characters.
Output each row of the formatted table, including the movie title, rating, and showtimes.
Close the file using fclose().
By following these steps, the program can read the movie data from the CSV file and display it in the desired table format, meeting the specified requirements.

Learn more about CSV file here
https://brainly.com/question/30400629

 #SPJ11

An amplifier has a peak-to-peak output voltage of 15 V across a load resistance of 3 k0. Calculate its power gain when the input power is 400 W. Round the final answer to one decimal place.

Answers

The power gain of the amplifier, when the input power is 400 W, is approximately 0.0. This indicates that the amplifier is not providing any significant gain in power.

To calculate the power gain of an amplifier, we need to know the output power and the input power. In this case, we are given the peak-to-peak output voltage and the load resistance, from which we can calculate the output power. The input power is also given as 400 W.

Given data:

Peak-to-peak output voltage (Vpp) = 15 V

Load resistance (RL) = 3 kΩ (3000 Ω)

Input power (Pin) = 400 W

Calculate the output power (Pout) using the peak-to-peak output voltage and the load resistance:

The formula for power is P = V^2 / R.

Output power (Pout) = (Vpp / 2)^2 / RL

= (15 / 2)^2 / 3000

= (7.5)^2 / 3000

= 0.01875 W

Calculate the power gain (Av) using the formula:

Power gain (Av) = Pout / Pin

Power gain (Av) = 0.01875 / 400

= 0.000046875

Round the power gain to one decimal place:

Power gain (Av) ≈ 0.0

To know more about amplifier please refer:

https://brainly.com/question/29604852

#SPJ11

Write short Note about
a. Deflecting Torque
b. Controlling Torque
c. Damping Torque.

Answers

a. Deflecting Torque:

Deflecting torque refers to the torque exerted on a moving system, such as a galvanometer or a motor, due to an external force or a magnetic field. It is responsible for deflecting the system from its equilibrium position.

In the case of a galvanometer, the deflecting torque is given by the equation:

T_deflect = k * I * B * sin(θ),

where T_deflect is the deflecting torque, k is a constant specific to the galvanometer, I is the current passing through the coil, B is the magnetic field strength, and θ is the angle between the coil and the magnetic field.

b. Controlling Torque:

Controlling torque is the torque applied to a system to bring it back to its equilibrium position and counteract the deflecting torque. It helps in maintaining stability and accuracy in the system's operation.

The controlling torque can be calculated using the equation:

T_control = -k * θ,

where T_control is the controlling torque, k is the torsional constant of the system, and θ is the angular displacement from the equilibrium position.

c. Damping Torque:

Damping torque is a torque that opposes the motion of a system and reduces oscillations or overshooting. It is responsible for controlling the speed of the system and bringing it to a stop.

The damping torque is given by the equation:

T_damping = -b * ω,

where T_damping is the damping torque, b is the damping constant of the system, and ω is the angular velocity.

Deflecting torque, controlling torque, and damping torque play crucial roles in various systems. The deflecting torque deflects the system from its equilibrium position, while the controlling torque brings it back to equilibrium. The damping torque helps in reducing oscillations and controlling the speed of the system. Understanding and managing these torques are essential for the proper functioning and stability of mechanical and electrical systems.

To know more about Torque visit :

https://brainly.com/question/19865132

#SPJ11

1. T/F. In general, Automated Testing tools are not suitable when it comes to rigorous, repetitive and mundane tests in large volumes.
2. T/F. A program is testable if there is no test oracle for the program and it is too difficult to determine the correct output.
3. A decision node contains a _________ statement that creates 2 or more control branches.
4. T/F. Motivation for data flow testing is that one should not feel confident that a variable has not been assigned the correct value, if no test causes the execution of a path from the point of assignment to a point where the value is used.

Answers

1. False. Automated Testing tools are suitable for rigorous, repetitive, and mundane tests in large volumes.

2. False. A program is not testable if there is no test oracle or it is too difficult to determine the correct output.

3. A decision node contains a conditional statement that creates 2 or more control branches.

4. True. Data flow testing ensures correct variable assignments and usage by executing the relevant paths in the program.

1. False. Automated Testing tools are particularly suitable for rigorous, repetitive, and mundane tests in large volumes. They can efficiently execute a large number of test cases, perform regression testing, and identify defects in a consistent and automated manner, saving time and effort compared to manual testing.

2. False. A program is not considered testable if there is no test oracle or if it is too difficult to determine the correct output. Testability refers to the ease with which a program can be tested, including the ability to define expected results or outcomes. A lack of a test oracle or extreme difficulty in determining correct output makes testing challenging and can hinder effective testing.

3. A decision node contains a conditional statement that creates 2 or more control branches. In testing, a decision node represents a point in the program where a decision is made based on a condition. The condition evaluates to either true or false, leading to different branches or paths of execution in the program.

4. True. The motivation for data flow testing is to ensure that a variable has been assigned the correct value throughout its flow in the program. Without executing a test that covers the path from the point of assignment to the point where the value is used, there is no guarantee that the variable retains the expected value.

Data flow testing helps identify issues such as uninitialized variables, improper assignments, and incorrect data dependencies, ensuring the reliability and correctness of the program.

Learn more about Automated Testing:

https://brainly.com/question/13384149

#SPJ11

Given: A quarter-bridge Wheatstone bridge circuit is used with a strain gage to measure strains up to ±1000 µstrain for a beam vibrating at a maximum frequency of 20 Hz, As shown in Figure 1. • The supply voltage to the Wheatstone bridge is Vs = 6.00 V DC • All Wheatstone bridge resistors and the strain gage itself are 1000 • The strain gage factor for the strain gage is GF = 2 • The output voltage Vo is sent into a 12-bit A/D converter with a range of ±10 V Op-amps, resistors, and capacitors are available in this lab (d) To do:If the applied force F=0, usually the output voltage after the A/D converter is not equal to zero, give your explanations and methods to eliminate the influence of this offset voltage. Spring Object in motion M Seismic mass LA Input motion Figure 1 seismic instrument Output transducer Damper Strain gauge Cantilever beam Figure 2 strain gauge

Answers

The offset voltage in a Wheatstone bridge circuit can occur due to variations in the bridge circuit's resistors, power supply, and temperature changes.

