Consider a 3-body system their masses,m,,me & m, and their position vectors are, 11.12.&3. Write the equations of motions each object Attach File browie Lacal Files Browse Content Collection

Answers

Answer 1

In physics, three-body problems include computing the motion of three bodies interacting with each other under the effect of gravity. Consider a 3-body system where their masses, m, me, and m, and their position vectors are 11, 12, and 3. We can write the equations of motion for each object using Newton's second law of motion.

Newton's second law of motion can be written as:

F = ma Where F is the net force on an object, m is its mass, and a is its acceleration. For each object, we can write the equation of motion in terms of the components of the net force acting on it. For the first object with mass m1 and position vector r1, the net force acting on it is given by:

F1 = G(m2m1/|r2-r1|^2)(r2-r1) + G(m3m1/|r3-r1|^2)(r3-r1)

where G is the universal gravitational constant and |r2-r1| denotes the magnitude of the vector r2-r1.

The equation of motion for the first object can be written as:

m1a1 = G(m2m1/|r2-r1|^2)(r2-r1) + G(m3m1/|r3-r1|^2)(r3-r1)

where a1 is the acceleration of the first object.

Similarly, for the second object with mass m2 and position vector r2, the equation of motion can be written as:

m2a2 = G(m1m2/|r1-r2|^2)(r1-r2) + G(m3m2/|r3-r2|^2)(r3-r2)

where a2 is the acceleration of the second object.

For the third object with mass m3 and position vector r3, the equation of motion can be written as:

m3a3 = G(m1m3/|r1-r3|^2)(r1-r3) + G(m2m3/|r2-r3|^2)(r2-r3)

where a3 is the acceleration of the third object.

These are the equations of motion for each object in the 3-body system.

Learn more about Newton's second law of motion here

https://brainly.com/question/2009830

#SPJ11


Related Questions

A ray of of light in air is incident on a surface that partially reflected and partially refracted at a boundary between air and a liquid having an index refraction of 1.46. The wavelength of the light ray traveling is 401 nm. You must show the steps and formula below. Solve for - The wavelength of the refracted light. - The speed of the light when propagating in the liquid. - At an angle of 30deg for the incidence of the light ray, the angle of refraction. BONUS Solve for the smallest angle of incidence (for the exact purpose of the ray undergoing total internal refraction) for a second ray traveling in the liquid in the opposite direction on the provided surface (water/air interface).

Answers

To solve the given problem, we can use Snell's law and the formula for the critical angle. By applying these formulas, we can determine the wavelength of the refracted light, the speed of light in the liquid, the angle of refraction for a given angle of incidence, and the smallest angle of incidence for total internal refraction.

The wavelength of the refracted light: Snell's law relates the indices of refraction and the angles of incidence and refraction. It can be written as [tex]n1sin(theta1) = n2sin(theta2)[/tex], where n1 and n2 are the refractive indices and theta1 and theta2 are the angles of incidence and refraction, respectively. Rearranging the equation, we can solve for the sine of the angle of refraction: [tex]sin(theta2) = (n1/n2)*sin(theta1)[/tex]. Substituting the given values, we find sin(theta2) = (1/1.46)*sin(30°). From the calculated value of sin(theta2), we can determine the corresponding angle and use it to find the wavelength of the refracted light using the formula: [tex]wavelength2 = wavelength1 * (speed1/speed2)[/tex], where wavelength1 is the initial wavelength, and speed1 and speed2 are the speeds of light in air and the liquid, respectively.

Speed of light in the liquid: The speed of light in a medium is related to the refractive index by the formula: [tex]speed = c/n[/tex], where c is the speed of light in vacuum and n is the refractive index. Substituting the given refractive index, we can calculate the speed of light in the liquid.

The angle of refraction for an angle of incidence: Using Snell's law, we can calculate the angle of refraction for a given angle of incidence. Substituting the values into the equation, we find [tex]sin(theta2) = (1/1.46)*sin(30^o)[/tex], and then we can determine the corresponding angle.

The smallest angle of incidence for total internal refraction: The critical angle is the angle of incidence that results in the refracted angle being 90°. It can be found using the formula: [tex]critical angle = arcsin(n2/n1)[/tex], where n1 and n2 are the refractive indices of the two mediums. Substituting the values, we can calculate the critical angle, which represents the smallest angle of incidence for total internal refraction.

By applying these formulas, we can determine the wavelength of the refracted light, the speed of light in the liquid, the angle of refraction for a given angle of incidence, and the smallest angle of incidence for total internal refraction.

Learn more about refraction here:

https://brainly.com/question/14760207

#SPJ11

Li-Air Battery's Biggest Advantage? Please explain the
reason why the voltage is much higher than the discharge voltage
when charging with the reaction formula.

Answers

The Li-Air battery is a type of rechargeable battery that is currently under development for energy storage applications. The biggest advantage of Li-Air batteries is their high energy density, which means that they can store more energy per unit mass than most other types of batteries.

This makes them particularly attractive for applications where weight and volume are critical factors, such as in electric vehicles and portable electronic devices.

When charging a Li-Air battery, the voltage is much higher than the discharge voltage due to the reaction formula. During charging, lithium ions are extracted from the lithium anode and transported through the electrolyte to the cathode, where they react with oxygen molecules from the air to form lithium peroxide. This reaction is highly exothermic and releases a large amount of energy, which is used to drive the charging process.

The reason why the voltage is much higher during charging is because the charging process requires a large amount of energy to drive the reaction in the reverse direction, i.e. to convert lithium peroxide back into lithium ions and oxygen molecules. This energy is supplied by the charging current, which drives the reaction forward and raises the voltage of the battery. The higher voltage during charging is therefore a reflection of the energy required to drive the reaction in the opposite direction, and is a key feature of Li-Air batteries.

To know more about lead-acid battery visit:

https://brainly.com/question/31355302

#SPJ11

To conduct an experiment aboard a space station, 24.0 V from a solar panel is transformed to 480 V. If the transformer's secondary coil has 5000 turns of wire, the primary coil has ______ turns. (Record your three digit answer).

Answers

To conduct an experiment aboard a space station, 24.0 V from a solar panel is transformed to 480 V. If the transformer's secondary coil has 5000 turns of wire, the primary coil has 100,000 turns.

To determine the number of turns in the primary coil of the transformer, we can use the turns ratio formula:

Turns ratio = Np / Ns = Vp / Vs

Where:

Np = Number of turns in the primary coil

Ns = Number of turns in the secondary coil

Vp = Voltage in the primary coil

Vs = Voltage in the secondary coil

Given:

Vs = 24.0 V

Vp = 480 V

Ns = 5000 turns

Substituting the given values into the turns ratio formula:

Turns ratio = Np / 5000 = 480 / 24.0

Simplifying the equation:

Np / 5000 = 20

Multiplying both sides by 5000:

Np = 20 × 5000

Calculating Np:

Np = 100,000

Therefore, the primary coil has 100,000 turns of wire.

To learn more about transformer visit: https://brainly.com/question/23563049

#SPJ11

A car is moving across a level highway with a speed of 22.9 m/s. The brakes are applied and the wheels become locked as the 1260-kg car skids to a stop. The braking distance is 126 meters. What is the initial energy of the car? _______ J
What is the final energy of the car? ________J How much work was done by the brakes to stop the car? ________J (make sure you include the correct sign) Determine the magnitude (enter your answer as a positive answer) of the braking force acting upon the car. _________ N

Answers

A car is moving across a level highway with a speed of 22.9 m/s. The brakes are applied and the wheels become locked as the 1260-kg car skids to a stop. The braking distance is 126 meters.