The offset voltage can result in an output voltage that is not equal to zero even when there is no applied force. The offset voltage can be eliminated using a technique called "nulling the bridge." The nulling the bridge technique involves adjusting the bridge balance by varying the resistance of the variable resistor until the output voltage is zero when no force is applied.

This technique involves adding a potentiometer in series with the bridge's strain gauge and an additional resistor. The potentiometer allows the resistance in the bridge to be adjusted until the output voltage is zero.

To know more about offset visit:

brainly.com/question/32314594

#SPJ11

A 308-V, 30-hp, 8-pole, 50 Hz, A-connected induction motor has full-load slip of 2 %. What is the shaft torque of this motor? What is the synchronous speed of this motor in rpm? What is the rotor speed of the motor in rpm? What is the shaft torque of this motor if its output power is 30 hp?

Answers

An 8-pole 50 Hz A-connected induction motor with a full-load slip of 2% and a voltage of 308 V has a synchronous speed of 750 RPM.

Here's how to solve the problem: First and foremost, we'll have to figure out the synchronous speed of the motor in RPM. The synchronous speed of an induction motor can be calculated using the following equation: n = (120*f) / p.

Where, n is the synchronous speed of the motor f is the supply frequency (in Hz) p is the number of poles in the motor Let's plug in the given values: n = (120*50) / 8 = 750 RPM Therefore, the synchronous speed of the motor is 750 RPM. Now that we've figured out the synchronous speed of the motor, let's figure out the rotor speed of the motor.

To know more about induction visit:

https://brainly.com/question/28173736

#SPJ11

(15\%) Based on the particle-in-a-ring model, answer the following questions. Use equations, plots, and examples to support your answers. 1. (5%) Compare the wavefunctions for free and confined particles. 2. (5\%) Compare the energies for free and confined particles. 3. (5\%) Explain why the energies for a confined particle are discrete.

Answers

The wavefunctions for free and confined particles in the particle-in-a-ring model differ in their spatial distribution, with confined particles exhibiting standing wave patterns along the ring. The energies for confined particles are discrete due to the constraints imposed by the ring geometry, leading to specific standing wave patterns and quantized energy levels.

1. The wavefunctions for free and confined particles in the particle-in-a-ring model exhibit different spatial distributions. For a free particle, the wavefunction is a plane wave, indicating that the particle can be found anywhere along the ring. In contrast, for a confined particle in a ring, the wavefunction takes on specific patterns, representing standing waves that are constrained within the ring.

2. The energies for free and confined particles in the particle-in-a-ring model also differ. In the case of a free particle, the energy is continuous and can take on any value within a range. However, for a confined particle in a ring, the energy levels are quantized, meaning they can only take on specific discrete values. These discrete energy levels correspond to different standing wave patterns within the ring.

3. The energies for a confined particle in the particle-in-a-ring model are discrete due to the wave nature of particles and the constraints imposed by the ring geometry. The wavefunction of the particle must satisfy certain boundary conditions, resulting in standing wave patterns along the circumference of the ring. Only specific wavelengths, or frequencies, can fit within the ring and form standing waves that fulfill the boundary conditions. Each standing wave pattern corresponds to a specific energy level, and since the number of possible standing wave patterns is finite, the energy levels are discrete.

Learn more about wave patterns here:

https://brainly.com/question/13894219

#SPJ11

For the reaction 3A +28+3C, the rate of change of AS -0.930 x 10-2M-S-1. What is the reaction rate? -0.930 X 10M.SI 0.62 x 10-M.s-1 0.31 x 10" M.5" 0.930 x 10-MS"

Answers

The reaction rate for the given reaction is -0.930 x 10^(-2) M/s.

The rate of a chemical reaction is determined by the change in concentration of reactants or products over time. In this case, the rate of change of the entropy (AS) is given as -0.930 x 10^(-2) M/s. However, entropy is a measure of disorder or randomness in a system and is not directly related to the reaction rate.

To determine the reaction rate, we need information about the change in concentration of reactants or products over time. The given reaction equation does not provide any information about the concentrations of A, B, or C. Without this information, it is not possible to calculate the reaction rate. The rate of a chemical reaction is typically expressed in terms of the change in concentration of a specific reactant or product per unit time. Therefore, the answer cannot be determined based on the given information.

In summary, the rate of the reaction cannot be determined without additional information about the concentrations of the reactants or products over time. The given rate of change of entropy (-0.930 x 10^(-2) M/s) is not directly related to the reaction rate and does not provide sufficient information to calculate the reaction rate.

learn more about reaction rate here:

https://brainly.com/question/13693578

#SPJ11

Given an input signal x[n], and the impulse response h[n], compute the output signal. (6 points each total 30 points) a. x[n]=δ[n+6],h[n]=a n
u[n−1] b. x[n]=δ[n+2]+2δ[n]+5δ[n−2],h[n]=δ[n+1]+0.5δ[n]+2δ[n−1] c. x[n]=n(u[n+2]−u[n−2]),h[n]=u[n+2]−u[n−2] d. x[n]=u[n+1],h[n]=u[n−3] e. x[n]=u[−n−3];h[n]=(0.2) n
u[−n−1]

Answers

To compute the output signal from the given input signal and impulse response, we will make use of the properties of a Linear Time-Invariant System (LTI). The properties of LTI systems include Superposition, Additivity, Homogeneity, and Time Invariance.

Firstly, let's consider the given input signal and impulse response which are x[n] = δ[n+6] and h[n] = anu[n-1], respectively. We need to compute the output signal using these given signals.

To start with, since the input signal is x[n] = δ[n+6], we can represent its shifted version as x[n-6] = δ[n]. This is because the δ function is non-zero only when its argument is zero.

Now, to evaluate the output signal for n ≥ 1, we must consider that the unit step function u[n-1] is equal to 0 for n < 1 and equal to 1 for n ≥ 1.

We can use the properties of linearity and time-invariance to compute the output signal. Therefore, the output signal y[n] can be expressed as:

y[n] = x[n] * h[n] = ∑x[k]h[n-k]

Substituting the given values of x[n] and h[n], we get:

y[n] = ∑δ[k+6]a(n-k)u[k-1]

Since the impulse response h[n] is non-zero only for n ≥ 1, we can modify the equation as follows:

y[n] = ∑δ[k+6]a(n-k)u[k-1] = ∑a(n-k)u[k-1] (k=1 to ∞)

Therefore, the output signal y[n] can be expressed as ∑a(n-k)u[k-1] (k=1 to ∞).

Know more about Linear Time-Invariant System here:

https://brainly.com/question/31217076

#SPJ11

A causal FIR filter is described by the difference equation: y[n] = x[n] + x[n-10] a) (10 Points) Compute and sketch its magnitude and phase response. b) (10 Points) Determine its response to the input: π π x[n] = 20+ cos n+ for -[infinity]

Answers

a) The magnitude and phase response of the causal FIR filter can be determined by analyzing its transfer function.

b) The response of the filter to the given input can be calculated using the difference equation.

Explanation:

a) The magnitude and phase response of a filter describe how the filter modifies the amplitude and phase of different frequencies in a signal. For the given causal FIR filter, the difference equation is y[n] = x[n] + x[n-10]. To determine its magnitude and phase response, we need to analyze its transfer function.

The transfer function of a filter relates the output to the input in the frequency domain. In this case, the transfer function can be obtained by taking the z-transform of the difference equation. By applying the z-transform, we obtain:

Y(z) = X(z) + z^(-10)X(z),

where Y(z) and X(z) are the z-transforms of the output y[n] and input x[n] sequences, respectively.

To compute the magnitude response, we evaluate the transfer function at various frequencies. By substituting z = e^(jω), where ω is the angular frequency, into the transfer function, we obtain the frequency response H(ω). The magnitude response can then be obtained by taking the absolute value of H(ω), and the phase response can be determined by calculating the argument of H(ω).

To sketch the magnitude and phase response, we plot the magnitude and phase as functions of frequency (ω). The magnitude response indicates how much each frequency component of the input is amplified or attenuated by the filter, while the phase response represents the phase shift introduced by the filter at different frequencies.

b) To determine the response of the filter to the given input x[n] = 20 + cos(nπ), we substitute the input sequence into the difference equation and calculate the corresponding output sequence y[n].

By substituting x[n] = 20 + cos(nπ) into the difference equation y[n] = x[n] + x[n-10], we can calculate the output sequence y[n]. The input sequence is a combination of a constant term (20) and a cosine function with angular frequency π. The filter processes this input sequence according to its difference equation to produce the corresponding output sequence.

By evaluating the difference equation for different values of n, we can determine the output y[n] for the given input x[n].

Learn more about magnitude and phase response

https://brainly.com/question/5102661

#SPJ11

A balanced three-phase Y load has one phase voltage of VCN = 277<45° V. If the phase sequence is ACB, find the line voltages VCA VAB, and VBC. [3] QUESTION 2 [MARKS = 51 For the circuit in Figure 1, if the line voltage is 240 V: a. Determine the line currents for the circuit shown. b. Find the current flowing in the neutral conductor. a b C N Ib Ie IN Figure 1 3 20⁰ 4/60 5 1.90 Neutral line

Answers

Question 1:For a balanced three-phase Y load where one phase voltage is VCN = 277<45° V, and the phase sequence is ACB, we need to find the line voltages VCA, VAB, and VBC.

The line voltage VAB is obtained by subtracting the voltage of phase B from that of phase A:VAB = VA - VBWe know that, for a balanced three-phase Y load: VA = VCN, VB = VCN∠-120°, and VC = VCN∠120°.

Substituting the given values, we get:VA = VCN = 277 ∠45°VVB = VCN∠-120°= 277 ∠(-120+45)°V= 277 ∠(-75)°VBy substituting the values of VA and VB in the formula for VAB, we get:VAB = VA - VB= VCN - VCN∠-120°= VCN(1 - ∠-120°)= VCN∠120°= 277∠120° VFor line voltage VCA, we add the voltage of phase A to that of phase C:VCA = VA + VC= VCN + VCN∠120°= VCN(1 + ∠120°)= VCN∠-120°= 277 ∠-120°VFor line voltage VBC, we subtract the voltage of phase B from that of phase C:VBC = VC - VB= VCN∠120° - VCN∠-120°= VCN(∠120° + ∠120°)= VCN∠240°= 277 ∠240°V.

Therefore, the line voltages are:VCA = 277 ∠-120°VVAB = 277∠120°VVBC = 277 ∠240°VQuestion 2:For the given circuit, we have to find the line currents for the circuit shown and the current flowing in the neutral conductor.(a) Determining the line currents:From the given circuit, we can see that the line current Ia is given by:Ia = Ie.