Velocity of car, v = 22.9 m/s Mass of car, m = 1260 kg Braking distance, s = 126 m

The initial energy of the car can be calculated as:

Initial Kinetic Energy of the car = 1/2 mv²

Here, m = 1260 kg, v = 22.9 m/s

Putting these values in the above formula: Initial Kinetic Energy = 1/2 × 1260 kg × (22.9 m/s)²= 1/2 × 1260 kg × 524.41 m²/s²= 165748.1 J

The final energy of the car is zero as the car is at rest now. Work done by the brakes to stop the car can be calculated as follows:

Work Done = Change in Kinetic Energy= Final Kinetic Energy - Initial Kinetic Energy

The final kinetic energy of the car is zero. Therefore, Work Done = 0 - 165748.1 J= -165748.1 J (Negative sign indicates the energy is lost by the car during the application of brakes)

The magnitude of the braking force acting upon the car can be calculated using the work-energy principle. The work done by the brakes is equal to the net work done by the forces acting on the car. Therefore,

Work Done by Brakes = Force x Distance

The frictional force acting on the car is equal to the force applied by the brakes. Hence,

Force = Frictional force acting on the car. The work done by the frictional force can be calculated as follows:

Work Done = Frictional force x Distance

Therefore, Frictional force acting on the car = Work Done / Distance= -165748.1 J / 126 m= -1314.6 N (The negative sign indicates that the force acts opposite to the direction of motion of the car. The magnitude of the force is 1314.6 N.)

Therefore, Initial Energy of the car = 165748.1 J

Final Energy of the car = 0 J

Work done by the brakes to stop the car = -165748.1 J

Magnitude of the braking force acting upon the car = 1314.6 N

Learn more about Kinetic energy: https://brainly.com/question/8101588

#SPJ11

Tarik winds a small paper tube uniformly with 189 turns of thin wire to form a solenoid. The tube's diameter is 6.21 mm and its length is 2.01 cm. What is the inductance, in microhenrys, of Tarik's solenoid? inductance: μH

Answers

The inductance of Tarik's solenoid in μH is 13.4 μH.

To find the inductance of Tarik's solenoid, we can use the following formula:

L=μ0 * n^2 * A/L, Where:L is the inductance of the solenoid, n is the number of turns, A is the cross-sectional area of the solenoid, L is the length of the solenoid, μ0 is the permeability of free space (4π x 10^-7 H/m)

Given that: The number of turns of wire is n = 189The diameter of the tube is 6.21 mm, therefore the radius of the tube, r = 6.21 / 2 = 3.105 mm

The length of the tube, L = 2.01 cm = 0.0201 m

The cross-sectional area of the tube, A = πr^2 = 3.14 x (3.105 x 10^-3)^2 = 7.59 x 10^-5 m^2

Substituting the given values into the formula:

L=μ0 * n^2 * A/L= 4π x 10^-7 x 189^2 x 7.59 x 10^-5 / 0.0201L=13.4 μH

Therefore, the inductance of Tarik's solenoid is 13.4 μH (microhenrys).

To learn about inductance here:

https://brainly.com/question/31307060

#SPJ11

Two boxes (mA = 1.5 kg and mB = 3.2 kg) are in contact and accelerated across the floor by a force F = 12.5 N. The frictional force between mA and the floor is 2.0 N and the frictional force between mв and the floor is 4.0 N. (a) Draw a sketch of this situation. (b) Separate to your sketch; draw a Free Body diagram for each mass. (c) Determine the magnitude of the force exerted on mв by ma.

Answers

In a system where two boxes, mA (1.5 kg) and mB (3.2 kg), are in contact and accelerated by a force of 12.5 N, the magnitude of the force exerted on mB by mA is 9.5 N.

(a) The sketch of the situation would show two boxes in contact, mA and mB, placed on a horizontal floor. An external force, F = 12.5 N, is applied to the system to accelerate the boxes.

(b) For each mass, the Free Body Diagram (FBD) would depict the forces acting on them. For mA, the forces include the force of gravity (mg) acting downwards, the normal force (N) exerted by the floor upwards, and the frictional force (fA) opposing the motion.

For mB, the forces include the force of gravity (mg) acting downwards, the normal force (N) exerted by the floor upwards, and the frictional force (fB) opposing the motion.

(c) To determine the magnitude of the force exerted on mB by mA, we need to consider the net force acting on the system. Since the boxes are in contact and accelerated together, the net force on both boxes is equal to the applied force (F) minus the sum of the frictional forces (fA + fB).

Therefore, the net force on the system is 12.5 N - (2.0 N + 4.0 N) = 6.5 N. Since the boxes are in contact, the force exerted by mA on mB is equal in magnitude but opposite in direction to the force exerted by mB on mA. Thus, the magnitude of the force exerted on mB by mA is 6.5 N.

Free body diagram is given below.

Learn more about Free Body Diagram here:

https://brainly.com/question/10148657

#SPJ11

you watch a person chopping wood and note that after the last chop you hear it 2 seconds later. how far is the chopper?
less than 330m, more than 330m, 330m or no way to tell?

Answers

The chopper is 686 meters away from the listener.

When we hear any sound, it means sound waves are coming towards us, and our ears receive those waves. It travels through the air and then reaches to our ears. As sound waves travel through the air, they encounter obstacles that cause their energy to disperse. The speed of sound waves through the air depends on the temperature and the pressure of the air. In general, at room temperature, the speed of sound through the air is approximately 343 meters per second.

The given information can be used to find the distance between the chopper and the listener. To calculate the distance, we can use the following formula:

d = v × t

where, d is the distance, v is the speed of sound (343 m/s at room temperature), and t is the time taken to hear the sound.

We can calculate the distance using the given information: We are given that the sound was heard 2 seconds after the last chop.

Therefore, the time taken to hear the sound is t = 2 seconds.

Using the formula, we have: d = v × td = 343 × 2 = 686 meters.

To know more about meters visit:-

brainly.com/question/29438351

#SPJ11

An electron follows a helical path in a uniform magnetic field of magnitude 0.244 T. The pitch of the path is 7.47μm, and the magnitude of the magnetic force on the electron is 2.05×10−15 N. What is the electron's speed? Number Units

Answers

The speed of the electron is 6.57 × 10⁷ m/s.

The magnetic force on an electron in a magnetic field moving in a helical path is given by: Fm = evB, where e is the charge of an electron, v is the velocity of the electron, and B is the magnetic field strength.The pitch of the path, p, is defined as the distance traveled along the axis of the helix for one complete turn of the helix.

So the pitch of the path can be represented by:p = (v/ω), where ω is the angular velocity.The magnetic force is also equal to: Fm = mv²/r, where m is the mass of the electron, v is its velocity, and r is the radius of curvature of the helix.

For a helix, the radius of curvature, r, is given by: r = p/2πSo we have: mv²/r = evBv = eBr/mUsing the given values:Charge on an electron, e = 1.6 × 10⁻¹⁹ C;Magnetic field strength, B = 0.244 T;Pitch of the path, p = 7.47 μm = 7.47 × 10⁻⁶ mWe can determine the radius of curvature: r = p/2π= 7.47 × 10⁻⁶ m / (2π) = 1.19 × 10⁻⁶ mThe magnetic force, Fm = 2.05 × 10⁻¹⁵ N;Mass of an electron, m = 9.1 × 10⁻³¹ kgSubstituting the values into v = eBr/m:v = (1.6 × 10⁻¹⁹ C) × (0.244 T) × (1.19 × 10⁻⁶ m) / (9.1 × 10⁻³¹ kg)= 6.57 × 10⁷ m/sSo, the speed of the electron is 6.57 × 10⁷ m/s.