From Ohm's law, we know that the current Ia flowing through the 3 Ω resistor can be found using:Ia = Vab/ZWhere Z is the total impedance of the circuit.The impedance of the parallel combination of the 2 Ω resistor and the 4 Ω + j5 Ω impedance can be found using the formula for the total impedance of a parallel combination, which is given by:Z1 = Z2Z1 + Z2Taking the 4 Ω + j5 Ω impedance as Z1 and the 2 Ω resistor as Z2, we get:Z2 = 2 ΩZ1 = (4 + j5) ΩZ = Z1Z2Z1 + Z2Substituting the given values, we get:Z = (4 + j5) × 2 Ω/(4 + j5 + 2) Ω= (8 + j10) Ω/6 Ω= 4/3 + j5/3 ΩSubstituting this value in the formula for Ia, we get:Ia = Vab/Z= 240 ∠20°V/(4/3 + j5/3) Ω= (240 ∠20°V)(3/4 - j5/4) Ω= 180∠20°V/(4 - j5) Ω= (180 × 4 + j180 × 5) / (4² + 5²) V= (720 + j900)/41 V= 16.83 ∠52.23°VTherefore, the line current Ia is: Ia = Ie = 16.83 ∠52.23°A.

The line current Ib can be found by first finding the voltage across the 4 Ω + j5 Ω impedance, which is equal to the voltage across the 3 Ω resistor, since both are connected in parallel. The voltage across the 3 Ω resistor is Vab, which is given as 240 ∠20°V.

Therefore, the voltage across the 4 Ω + j5 Ω impedance is also 240 ∠20°V.Now, using Ohm's law, we can find the current flowing through the 4 Ω + j5 Ω impedance:Ib = Vbc/Z1 = 240 ∠20°V/(4 + j5) Ω= (240 ∠20°V)(4 - j5)/(4² + 5²) Ω= (960 + j1200)/41 Ω= 41.91 ∠52.23°VTherefore, the line current Ib is: Ib = 41.91 ∠52.23° AThe line current Ic can be found by finding the current flowing through the 2 Ω resistor using Ohm's law:Ic = Ie - Ib= Ia= 16.83 ∠52.23°A.

Therefore, the line currents are:Ia = 16.83 ∠52.23°A, Ib = 41.91 ∠52.23°A, and Ic = 16.83 ∠52.23°A(b) Finding the current flowing in the neutral conductor:The current flowing in the neutral conductor is given by:IN = -(Ia + Ib + I

c)Substituting the values of Ia, Ib, and Ic, we get:IN = -(16.83 ∠52.23° + 41.91 ∠52.23° + 16.83 ∠52.23°) A= -75.57 ∠-127.77°A= 75.57 ∠52.23°A (since the current flows in the opposite direction to the line currents)Therefore, the current flowing in the neutral conductor is 75.57 ∠52.23°A.

To learn more about voltage:

https://brainly.com/question/32002804

#SPJ11

A PCM communication system samples each of two received signals with a 16-bit analog-to-digital converter at 64.1 kb/s. a input determine the output (i) Given full-scale sinusoid signal-to-quantizing noise ratio. (ii) The bit stream of digitized data is augmented by the addition of error-correcting bits and control bit fields. These additional bits represent 100 percent overhead. Determine the output bit rate of the PCM system.

Answers

The full-scale sinusoid signal-to-quantizing noise ratio in a PCM communication system refers to the ratio of the power of the input signal to the power of the quantization noise.

It represents the quality of the digitized signal and determines the level of noise introduced during the analog-to-digital conversion process. A higher signal-to-quantizing noise ratio indicates better signal fidelity and less noise distortion in the digitized signal. The bit stream of digitized data in a PCM system can be augmented by the addition of error-correcting bits and control bit fields. These additional bits serve to detect and correct errors that may occur during the transmission or storage of digital data. When error-correcting bits and control bit fields are added, the bit rate of the PCM system increases due to the overhead of these additional bits. In this case, the overhead is stated to be 100 percent, which means that the number of error-correcting and control bits is equal to the number of data bits.

To determine the output bit rate of the PCM system, we need to consider the original bit rate before the addition of error-correcting and control bits. In the given information, it is stated that the analog-to-digital converter samples each received signal with a 16-bit resolution at a rate of 64.1 kb/s. This means that each signal is digitized into 16 bits every second. Since there are two received signals, the total original bit rate is 2 times 64.1 kb/s, which equals 128.2 kb/s.

Learn more about digitized data here:

https://brainly.com/question/32345072

#SPJ11

would not have built the platform if it did not expect to make a good profit. What is BP's expected profit when it has pumped all the estimated barrels of crude oil and gas? For determining natural profits assume the platform will produce for 10.9 years (4000 days).

Answers

BP's expected profit when it has pumped all the estimated barrels of crude oil and gas is $191.546 million.

BP expects to make a good profit by pumping all the estimated barrels of crude oil and gas from the platform it has built. To determine its expected profit when it has pumped all the estimated barrels of crude oil and gas, we need to calculate the net present value of the expected future cash flows from the platform.Let us assume that the platform will produce crude oil and gas for 10.9 years (4000 days).

The expected revenue from the sale of crude oil and gas can be calculated by multiplying the estimated barrels of crude oil and gas by the current market price per barrel and adding up the revenues over the next 10.9 years. Let us assume the estimated barrels of crude oil and gas are 5 million barrels and 2 million barrels respectively and the current market price is $50 per barrel for crude oil and $4 per barrel for gas.

The expected revenue from crude oil over the next 10.9 years = 5 million barrels × $50 per barrel

= $250 million

The expected revenue from gas over the next 10.9 years = 2 million barrels × $4 per barrel = $8 million

Thus, the total expected revenue from the platform over the next 10.9 years = $250 million + $8 million = $258 million.

We need to discount this amount to the present value to obtain the net present value of the expected future cash flows from the platform.The discount rate used to discount the future cash flows is typically the cost of capital of the company. Let us assume the cost of capital for BP is 10%.

The present value of the expected future cash flows from the platform can be calculated as follows:

PV = (Cash flow ÷ (1 + r)n)Where PV is the present value, Cash flow is the expected revenue for each year, r is the discount rate, and n is the number of years.The calculation for the present value of the expected future cash flows from the platform is as follows.