Learn more about electron here,

https://brainly.com/question/371590

#SPJ11

Modified True or False Write T id the statement is truthful. Otherwise, explain why it is false. There is no gravity in space that is why astronauts in the International Space Station experience apparent weightlessness. Your answer Bill pushes his silver bicycle down a road in Derry at a constant velocity. Of the four forces (friction, gravity, normal force, and pushing force) acting on the bicycle, the greatest amount of work is exerted by friction. Your answer The arm of a space shuttle, which carries its payload, suddenly malfunctions and releases the payload. It is expected that the payload will remain in the same orbit with the shuttle.

Answers

True: There is gravity in space, but astronauts in the ISS experience weightlessness due to being in a state of freefall.

False: In a constant velocity scenario, the work done by friction is zero.

False: If a space shuttle's arm malfunctions and releases the payload, it will not remain in the same orbit but follow its own trajectory.

1. True: In space, there is gravity present, but astronauts in the International Space Station (ISS) experience apparent weightlessness due to the state of freefall they are in. The ISS is in a constant state of freefall around the Earth, causing the astronauts to feel weightless.

2. False: If Bill is pushing his silver bicycle at a constant velocity, it means there is no acceleration. When there is no acceleration, the net force acting on the bicycle is zero.

In this case, the force of pushing is balanced by the force of friction, resulting in no net work being done by friction. Therefore, the statement is false. The work done by friction would be zero in this scenario.

3. False: If the arm of a space shuttle malfunctions and releases the payload while the shuttle is in orbit, the payload will not remain in the same orbit as the shuttle. Once released, the payload will continue moving with the same velocity it had when it was released.

Since the payload is no longer connected to the shuttle, it will follow its own trajectory, which will likely be slightly different from the shuttle's orbit. The payload will continue to orbit the Earth but not necessarily in the same path as the shuttle. Therefore, the statement is false.

Learn more about gravity here:

https://brainly.com/question/31321801

#SPJ11

The electric potential in a certain region is given by V = 4xy - 5z + x2 (in volts). Calculate the magnitude of the electric field at (+3, +2, -1) (all distances measured in meters)

Answers

To calculate the magnitude of the electric field at a specific point (+3, +2, -1) in a region with a given electric potential V,

We need to determine the gradient of the electric potential function and evaluate it at the given point. The magnitude of the electric field is equal to the magnitude of the negative gradient of the electric potential.

The gradient of the electric potential function V is given by the vector (∂V/∂x, ∂V/∂y, ∂V/∂z). By taking the partial derivatives of V with respect to each coordinate, we can obtain the components of the electric field vector. The magnitude of the electric field at the point (+3, +2, -1) is the magnitude of this vector. Evaluate the partial derivatives of V with respect to x, y, and z, and then substitute the values x = 3, y = 2, and z = -1 into these expressions. Finally, calculate the magnitude of the resulting electric field vector.

Learn more about the electric potential here:

https://brainly.com/question/28444459

#SPJ11

During a collision with the floor, the velocity of a 0.200-kg ball changes from 28 m/s downward toward the floor to 17 m/s upward away from the wall. If the time the ball was in contact with the floor was 0.075 seconds, what was the magnitude of the average force of impact? Answer in positive newtons.

Answers

The force of impact on average during the collision on the ball is 120N. The force of impact is the force that occurs when two objects collide. It is calculated by multiplying the mass of the object and its acceleration.

The formula for force is: F = ma. Here, m = 0.200 kgV1 = -28 m/sV2 = 17 m/st = 0.075 seconds Initial velocity, u = -28 m/s Final velocity, v = 17 m/s Change in velocity, Δv = v - u = 17 - (-28) = 45 m/s The acceleration during the collision is given bya = Δv/t = 45/0.075 = 600 m/s²To calculate the force of impact, we need to use the formula: F = ma = 0.200 × 600F = 120 N. Therefore, the magnitude of the average force of impact is 120 N.

Learn more about force of impact:

https://brainly.com/question/12912354

#SPJ11

In a typical electron microscope, the momentum of each electron is about 1.3 x 10⁻²² kg-m/s. What is the de Broglie wavelength of the electrons?
m

Answers

In a typical electron microscope, the momentum of each electron is about 1.3 x 10⁻²² kg-m/s. The de Broglie wavelength of the electrons is approximately 5.097 x 10^-12 meters.

To calculate the de Broglie wavelength of electrons, we can use the de Broglie wavelength equation:

λ = h / p

where:

λ is the de Broglie wavelength,

h is the Planck's constant (approximately 6.626 x 10^-34 J·s),

p is the momentum of the electron.

Given:

p = 1.3 x 10^-22 kg·m/s

Substituting the values into the equation:

λ = (6.626 x 10^-34 J·s) / (1.3 x 10^-22 kg·m/s)

Simplifying the equation:

λ = (6.626 x 10^-34 J·s) / (1.3 x 10^-22 kg·m/s)

λ ≈ 5.097 x 10^-12 meters

Therefore, the de Broglie wavelength of the electrons is approximately 5.097 x 10^-12 meters.

To learn more about de Broglie wavelength visit: https://brainly.com/question/30404168

#SPJ11

Calculate the magnitude of the electric field at one corner of a square 2.12 m on a side if the other three corners are occupied by 5.75x10-6 C charges. Express your answer to three significant figures and include the appropriate units. HÅ E- Value Units Submit Part B Request Answer

Answers

The magnitude of the electric field at one corner of the square, due to the charges at the other three corners, is approximately 2.42 × [tex]10^{6}[/tex]N/C.

To calculate the electric field at a point, we need to consider the contributions from each charge. In this case, the electric field at the corner of the square is the vector sum of the electric fields due to the charges at the other corners.

The electric field due to a point charge is given by Coulomb's Law:

E = k * q / [tex]r^2[/tex]

where E is the electric field, k is the Coulomb's constant (approximately 8.99 × 10^9 [tex]N m^2/C^2[/tex]), q is the charge, and r is the distance from the charge.

Considering the charges at the other corners, the electric field at the given corner is the vector sum of the electric fields due to each charge. Since the charges are the same at each corner, the magnitudes of the electric fields will be the same.

Let's calculate the electric field due to one of the charges at a corner:

E1 = k * q / r^2 = (8.99 × [tex]10^{9}[/tex][tex]N m^2/C^2[/tex]) * (5.75 × [tex]10^{6}[/tex]) C) / [tex](2.12 m)^2[/tex]

E1 ≈ 1.85 × [tex]10^{6}[/tex] N/C

Since there are three charges, the total electric field at the given corner will be three times the magnitude of E1:

E_total = 3 * E1 ≈ 3 * 1.85 × [tex]10^{6}[/tex] N/C ≈ 5.55 × [tex]10^{6}[/tex] N/C

However, we need to consider that the electric field is a vector quantity. The electric field vectors from the charges at the adjacent corners will cancel each other out partially, resulting in a smaller net electric field. Calculating the resultant vector requires considering the direction and magnitude of each electric field vector.

Without the specific arrangement of the charges or the angles between the sides of the square, it is not possible to provide an accurate calculation of the resultant vector. Therefore, the given answer provides only the magnitude of the electric field.