The total present value of the expected future cash flows from the platform is $191.546 million. Therefore, BP's expected profit when it has pumped all the estimated barrels of crude oil and gas is $191.546 million.

Learn more about revenues :

https://brainly.com/question/29567732

#SPJ11

. Phrase the following queries in SQL (36 points) Suppose the instance of the database sailor-boats is shown above. Phrase the following queries in SQL 3. List the bid brame and color of all the boatss. 4. List bid, brame, sname, color and date of all the reservations, present the results in descending order of bid. 5. List the maxium age of all the sailors 6. List sid and sname of the sailors whose age is the greatest of all the sailors. 7. List the bid and number of reservations of that boat( 3 points) & list the bid of the boat which has been reserved at least twice: 9. list the name and color of the boat which has been reserved at least twice. 10. list sname and age of every sailors along with the bid and day of the reservation he (she has made. If the sailor hasn't reserved any boat yet,he(she) will appear in the results with value null on attributes bid and day. 11. Create a view to list the sname of sailor, the bid, brame color of boat which the sailor has reserved and the day of reservation. and 12. Apply the view you created to list the brame color of boats sname of sailor who reserved the day of reservation in ascending order on day M III

Answers

Here are the SQL queries corresponding to the given requirements:

3. List the bid, brame, and color of all the boats:

```sql

SELECT bid, brame, color

FROM boats;

```

4. List bid, brame, sname, color, and date of all the reservations, presenting the results in descending order of bid:

```sql

SELECT r.bid, b.brame, s.sname, b.color, r.date

FROM reservations AS r

JOIN sailors AS s ON r.sid = s.sid

JOIN boats AS b ON r.bid = b.bid

ORDER BY r.bid DESC;

```

5. List the maximum age of all the sailors:

```sql

SELECT MAX(age) AS max_age

FROM sailors;

```

6. List sid and sname of the sailors whose age is the greatest of all the sailors:

```sql

SELECT sid, sname

FROM sailors

WHERE age = (SELECT MAX(age) FROM sailors);

```

7. List the bid and the number of reservations of that boat:

```sql

SELECT bid, COUNT(*) AS reservation_count

FROM reservations

GROUP BY bid;

```

8. List the bid of the boat which has been reserved at least twice:

```sql

SELECT bid

FROM reservations

GROUP BY bid

HAVING COUNT(*) >= 2;

```

9. List the name and color of the boat which has been reserved at least twice:

```sql

SELECT b.brame, b.color

FROM boats AS b

WHERE b.bid IN (

   SELECT r.bid

   FROM reservations AS r

   GROUP BY r.bid

   HAVING COUNT(*) >= 2

);

```

10. List sname and age of every sailor along with the bid and day of the reservation they have made. If the sailor hasn't reserved any boat yet, they will appear in the results with a value of NULL on the attributes bid and day:

```sql

SELECT s.sname, s.age, r.bid, r.day

FROM sailors AS s

LEFT JOIN reservations AS r ON s.sid = r.sid;

```

11. Create a view to list the sname of the sailor, the bid, brame, color of the boat which the sailor has reserved, and the day of reservation:

```sql

CREATE VIEW sailor_reservations AS

SELECT s.sname, r.bid, b.brame, b.color, r.day

FROM sailors AS s

JOIN reservations AS r ON s.sid = r.sid

JOIN boats AS b ON r.bid = b.bid;

```

12. Apply the view you created to list the brame, color of boats, sname of sailors, and the day of reservation in ascending order on day:

```sql

SELECT brame, color, sname, day

FROM sailor_reservations

ORDER BY day ASC;

```

Note: Please note that the syntax and table names used may vary based on your specific database schema. Make sure to adapt the queries to match your database structure.

Learn more about  database structure. here:

https://brainly.com/question/31031152

#SPJ11

My code can't get pass the three options(LED, Drive, Servo). Code is below.
1. Your program will make your robot dance using 30random actions such as forward, left, right, back, etc. You should print the actions.
2. Let the user know that they have three option – Drive, LED’s, or Servo. Based on the option they choose they can control the device.
a) Ask the user to decide what movements the robot should make next. The following letters perform specific actions – allow them to use all actions. You need to be sure to ask them again if they use the wrong letter.
a. w = forward
b. a = turn left
c. d = turn right
d. s = move back
e. x = stop
f. g = decrease speed
g. t = increase speed
h. z = exit using sys module
b) Allow the user to turn on the LED’s. If they turn them on prompt them to turn off. If they turn them off, prompt them to turn them back on or go back to the main program
c) Output directions for the user to control the servo device. User should be able to move the servo left, right, and home position.
Use the following modules or others, if you choose.
import time
import random
Minimum of three functions – main needs to be one of them
Menu for users to choose options
Use of if or while conditional statements
Use a loop
Correct use of syntax/no errors
def main():
import sys
import time
import random
# Creating a dictionary containing all the necessary action which robot can make
d = {'w': 'forward', 'a': 'turn left', 'd': 'turn right', 's': 'move back', 'x': 'stop', 'g': 'decrease speed', 't': 'increase speed'}
def random_moves():
print(random.choice(list(d.values())))
time.sleep(1)
def Option1():
print("You have three options: Drive/LED/Servo: ")
# Until user inputs correct option loop continues
while True:
op1 = input().lower() #Converting string to lower case
if (op1 == 'drive') or (op1 == 'led') or (op1 == 'servo'):
return op1
else:
print("Enter Correct option: ")
def nextMovement(op1):
print("\n Enter Move: \n 'w': 'forward' \n 'a': 'turn left' \n 'd': 'turn right' \n 's': 'move back' \n 'x': 'stop' \n 'g': 'decrease speed' \n 't': 'increase speed' \n 'z':'exit' ")
# Loop continues until user needs to exit
while True:
movement = input().lower()
# Check whether input a valid move
if movement in d and movement != 'z':
print(op1, d[movement])
elif movement == 'z':
print("Exiting")
sys.exit("Exit")
else:
print("Enter correct input")
def led(prev, op1):
if prev == 'on':
print("\n LED is currently", prev, "to turn off, enter off")
elif prev == 'off':
print("\n LED is currently", prev, "to turn on, enter on")
while True:
cur = input().lower()
if cur == 'on':
print('To turn off led, enter "off": ')
elif cur == 'off':
print("Do you wish to turn on led('Enter on') or go back to the main menu('Enter back')")
elif cur == 'back':
op1 = Option1()
return op1
else:
print("Enter correct input")
def servo():
print("You can move the servo( \n 'a':'Left' \n 'd': 'Right' \n 'h': 'Home' )")
while True:
move = input().lower()
if move == 'a':
print("Servo turn left")
elif move == 'd':
print("Servo turn right")
elif move == 'h':
op1 = Option1()
return op1
if __name__ == "__main__":
print("Robot moving randomly for approx 20-30 seconds: ")
max_time = 30
start_time = time.time() # remember when we started
while (time.time() - start_time) < max_time:
random_moves()
option1 = Option1()
while True: #Loop Continues until user exits
if option1 == 'drive':
option1 = nextMovement(option1)
elif option1 == 'led':
option1 = led('off', option1)
elif option1 == 'servo':
option1 = servo()
else:
break
main()