Learn more about electric field here ;

https://brainly.com/question/11482745

#SPJ11

How much energy does it take to A bar of material has a volume of 13cc heat up 600 cm 3
of water (C water ​
= and a temperature of 40 ∘
C. If the 4186 kgK
J

,L v, water ​
=2256 kg
kJ

,rho= biggest the material can get is 13.5cc, 1000 m 3
kg

, molar mass =18 mol
g

) from then what is its coefficient of linear 293 K to 313 K ? expansion? The material melts at a temperature of 230 ∘
C.

Answers

The energy required to heat up 600 cm^3 of water from 40 °C to 313 K is calculated to be approximately 12,558,000 J.

The coefficient of linear expansion of the material is found to be approximately 0.001923, indicating how much it expands per unit length when subjected to a temperature change from 293 K to 313 K.

Step 1: Calculate the energy required to heat up the water.

Specific heat capacity of water (C_water) = 4186 kgKJ​

Mass of water (m_water) = 600 cm^3 = 600 g

Initial temperature of water (T_initial) = 40 °C

Final temperature of water (T_final) = 313 K (approximately 40 °C)

We can use the formula:

Energy = m_water * C_water * (T_final - T_initial)

Substituting the given values:

Energy = 600 g * 4186 kgKJ​ * (313 K - 293 K)

Energy = 600 g * 4186 kgKJ​ * 20 K

Calculating the energy:

Energy = 12,558,000 J

Step 2: Calculate the change in volume of the material.

Initial volume of the material (V_initial) = 13 cc

Final volume of the material (V_final) = 13.5 cc

Change in volume (ΔV) = V_final - V_initial

ΔV = 13.5 cc - 13 cc

ΔV = 0.5 cc

Step 3: Calculate the coefficient of linear expansion.

Change in temperature (ΔT) = T_final - T_initial = 313 K - 293 K = 20 K

Coefficient of linear expansion (α) = ΔV / (V_initial * ΔT)

α = 0.5 cc / (13 cc * 20 K)

α = 0.5 / (13 * 20)

α ≈ 0.001923

Therefore, the energy required to heat up the water is approximately 12,558,000 J. The coefficient of linear expansion of the material is approximately 0.001923, indicating its expansion per unit length when subjected to a temperature change from 293 K to 313 K.

Learn more about Specific heat capacity here:

https://brainly.com/question/23063336

#SPJ11

Each of the following objects gives off light, but the majority of their light is given off in a certain part of the spectrum, according to Wien's Law. What is the wavelength of this peak radiation, and what portion of the spectrum does it cover? • a star at about 30,000 K • the corona of the Sun, at about 2,000,000 K • the surface of our skin, at about 297 K • the Sun, at about 6000K HINT: Problem 3 is a straightforward application of Wien's Law. Use the temperature to compute values of lambda-max, and use the electromagnetic spectrum in your book to determine the wavelength region. Remember that 1 Angstrom = 10⁻¹⁰ meters!

Answers

According to Wien's Law, the star at about 30,000 K emits peak radiation at a wavelength of 96.6 nm, corresponding to the ultraviolet portion of the spectrum. Similarly, the corona of the Sun, with a temperature of about 2,000,000 K, emits peak radiation at 1.45 nm in the extreme ultraviolet region.

Wien's law is a relationship that connects the temperature of an object to the wavelength at which it emits the most intense light. It states that the peak wavelength, known as λmax, is inversely proportional to the temperature of the object.

This law is also referred to as Wien's displacement law or Wien displacement law. By applying Wien's law, we can determine the wavelength of peak radiation and the corresponding portion of the electromagnetic spectrum for different temperatures, such as a star at 30,000 K, the Sun's corona at 2,000,000 K, the surface of our skin at 297 K, and the Sun at 6000 K.

[tex]\[\lambda_{max}=\frac{b}{T}\][/tex] where [tex]\[b=2.898×10^6\][/tex] nm-K.

It signifies that the peak of the blackbody radiation curve for an object of temperature T occurs at a wavelength [tex]\[\lambda_{max}\][/tex]

The wavelength of peak radiation and the spectrum part it covers for each object are given below:

The peak wavelength of light emitted by a star at approximately 30,000 K is:

[tex]\[\lambda_{max}=\frac{b}{T}=\frac{2.898×10^6}{30000}=96.6\][/tex] nm

The spectrum portion covered by this is Ultraviolet.

The corona of the Sun, with a temperature of about 2,000,000 K, emits light with a peak wavelength of:

[tex]\[\lambda_{max}=\frac{b}{T}=\frac{2.898×10^6}{2000000}=1.45\][/tex] nm

The spectrum portion covered by this is X-rays.

At a temperature of around 297 K, the surface of our skin emits light with a peak wavelength:

[tex]\[\lambda_{max}=\frac{b}{T}=\frac{2.898×10^6}{297000}=9.76\][/tex] µm

The spectrum portion covered by this is Far-infrared.

The Sun, with a temperature of about 6000 K, emits light with a peak wavelength of:

[tex]\[\lambda_{max}=\frac{b}{T}=\frac{2.898×10^6}{6000}=483\][/tex] nm

The spectrum portion covered by this is Yellow-green.

Learn more about wavelength at: https://brainly.com/question/24452579

#SPJ11

:If we can't build a telescope on Earth to image the Apollo footprints, let's solve the problem by putting a telescope in orbit around the Moon instead. By being in the vacuum of space, our lunar satellite will avoid all the problems of astronomical seeing and will actually be able to achieve its theoretical diffraction limit. By being so much closer to the Moon, the footprints themselves will be much, much larger in angular size, allowing us to resolve them with a much, much smaller telescope mirror. So, let's imagine you place a telescope in an orbit that is d=50.0km above the surface of the Moon, such that as it passes directly overhead of the Apollo landing sites, it can record images from that distance. [This is the actual distance that the Lunar Reconnaissance Orbiter satellite orbits above the Moon's surface.] Following the work in Part II, calculate the angular size of the footprints from this new, much closer distance. The length units must match, so use the fact that 1.00 km=1.00×103 m to convert the orbital radius/viewing distance, d=50.0 km, from kilometers to meters: d=( km)×[ /. ]=

Answers

The angular size of the footprints from the new, much closer distance of 50.0 km above the surface of the Moon is 4 × 10¹⁰.

Given data:

Orbital radius/viewing distance, d = 50.0 km = 50.0 × 10³ m

To convert the orbital radius/viewing distance from kilometers to meters, we use the conversion factor:

1 km = 1 × 10³ m

Thus, d = 50.0 × 10³ m

The formula for calculating the angular size of footprints is given below:

θ = d / D

Where,

θ = Angular size of footprints.

d = Distance of telescope from the footprints.

D = Length of the footprints.

The Lunar Reconnaissance Orbiter satellite orbits 50 km above the surface of the Moon. So, the distance of the telescope from the footprints is d = 50.0 × 10³ m.

From Part II, the length of the footprints is D = 1.25 × 10⁻³ m.

Using the above formula, we can calculate the angular size of footprints as:

θ = d / D

θ = (50.0 × 10³) / (1.25 × 10⁻³)

θ = (50.0 × 10³) × (10³ / 1.25)

θ = (50.0 × 10³) × (8 × 10²)

θ = 4 × 10¹⁰

Therefore, the angular size of footprints from this new, much closer distance is 4 × 10¹⁰.

Learn more about angular size:

https://brainly.com/question/32565944

#SPJ11

it is difficult to see the roadway when driving on a rainy night mainly because
a. light scatters from raindrops and reduces the amount of light reaching your eyes
b. of additional condensation on the inner surface of the windshield
c. the film of water on the roadway makes the road less diffuse
d. the film of water on your windshield provides an additional reflecting surface

Answers

It is difficult to see the roadway when driving on a rainy night mainly because light scatters from raindrops and reduces the amount of light reaching your eyes, option a.