Answers

The code mentioned above is incomplete as it lacks the necessary functions to move beyond the three options (LED, Drive, Servo).

The code written above is incomplete and the functions needed to progress beyond the three options (LED, Drive, Servo) are absent. The code above is a part of the break keyword and will not function properly as it is incomplete. The break keyword is used in a loop to exit the loop if a certain condition is met. The code above is incomplete and is missing the rest of the loop, which means it cannot proceed beyond the three options. The code could be fixed by incorporating it into a loop that checks for different conditions to perform different functions. A possible solution to this code is given below: while True: choice = input("Enter your choice (LED, Drive, Servo): ")if choice == 'LED': print("LED is selected")elif choice == 'Drive': print("Drive is selected")elif choice == 'Servo' :print("Servo is selected")else: print("Invalid Choice")The above code will ask the user for their choice and will perform a different function based on their choice. If the choice is LED, it will print "LED is selected," if the choice is Drive, it will print "Drive is selected," if the choice is Servo, it will print "Servo is selected." If the user inputs an invalid choice, the code will print "Invalid Choice.

Know more about code mentioned, here:

https://brainly.com/question/32827127

#SPJ11

TASK 2 A multiple reaction was taking placed in a reactor for which the products are noted as a desired product (D) and undesired products (U1 and U2). The initial concentration of EO was fixed not to exceed 0.15 mol/L. It is claimed that a minimum of 80% conversion could be achieved while maintaining the selectivity of D over U1 and U2 at the highest possible. Proposed a detailed calculation and a relevant plot (e.g. plot of selectivity vs the key reactant concentration OR plot of selectivity vs conversion) to prove this claim. TASK 2 1. Discussion on Conversion and Selectivity. i. Discuss the main findings, trends, limitations and state the justification ii. Comparison and selection between conversion and selectivity chosen in Task 2 should be thoroughly discussed in this section. iii. Discussion and conclusion for Task 2 should be done completely in this part.

Answers

In Task 2, the objective is to achieve a minimum of 80% conversion while maximizing the selectivity of the desired product (D) over the undesired products (U1 and U2). Hence, the correct option is D.

Conversion refers to the extent to which the reactant is converted into products, while selectivity measures the ability of the reaction to produce the desired product with minimal formation of undesired byproducts. To prove the claim, a detailed calculation and relevant plot can be presented. One approach is to plot the selectivity of the desired product (D) against the key reactant concentration. By varying the reactant concentration within the given limit (0.15 mol/L), the selectivity can be calculated at each point and plotted. This plot will show the relationship between reactant concentration and selectivity, allowing us to identify the optimum conditions that achieve both high selectivity and minimum 80% conversion.

The main findings from the plot and calculations will indicate the reactant concentration range that yields the desired selectivity and conversion. Trends in the data will help identify the conditions that maximize selectivity while meeting the minimum conversion requirement. Limitations may arise if the desired selectivity cannot be achieved within the given concentration range or if the reaction reaches equilibrium before achieving the desired conversion. The justification for selecting selectivity as a key parameter is that it directly reflects the ability to produce the desired product while minimizing undesired byproducts. By optimizing selectivity, we can ensure that the majority of the reactant is converted into the desired product, leading to a more efficient and cost-effective process. The discussion and conclusion will summarize the findings, limitations, and significance of achieving the desired conversion and selectivity in the context of the multiple reaction system under consideration.

Learn more about equilibrium here:

https://brainly.com/question/30807709

#SPJ11

In the figure below is given the electric field intensity (x) profile for a p-n junction made from a single semiconductor material. Describe (bullet points are sufficient; you may wish to sketch also) how the above electric field intensity profile changes if the p-n junction is a hetero-junction. A hetero-junction is a junction made from two different materials in contrast to a homo-junction that is made from a single material. That is, the p-region is made from one semiconducting material and the n-region is made from a different semiconducting material. E(x) -Xp Xn X

Answers

In a hetero-junction p-n junction made from two different materials, the electric field intensity (x) profile changes and the bandgap discontinuity creates an electric field across the junction.

A hetero-junction p-n junction has the following electric field intensity profile: Xn is the electron affinity of n-type material Xp is the electron affinity of p-type material The changes in the electric field intensity profile of a hetero-junction p-n junction compared to the homo-junction p-n junction are described below: If the two semiconductors have different energy band gaps, a built-in electric field is created at the junction due to the bandgap discontinuity. This field opposes the diffusion of minority carriers, causing them to be collected at the junction. The resulting electric field is directed from the n-type material to the p-type material. The depletion region in the p-type material is expanded, and in the n-type material, it is compressed. The electric field across the junction, given by the slope of the energy band, is referred to as the built-in potential. It produces an electrostatic potential barrier that opposes the diffusion of both electrons and holes. The voltage across a p-n junction depends on the material properties of the junction, the impurity concentrations, and the temperature.