When light interacts with raindrops, it causes the light to scatter in different directions, and this can be a major problem when driving at night especially during heavy rainfalls. This can lead to reduced visibility and can make it difficult to see the roadway.

An explanation of the other options:

b. Incorrect: Additional condensation on the inner surface of the windshield can also lead to reduced visibility but it is not the main cause of the problem.

c. Incorrect: The film of water on the roadway can also make the road less diffuse but it is not the main cause of the problem.

d. Incorrect: The film of water on your windshield provides an additional reflecting surface which can lead to reduced visibility but it is not the main cause of the problem.

Learn more about scatter:

https://brainly.com/question/7563617

#SPJ11

explore the relationship of Lenz law to Newton's 3rd law of
motion, energy conservation , and the 2nd law of
thermodynamics.

Answers

Lenz's law, Newton's third law of motion, energy conservation, and the second law of thermodynamics are all interconnected principles that govern different aspects of physical phenomena.

Lenz's law is a consequence of electromagnetic induction and states that the direction of an induced electromotive force (emf) in a circuit is such that it opposes the change in magnetic flux that produced it. This law is directly related to Newton's third law of motion, which states that for every action, there is an equal and opposite reaction. In the case of electromagnetic induction, the changing magnetic field induces a current in the circuit, and the induced current creates a magnetic field that opposes the change in the original magnetic field. Energy conservation is a fundamental principle that states that energy cannot be created or destroyed, only transformed from one form to another. In the context of Lenz's law, when a current is induced in a circuit, energy is converted from the original source (such as mechanical energy or magnetic energy) to electrical energy. This conservation of energy is a fundamental principle that holds true in all physical processes.

The second law of thermodynamics, specifically the law of entropy, states that in an isolated system, the total entropy (a measure of disorder) tends to increase over time. Lenz's law, by opposing the change in magnetic flux, ensures that the induced currents generate magnetic fields that tend to reduce the change in the original magnetic field. This reduction in change implies a reduction in disorder and an increase in order, which aligns with the second law of thermodynamics.

Learn more about Lenz's law here:

https://brainly.com/question/12876458

#SPJ11

2. Please use frequency response analysis to prove that 1st order transfer function GoL(s) in a closed-loop control system is a stable system but after a dead time is " included in the system (Go(s) =

Answers

Therefore, the inclusion of a dead time in a closed-loop control system's transfer function results in an unstable system.

Frequency Response Analysis: Frequency response analysis is the graphical representation of the magnitude and phase angle of the output response concerning frequency. A frequency response analysis of a closed-loop control system's transfer function is used to determine the stability of the system. A 1st order transfer function, GoL(s), is a stable system in a closed-loop control system. If a dead time is included in the system, the system's transfer function becomes Go(s) as a result. A dead time is the amount of time it takes for the system to respond after a signal has been sent. Frequency response analysis can be used to prove that the closed-loop control system's transfer function is stable with a 1st order transfer function. As a result, the transfer function for a 1st order system is given as follows: GoL(s) = K / (1+ τs)where K is the gain of the system, τ is the time constant, and s is the Laplace variable. After adding a dead time into the system, the transfer function changes to Go(s).When a dead time is added to the system, the transfer function changes to:Go(s) = Ke^(-Ls) / (1+ τs)where L is the dead time. The frequency response analysis of the transfer function Go(s) indicates that the system is unstable since the phase shift approaches -180 degrees as the gain approaches infinity. Therefore, the inclusion of a dead time in a closed-loop control system's transfer function results in an unstable system.

To know more about transfer function visit:

https://brainly.com/question/31778000

#SPJ11

Two wires carrying a 3.4-A current in opposite directions are 0.013m apart. What is the force per unit length on each wire?
Answer: x 10⁻⁴N/m
Is the force attractive or repulsive?
Answer:

Answers

The force per unit length on each wire is 10⁻⁴ N/m and the force is repulsive.

The current passing through the wires I = 3.4A

Distance between the two wires is d = 0.013m

The force per unit length on each wire is calculated using the formula:

F/L = μ₀I¹I²/2πd

Where,

F/L is the force per unit length

μ₀ is the permeability constant

I¹ and I² are the currents passing through the wires

2πd is the separation between the two wires

Substituting the values in the formula, we get

F/L = (4π x 10⁻⁷ Tm/A) x (3.4A)² / 2π(0.013m)

     = 10⁻⁴ N/m

Therefore, the force per unit length on each wire is 10⁻⁴ N/m.

The two wires carrying current in opposite directions repel each other. Therefore, the force is repulsive.

Learn more about the force per unit length:

brainly.com/question/18917488

#SPJ11

A bug of mass 0.026 kg is at rest on the edge of a solid cylindrical disk (M=0.10 kg,R=0.13 m) rotating in a horizontal plane around the vertical axis through its center. The disk is rotating at 14.5rad/s. The bug crawls to the center of the disk. (a) What is the new angular velocity of the disk (in rad/s)? (Enter the magnitude. Round your answer to at least one decimal place.) rad/s (b) What is the change in the kinetic energy of the system (in J)? स ] (c) If the bug crawls back to the outer edge of the disk, what is the angular velocity of the disk (in rad/s) then? (Enter the magnitude.) rad/s (d) What is the new kinetic energy of the system (in J)? J (e) What is the cause of the increase and decrease of kinetic energy? The work of the bug crawling on the disk causes the kinetic energy to increase or decrease. Score: 1 out of 1 Comment:

Answers

a)The new angular velocity of the disk is 1.45 rad/s.b)Change in the kinetic energy of the system is given by:ΔK=-0.592 J.c)The new angular velocity of the disk is 1.45 rad/s.d)New kinetic energy of the system is given by:Kf = 0.385 J.e)The cause of the increase and decrease of kinetic energy is the work done by the bug.

Given data: Mass of the bug = m₁ = 0.026 kgMass of the disk = M = 0.10 kgRadius of the disk = R = 0.13 mInitial angular velocity of the disk = ω₁ = 14.5 rad/sInitial moment of inertia of the disk = I₁ = (1/2)MR²Final moment of inertia of the disk = I₂ = (1/2)M(R/2)² + M(3R/2)² = 5MR²/4 = 0.08125 kg-m².

Let the new angular velocity of the disk be ω₂. Then, using the law of conservation of angular momentum, we get:I₁ω₁ = I₂ω₂ω₂ = I₁ω₁/I₂ω₂ = (0.5 × 0.10 × (0.13)² × 14.5)/(0.08125 × 14.5) = 1.45 rad/sTherefore, the new angular velocity of the disk is 1.45 rad/s.

Change in the kinetic energy of the system is given by:ΔK = Kf - Ki = (1/2)I₂ω₂² - (1/2)I₁ω₁² = (1/2)(0.08125)(1.45² - 14.5²) J= -0.592 J (negative sign indicates decrease in kinetic energy)If the bug crawls back to the outer edge of the disk, then the new angular velocity of the disk is the same as the initial angular velocity (since the angular momentum is conserved):ω₃ = ω₁ = 14.5 rad/s.

New kinetic energy of the system is given by:Kf = (1/2)I₁ω₁² = (1/2)(0.10)(0.13)²(14.5)² J= 0.385 J.

The cause of the increase and decrease of kinetic energy is the work done by the bug. When the bug crawls towards the center of the disk, it does negative work (i.e. work done by external force is negative) and the kinetic energy of the system decreases.

When the bug crawls towards the outer edge of the disk, it does positive work (i.e. work done by external force is positive) and the kinetic energy of the system increases.