Know more about electric field intensity, here:

https://brainly.com/question/16869740

#SPJ11

According to the 2019 UPS Report 'The Pulse of the Online Shopper': =>The #1 reason for customers abandoning their shopping cart was what?

Answers

According to the 2019 UPS Report 'The Pulse of the Online Shopper,' the number one reason for customers abandoning their shopping cart was high shipping costs.

The 2019 UPS Report 'The Pulse of the Online Shopper' provides insights into the behavior and preferences of online shoppers. One key finding of the report was that the primary reason for customers abandoning their shopping carts was high shipping costs. When customers encounter unexpectedly high shipping fees during the checkout process, it can significantly impact their purchase decision and lead to cart abandonment.

Shipping costs play a crucial role in the overall online shopping experience. Customers often compare prices and consider factors like product affordability and convenience. If the shipping costs are perceived as too high or unreasonable, it can discourage customers from completing their purchases. Online retailers need to carefully consider their shipping strategies, including offering free or discounted shipping options, to minimize cart abandonment and provide a more positive shopping experience for their customers.

By understanding the importance of shipping costs in the online shopping process, businesses can adjust their pricing and shipping strategies to align with customer expectations and reduce cart abandonment rates.

Learn more about online retailers here:

https://brainly.com/question/28344656

#SPJ11

Other Questions
A car moving at 8.9 m/s crashes into a tree and stops in 0.25 s. Calculate the force the seat belt exerts on a passenger in the car to bring him to a halt. The mass of the passenger is 76 kg. Consider the vector field F = (4x + 3y, 3x + 2y) Is this vector field Conservative? [Conservative If so: Find a function f so that F = Vf f(x,y) = Use your answer to evaluate Question Help: Video + K [F. dr along the curve C: F(t) = ti+tj, 0 what are two functions of the part labeled 3? You are tasked to design a filter with the following specification:If frequency (f) < 1.5kHz then output amplitude > 0.7x input amplitude (measured by the oscilloscope set on 1M Ohms)If f > 4kHz then output amplitude < 0.4x input amplitude. (measured by the oscilloscope set on 1 M Ohms)if f> 8kHz then output amplitude < 0.2x input amplitude (measured by the oscilloscope set on 1 M Ohms)Build the filter with the specifications in a simulator like Multisim Live.What happens if you switch the input of the oscilloscope from 1M Ohms to 50 Ohms (for the filter designed)? Why is that? Adapter Pattern Adapter pattern works as a bridge between two incompatible interfaces. This type of design pattern comes under structural pattern as this pattern combines the capability of two independent interfaces This pattern involves a single class which is responsible to join functionalities of independent or incompatible interfaces, A real life example could be a case of card reader which acts as an adapter between memory card and a laptop. You plugins the memory card into card reader and card reader into the laptop so that memory card can be read via laptop We are demonstrating use of Adapter pattern via following example in which an audio player device can play mp3 files only and wants to use an advanced audio player capable of playing vic and mp4 files. Implementation We've an interface Media Player interface and a concrete class Audio Player implementing the Media Player interface. Audio Player can play mp3 format audio files by default We're having another interface Advanced Media Player and concrete classes implementing the Advanced Media Player interface. These classes can play vic and mp4 format files We want to make Audio Player to play other formats as well. To attain this, we've created an adapter class MediaAdapter which implements the Media Player interface and uses Advanced Media Player objects to play the required format. Audio Player uses the adapter class MediaAdapter passing it the desired audio type without knowing the actual class which can play the desired format. AdapterPatternDemo, our demo class will use Audio Player class to play various formats. 3) Draw a full-adder using two half-adders, and one more simple gate only.4) Construct a full-adder using exactly one half-adder, one half-subtractor, and one more gate only. Which numbered pair of sentences best completes the diagram showingattempts at desegregation at the University of Mississippi?1A riot breaksout at theUniversity ofMississippi.The NationalGuard is sentto theUniversity ofMississippi torestore order.2O A. (1) James Meredith is able to register for classes at the Universityof Mississippi. (2) Protestors arrive by bus in large numbers at theuniversity.OB. (1) The U.S. Supreme Court forces the University of Mississippi tointegrate. (2) James Meredith is able to register for classes at theuniversity.O C. (1) The National Guard is sent to the University of Mississippi torestore order. (2) President John F. Kennedy negotiates with thegovernor in private.O D. (1) The governor vows to stop integration at the University ofMississippi. (2) Two Black students are admitted to the university. 1. sketch a PPF of each country (note: you can only draw the slope, you can't determine the intercepts)2. In the production of which good does Portugal have a comparative advantage3. In which country will the average (the standard of living) be higher? In 1817, David Ricardo wrote the following,"England may be so circumstanced, that to produce the cloth may require the labour. of 100 men for one year; and if she attempted to make the wine, it might require the labour of 120 men for the same time. To produce the wine in Portugal, might require only the labour of 80 men for one year, and to produce the cloth in the same country, might require the labour of 90 men for the same time." a) using the information given, sketch the PPF of each country(note: you can only draw the slope, you cannot determine the intercepts). b) In the production of which good does Portugal have a comparative advantage? b) In which country will the average wage (the standard of living) be higher? For some reaction, the equilibrium constant is K = 2.3 x 106. What does this mean?The reactants are in higher concentrations than products at equilibrium.The products are in higher concentrations than reactants at equilibrium.The reactants and products are in equal at equilibrium.The equilibrium value is too small to be measured.Not enough information to answer. The Casual Furniture Company manufactures outdoor furniture and incurred the following costs during the month of January:Timber$ 25 000Paint$ 5 000Glue$ 500Wagesassembly personnel$ 20 000Wagesfactory supervisor$ 3 500Factory cleaner's wages$ 2 000Sales commissions$ 10 000Administrative staff salaries$ 4 000Depreciationfactory equipment$ 3 000Depreciationsales office equipment$ 1 000Utilities, insurancefactory$ 6 000Utilities, insurancesales office$ 2 000Advertising$ 8 000Total costs$ 90 000The conversion costs are:A.$34 500B.$29 500C.$20 000D.$35 000 Karen needs a loan of 118000 for a new home. The loan period is 2 years, and the loan payments are made semiannually. The annual interest rate of the annuity loan is 8.2 %.What is the principal payment in the third payment? It has been found that when some family members are engaged incriminal behavior, the children in that home are more likely to doas well. This can be related best to which of the followingtheories? A force vector is positioned in the 6th octant. The projection angle is 37 degrees. The planar angle referenced from the negative x-axis is 53 degrees. The x,y, and z components will be+,-,--,+,+-,-,--,+,--The magnitude of the vector is 10 N. The z component is6 N- 6 N8 N- 8 N The stress relaxation modu us mav oe written as:E(1) = 7 GPa + M exp (-(U0)0.5),where 3.4 GPa is the constant, t is the time, and the relaxation time d is 1 week.When a constant tensile elongation of 6.7 mm is applied, the initial stress is measured as 19MPa. Determine the stress after 1 week (in MPa). find the equation of the line tangent to the graph y=(x^2/4)+1,at point (-2,2) In the industrial chemicals process, many aspects shall be considered in obtaining the targeted products with optimum yield and profit. Among those aspects are stated in the following statement. As an expert in the chemical industry, you are required to evaluate each statement. 1) "Chemical kinetics aspect is not essential in optimizing the yield of the chemical product". ii) "Neither exothermic nor endothermic reaction affect the stability product". chemical iii) "The activation energy (E) characteristic is temperature independence." iv) "One reaction with AG > 0 under standard conditions thermodynamically do not occur spontaneously, but can be made to occur under n-standard conditions". A 1.2 kg ball of clay is thrown horizontally with a speed of 2 m/s, hits a wall and sticks to it. The amount of energy stored as thermal energy is How much heat, in calories, does it take to warm960gof iron from12.0Cto45.0C? Express your answer to three significant figures and include the appropriate units. In this process, acrylic acid (AA) is produced through the oxidation of propylene at 300C and2.57 atm with water as the by-product. In a year, this chemical plant operates 24 hours a dayfor 330 working days, with a total production of 250,000 metric tonnes of AA. The main productis AA, while the side products are acetic acid (ACA), water (H2O), and carbon dioxide (CO2).The selectivity of AA over ACA is 16 and the conversion of propylene to the side reaction 2 ishalf of the side reaction 1. Details of the reaction are as follows:C3H6 (g) + 1.5O2 (g) C3H4O2 (v) + H2O (v) (Main reaction)C3H6 (g) + 2.5O2 (g) C2H4O2 (v) + CO2 (g) + H2O (v) (Side reaction 1)C3H6 (g) + 4.5O2 (g) 3CO2 (g) + 3H2O (v) (Side reaction 2)Pure oxygen is added to a recycle stream containing a mixture of carbon dioxide and oxygenbefore being fed to an oxidation reactor. Before feeding it to the reactor, the mixed stream isheated to 300C and compressed to 2.57 atm. Pure propylene is fed to the reactor throughanother stream. The preheated gases react exothermically in a jacketed reactor that usescooling water as a cooling medium to maintain the reaction temperature at 300C. Propyleneis the limiting reactant, and oxygen is fed in excess of 20% into the oxidation reactor.A hot gaseous mixture is produced from the reactor contain acrylic acid as the major product.Acetic acid, carbon dioxide, and water are the side products with unreacted oxygen. The hotgaseous mixture is cooled down in a condenser from 300 to 50C and fed to a flash column.The column separates the mixture and sends gaseous material such as carbon dioxide andunreacted oxygen through the top product stream to a gas separator. The bottom stream fromthe flash column contains acrylic acid, acetic acid, and water. The gas separator is used toseparate the carbon dioxide gas from the oxygen, and the oxygen is then recycled and mixedwith the oxygen feed stream. The efficiency of the gas separator is around 95% and the recyclestream have composition 99 mol% of Oxygen. Before it is recycled, the streams pressure isreduced to 1 atm through a valve to match the pressure of the oxygen feed stream.The pressure and temperature of the bottom stream for the flash column are increased to 3atm and 148C using a pump, and a heater, respectively. Then, it is fed to a distillation column(DC1) to purify the acrylic acid. The top outlet stream contains water, acetic acid and 5% ofthe total molar flow of acrylic acid fed to the DC1. The bottom consists of acetic acid andacrylic acid only, where the purity of the acrylic acid obtained is 99.0 mol%. The top outlet issent to the liquid-liquid extractor (LLE) to separate the water from the acetic acid. 31,680kmol/hr of ethylene glycol (EG) is used as a solvent to extract the water and flows out as thetop stream of the extractor column, leaving acetic acid, solvent, and a small amount of waterin the bottom stream. The extraction efficiency is 90% and 1% of solvent fed to the extractorloss to the top stream. The bottom stream will then undergo a distillation process (DC2) toseparate the solvent and the acetic acid. The distillate stream contains 95 mol% of acetic acidfed to the distillation column and water, while the bottom stream contains only a small amountof acetic acid and solvent.Draw Process Flow Diagram Only Write the chemical formulas for the following molecular compounds.1. sulfur hexafluoride2. iodine monochloride 3. tetraphosphorus hexasulfide 4. boron tribromide