Learn more about velocity here,

https://brainly.com/question/80295

#SPJ11

What is thermal radiation (sometimes called black body radiation)? It is light light absorbed by cool gases. It is light emitted by hot, low density (sparse) gases. It is light emitted from dense forms of matter. Question 30 What is the nature of thermal radiation? It is emitted at discrete wavelengths. It is spread over all wavelengths, but with a peak of intensity at one. It is absorbed at discrete wavelengths. Question 31 What does the Wien Displacement Law (also known as Wien's Law) tell us? There is an inverse relation between the temperature of a thermal emitter and the wavelength where the emission peaks. There is a proportional relation between the temperature of a thermal emitter and the wavelength where the emission peaks. None of the above.

Answers

Thermal radiation (also called black body radiation) is the type of electromagnetic radiation emitted by a heated object. It is light emitted from dense forms of matter and is spread over all wavelengths, but with a peak of intensity at one.

Thermal radiation is an important topic in both the scientific and engineering fields. that it is light emitted from dense forms of matter. Thermal radiation is often referred to as black body radiation because a black body is a theoretical object that absorbs all of the radiation that falls on it. Thermal radiation does not require the presence of a material medium and can pass through a vacuum. It occurs at all wavelengths and is continuous in nature. The Wien Displacement Law, also known as Wien's Law, states that the wavelength of the peak emission from a black body is inversely proportional to the temperature of the object. In other words, there is an inverse relation between the temperature of a thermal emitter and the wavelength where the emission peaks. This law is used to determine the temperature of stars based on their color.

Thermal radiation is emitted from dense forms of matter and is spread over all wavelengths, but with a peak of intensity at one. The Wien Displacement Law tells us that there is an inverse relation between the temperature of a thermal emitter and the wavelength where the emission peaks.

To know more about wavelengths visit:

brainly.com/question/31143857

#SPJ11

A student standing on the top of a cliff shoots an arrow from a height of 30.0 m at 25.0 m/s and an initial angle of 32.0° above the horizontal. Show all your work in calculating the answers to the following 4 questions. What will be the horizontal and vertical components of the arrow's initial speed? How high above the landscape under the cliff will the arrow rise? Assume a level landscape. What will be the vertical and horizontal speeds of the arrow

Answers

Answer:

The vertical speed of the arrow at the highest point is zero, the horizontal speed remains constant at approximately 21.3 m/s, and the arrow reaches a maximum height of approximately 9.26 m above the landscape.

Given:

Initial speed (v) = 25.0 m/s

Launch angle (θ) = 32.0°

Height of the cliff (h) = 30.0 m

The horizontal component of the initial speed (v_horizontal) can be found using trigonometry:

v_horizontal = v * cos(θ)

Substituting the values:

v_horizontal = 25.0 * cos(32.0°)

Calculating:

v_horizontal ≈ 21.3 m/s

The vertical component of the initial speed (v_vertical) can also be found using trigonometry:

v_vertical = v * sin(θ)

Substituting the values:

v_vertical = 25.0 * sin(32.0°)

Calculating:

v_vertical ≈ 13.5 m/s

Therefore, the horizontal component of the arrow's initial speed is approximately 21.3 m/s, and the vertical component is approximately 13.5 m/s.

Question 2: Maximum Height Above the Landscape

To find the maximum height above the landscape that the arrow will reach, we can use the kinematic equation for vertical motion:

Δy = v_vertical^2 / (2 * g)

Where Δy is the change in height, v_vertical is the vertical component of the initial speed, and g is the acceleration due to gravity (approximately 9.8 m/s²).

Substituting the values:

Δy = (13.5^2) / (2 * 9.8)

Calculating:

Δy ≈ 9.26 m

Therefore, the arrow will rise approximately 9.26 m above the landscape.

Question 3: Vertical and Horizontal Speeds of the Arrow

The vertical speed of the arrow at any given time can be determined using the equation:

v_vertical = v_initial * sin(θ) - g * t

Where v_initial is the initial speed, θ is the launch angle, g is the acceleration due to gravity, and t is the time.

At the highest point of the trajectory, the vertical speed becomes zero. We can set v_vertical = 0 and solve for the time t:

0 = v_initial * sin(θ) - g * t

Solving for t:

t = v_initial * sin(θ) / g

Substituting the values:

t = (25.0 * sin(32.0°)) / 9.8

Calculating:

t ≈ 1.34 s

The horizontal speed of the arrow remains constant throughout the motion, assuming no horizontal forces act on it.

Therefore, the horizontal speed (v_horizontal) of the arrow remains the same as the initial horizontal component of the velocity, which is approximately 21.3 m/s.

In summary, the vertical speed of the arrow at the highest point is zero, the horizontal speed remains constant at approximately 21.3 m/s, and the arrow reaches a maximum height of approximately 9.26 m above the landscape.

Learn more about acceleration, here

https://brainly.com/question/460763



#SPJ11

a) A flat roof is very susceptible to wind damage during a thunderstorm and/or tornado. If a flat roof has an area of 780 m2 and winds of speed 41.0 m/s blow across it, determine the magnitude of the force exerted on the roof. The density of air is 1.29 kg/m3.
N
(b) As a result of the wind, the force exerted on the roof is which of the following?
upward
downward

Answers

During a thunderstorm or tornado, a flat roof with an area of 780 m2 is at risk of wind damage.  The magnitude of the force exerted on the roof is 679,024.7 N. The force exerted on the roof is  in the downward direction.

To calculate the force exerted on the flat roof, we need to determine the wind pressure first. Wind pressure can be calculated using the equation: [tex]Pressure = 0.5 * density * velocity^2[/tex], where the density of air is given as [tex]1.29 kg/m^3[/tex] and the velocity is 41.0 m/s. Plugging in these values, we find the wind pressure to be approximately 872.485 Pa.

Next, we can calculate the force exerted on the roof by multiplying the wind pressure by the area of the roof. The area of the roof is given as [tex]780 m^2[/tex]. Therefore, the force exerted on the roof can be calculated as: Force = Pressure * Area. Substituting the values, we get: Force = [tex]872.485 Pa * 780 m^2 = 679,024.7 N[/tex].

The force exerted on the flat roof during the thunderstorm/tornado is downward since the wind blows across the roof and exerts a pressure on it in the downward direction. Therefore, the correct answer is (b) downward.

Learn more about force here:

https://brainly.com/question/30507236

#SPJ11

In a scanning electron microscope, if we accelerate an electron through an electric potential of 20 kV, what is the electron's kinetic energy? (1 eV-1.6x10J, me = 9.11 x 10kg) (b) What is the velocity of the electron after the acceleration? Do we need to consider its relativistic effect? Briefly justify your answer and support your justification with a calculation. (c) What is the de Broglie wavelength of the electron with the velocity as in (b) (i) = 6,63 % 10*) (d) For an electron as described in (a), what is the minimum possible uncertainty in its position 08) The ontzation ency of the droom is 13.6 V. Ir the new meth hop & 7 00 8 9 O

Answers

The electron's kinetic energy is -32 x 10^(-16) J.he de Broglie wavelength of the electron is approximately 1.23 x 10^(-11) m.

(a) To find the electron's kinetic energy, we can use the formula:

Kinetic energy (K.E.) = qV

Where:

q is the charge of the electron

V is the electric potential

Given:

Charge of the electron (q) = -1.6 x 10^(-19) C

Electric potential (V) = 20 kV = 20 x 10^3 V

Substituting the values into the formula:

K.E. = (-1.6 x 10^(-19) C) * (20 x 10^3 V)

K.E. = -32 x 10^(-16) J

Therefore, the electron's kinetic energy is -32 x 10^(-16) J.

(b) To determine the velocity of the electron after acceleration, we can use the formula for kinetic energy:

K.E. = (1/2)mv^2

Where:

m is the mass of the electron

v is the velocity of the electron

Given:

Mass of the electron (m) = 9.11 x 10^(-31) kg

Kinetic energy (K.E.) = -32 x 10^(-16) J

Rearranging the formula:

v^2 = (2K.E.) / m

v = √[(2K.E.) / m]

Substituting the values:

v = √[(2 * (-32 x 10^(-16) J)) / (9.11 x 10^(-31) kg)]

v ≈ 5.92 x 10^7 m/s

To determine if we need to consider the relativistic effect, we can compare the calculated velocity to the speed of light. The speed of light (c) is approximately 3 x 10^8 m/s. Since the velocity of the electron (5.92 x 10^7 m/s) is significantly smaller than the speed of light, we can neglect the relativistic effects for this calculation.

(c) The de Broglie wavelength of the electron can be calculated using the equation:

λ = h / p

Where:

λ is the de Broglie wavelength

h is the Planck's constant (6.63 x 10^(-34) J·s)

p is the momentum

The momentum can be calculated using:

p = mv

Given:

Mass of the electron (m) = 9.11 x 10^(-31) kg

Velocity of the electron (v) = 5.92 x 10^7 m/s

Substituting the values:

p = (9.11 x 10^(-31) kg) * (5.92 x 10^7 m/s)

p ≈ 5.39 x 10^(-23) kg·m/s

Now, substituting the calculated momentum into the de Broglie wavelength equation:

λ = (6.63 x 10^(-34) J·s) / (5.39 x 10^(-23) kg·m/s)

λ ≈ 1.23 x 10^(-11) m

Therefore, the de Broglie wavelength of the electron is approximately 1.23 x 10^(-11) m.

(d) The minimum possible uncertainty in the position of the electron can be determined using the Heisenberg uncertainty principle:

Δx * Δp ≥ h/2

Where:

Δx is the uncertainty in position

Δp is the uncertainty in momentum

h is the Planck's constant (6.63 x 10^(-34) J·s)

Since the electron is accelerated and has a known velocity, its momentum is well

Learn more about kinetic energy here:

https://brainly.com/question/999862

#SPJ11

Two horizontal forces, P and Q, are acting on a block that is placed on a table. We know that P is directed to the left but the direction of Q is unknown; it could either be directed to the right or to the left. The object moves along the x-axis. Assume there is no friction between the object and the table. Here P = −8.8 N and the mass of the block is 3.6 kg.
(a)
What is the magnitude and direction of Q (in N) when the block moves with constant velocity? (Indicate the direction with the sign of your answer.)
_________N
(b)
What is the magnitude and direction of Q (in N) when the acceleration of the block is +4.0 m/s2. (Indicate the direction with the sign of your answer.)
_________N
(c)
Find the magnitude and direction of Q (in N) when the acceleration of the block is −4.0 m/s2. (Indicate the direction with the sign of your answer.)
____________N

Answers

a) The block is moving at a constant velocity. Therefore, the net force acting on the block should be equal to zero.

Fnet = P + Q = 0Q = − P = − (− 8.8 N) = 8.8 N

Therefore, the magnitude and direction of Q when the block moves with a constant velocity are 8.8 N to the right. This can be seen in the diagram below:

Therefore, the answer is 8.8 N to the right.

b) The acceleration of the block is 4.0 m/s² and the net force acting on the block is

Fnet = m a

where m is the mass of the block. We can use the following equation to find the magnitude of Q.

Fnet = P + Q = m a

Q = m a − PP

= − 8.8 Nm

= 3.6 kg

Q = (3.6 kg) (4.0 m/s²) − (− 8.8 N)

Q = 14.4 N + 8.8 N

Q = 23.2 N

Therefore, the magnitude and direction of Q when the acceleration of the block is +4.0 m/s² is 23.2 N to the right.

Therefore, the answer is 23.2 N to the right.

c) The acceleration of the block is −4.0 m/s² and the net force acting on the block is

Fnet = m a, where m is the mass of the block. We can use the following equation to find the magnitude of Q

.Fnet = P + Q = m a

Q = m a − PP =

− 8.8 Nm = 3.6 kg

Q = (3.6 kg) (−4.0 m/s²) − (− 8.8 N)

Q = − 14.4 N + 8.8 N

Q = − 5.6 N

Therefore, the magnitude and direction of Q when the acceleration of the block is −4.0 m/s² is 5.6 N to the left.

Therefore, the answer is 5.6 N to the left.

Learn more about constant velocity here

https://brainly.com/question/20215498

#SPJ11

A 75kg stuntman falls 15m from the roof of a building. He then lands on an inflatable crash mat, which brings him to a stop in an additional 3.0m. What force must the crash mat provide to accomplish this?

Answers

To calculate the force the crash mat must provide, the principle of conservation of energy is used. The crash mat must provide a force of  4,410 N to bring the stuntman to a stop.

The potential energy lost by the stuntman as he falls is converted into work done by the crash mat to bring him to a stop.

The potential energy lost by the stuntman is given by the formula:

Potential Energy (PE) = mass (m) * acceleration due to gravity (g) * height (h)

It is given that Mass of the stuntman (m) = 75 kg, Acceleration due to gravity (g) = 9.8 m/s², Height fallen (h1) = 15 m, Additional height to stop (h2) = 3.0 m

The total potential energy lost by the stuntman is the sum of the potential energy lost while falling and the potential energy lost while coming to a stop:

Total Potential Energy Lost = m * g * h1 + m * g * h2

Substituting the given values:

Total Potential Energy Lost = 75 kg * 9.8 m/s² * 15 m + 75 kg * 9.8 m/s² * 3.0 m

Total Potential Energy Lost = 11,025 J + 2,205 J

Total Potential Energy Lost = 13,230 J

Since the crash mat brings the stuntman to a stop, the work done by the crash mat must be equal to the total potential energy lost.

Work done by the crash mat = Total Potential Energy Lost = 13,230 J

The work done by a force is equal to the force multiplied by the distance over which the force acts. In this case, the distance is the additional 3.0 m the stuntman comes to a stop:

Force * 3.0 m = 13,230 J

Force = 13,230 J / 3.0 m

Force ≈ 4,410 N

Therefore, the crash mat must provide a force of approximately 4,410 N to bring the stuntman to a stop.

To learn more about force: https://brainly.com/question/12785175

#SPJ11

A rescue helicopter lifts a 75.3−kg person straight up by means of a cable. The person has an upward acceleration of 0.602 m/s 2
and is lifted from rest through a distance of 12.2 m. Use the work-energy theorem and find the final speed of the person. (Take up positive and down negative) 3.98 m/s 3.28 m/s 5.48 m/s 5.21 m/s 4.51 m/s A 7.05-kg monkey is hanging by one arm from a branch and swinging on a vertical circle. As an approximation, assume a radial distance of 62.1 cm is between the branch and the point where the monkey's mass is located. As the monkey swings through the lowest point on the circle, it has a speed of 3.38 m/s. Find the magnitude of the tension in the monkey's arm. 145.58 N 124.56 N 198.78 N 218.12 N

Answers

The magnitude of the tension in the monkey's arm is 218.12 N. Answer: 218.12 N.

Part AThe weight of the person is the force with which the person is acted upon by gravity. Therefore, the work done by the gravitational force on the person is given by Wg = mghWhere m = 75.3 kg, g = 9.81 m/s², and h = 12.2 mTherefore, Wg = (75.3 kg)(9.81 m/s²)(12.2 m) = 8905.89 JAlso, the work done by the helicopter is given by Wh = (1/2)mv² - (1/2)mu²Where v = final velocity, u = initial velocity, and Wh is the work done by the helicopter on the person since it lifts the person upwards through a distance of 12.2 m.

To obtain the final velocity of the person, we equate Wg to Wh since the net work done on the person is zero. Thus,8905.89 J = (1/2)(75.3 kg)v² - (1/2)(75.3 kg)(0 m/s)²8905.89 J = (1/2)(75.3 kg)v²v² = (2 × 8905.89 J)/(75.3 kg)v² = 236.66v = sqrt(236.66) = 15.38 m/sPart BWhen the monkey is at the lowest point of the circle, the only forces acting on the monkey are the gravitational force and the tension in the arm. The gravitational force acts downwards while the tension in the arm acts upwards.

Therefore, the net force acting on the monkey is the difference between the tension and the gravitational force. This net force causes the monkey to move in a circle of radius 62.1 cm. Thus, the magnitude of the net force can be obtained using the centripetal force equation;Fc = mv²/RFc = (7.05 kg)(3.38 m/s)²/(0.621 m)Fc = 139.28 NSince the net force is the difference between the tension and the gravitational force, we haveT - mg = Fcwhere T is the tension and m is the mass of the monkey.

Therefore, the magnitude of the tension in the monkey's arm can be obtained as;T = Fc + mgT = 139.28 N + (7.05 kg)(9.81 m/s²)T = 218.12 NTherefore, the magnitude of the tension in the monkey's arm is 218.12 N. Answer: 218.12 N.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ11

A 120 V, 50 Hz, 0.50 Hp, Two-Pole, Resistance Split-Phase Induction Motor Has The Following Main Winding Impedances: Z1 = (1.72 + J2.65) Ω Z2 = (2.36 + J2.65) Ω XM = 90 Ω PF&W = 35 W For A Slip Of 0.05 P.U, Determine: 1.The Magnitude Stator Current In Amps 2.For A Slip Of 0.05 P.U, Determine: The Magnitude Stator Current In Amps 3.The
A 120 V, 50 Hz, 0.50 hp, two-pole, resistance split-phase induction motor has the following main winding impedances:
Z1 = (1.72 + j2.65) Ω
Z2 = (2.36 + j2.65) Ω
XM = 90 Ω
PF&W = 35 W
For a slip of 0.05 p.u, determine:
1.The magnitude stator current in amps
2.For a slip of 0.05 p.u, determine: The magnitude stator current in amps
3.The input power in watts
4.Air-gap power in watts

Answers

The correct answer is 1) Magnitude of I1 = |I1| = 1.22 A 2)  1.22 A. 3) 4.85 Wb. and 4) 354 W.

1. The magnitude stator current in amps:
Given data:
Voltage, V = 120V
Frequency, f = 50 Hz
Output power, Pout = 0.50 hp
Slip, S = 0.05
Let the current flowing through stator winding is I1
Now the rotor input power Pinput is given by,
Pinput = Pout / efficiency = Pout / (Pout + losses)
For a two-pole induction motor,
Pinput = (Pout + Pf & W + Pg)
Where Pf & W is friction and windage loss and Pg is the air-gap power.
Now, Pout = 0.50 hp × 746 W/hp = 373 W

Pg = Pout (1 - S) = 373(1 - 0.05) = 354 W
Pf & W = 35 W (Given)
Pinput = (373 + 35 + 354) = 762 W

So, the stator input power Pin is,
Pin = Pinput / ω = Pinput / (2πf)
where ω is the angular velocity of the rotating magnetic field.ω = 2πf / P = 2π × 50 / 2 = 157.08 rad/sec

Pin = 762 / 157.08 = 4.85 Wb
Let's calculate the stator current. For that, we need to calculate the total impedance Z_total as
Z_total = Z1 + Z2 + jXM
  = (1.72 + j2.65) + (2.36 + j2.65) + j90
  = 4.08 + j95.3 Ω

The current through stator winding is given as,
I1 = V / Z_total
I1 = 120 / (4.08 + j95.3)
I1 = 1.22 ∠ -87.8° A
Magnitude of I1 = |I1| = 1.22 A (Ans)

2. For a slip of 0.05 p.u, determine: The magnitude stator current in amps:
We have already calculated the magnitude of the stator current in part 1, which is equal to 1.22 A.

3. The input power in watts:
The input power to the motor is calculated in part 1 which is equal to 4.85 Wb.

4. Air-gap power in watts:
The air-gap power is calculated in part 1 which is equal to 354 W.

know more about Magnitude

https://brainly.com/question/31022175

#SPJ11

Two charges are placed on the x-axis: a charge of +12.6nC at the origin and a charge of -31.3nC placed at x=24cm. What is the electric field vector on the y-axis at y=31cm?

Answers

The electric field vector on the y-axis at y = 31 cm can be calculated by considering the electric field contributions from each charge at their respective positions.

The electric field due to a point charge can be determined using the formula E = kQ/r^2, where E is the electric field, k is Coulomb's constant, Q is the charge, and r is the distance from the charge. To calculate the electric field at y = 31 cm on the y-axis, we need to consider the electric field contributions from both charges. The electric field due to the positive charge at the origin can be calculated using the formula E1 = kQ1/r1^2, where Q1 is the charge (+12.6 nC) and r1 is the distance from the charge (which is the y-coordinate, 31 cm in this case).

Similarly, the electric field due to the negative charge at x = 24 cm can be calculated using the formula E2 = kQ2/r2^2, where Q2 is the charge (-31.3 nC) and r2 is the distance from the charge (which is the distance between the charge and the point on the y-axis, calculated as √(x^2 + y^2)).

Learn more about electric fields here:

https://brainly.com/question/11482745

#SPJ11

Other Questions
Shivani walks at a constant speed of 2 m/s, then immediately turns and starts walking 40 west of north for 15 seconds. She takes a break for 10 seconds as she figures which way she wants to walk. Finally, she walks 50 east of south for 30 seconds. (a) Draw a diagram on an xy-plane. (b) How far away is Shivani from where she started walking? (c) What is her distance travelled? Mettez entre crochets la proposition subordonne relative et soulignez son antcdent.a) Le document que tu souhaitais lire t'a t envoy hier.b) La gentillesse dont il a fait preuve nous a beaucoup touchs.c) La chambre o Eric dort se trouve au 1er tage : celle que tu occupes est au rez-de-chausse.Merci All of the following statements about the ego integrity stage are true except one. Which statement is FALSE? Select one: a. Despair happens when missed chances are focused upon instead of accomplishments. b. Being able to look back with pride at life brings ego integrity. c. Old age is supposed to be a sad time. d. This stage encompasses old age or the golden years. d) Sketch the construction an op-amp circuit with an input resistance of 10 KOhm which performs the following calculation: Vout= -1000 Vin dt A GM counter is a gas-filled detector. Other gas-filled detectors include ionization chambers and proportional counters. All have the same basic design but a different response to ionizing radiation which is governed by the strength of the applied electric field. Draw a schematic diagram of applied voltage vs the number of ion pairs produced and label the following regions:(a) Recombination region(b) Ionization region(c) Proportional region(d) Limited proportionality region(e) GM region(f) Continuous discharge region A homeowner decided to use an electrically heated 4 m long rectangular duct to maintain his room at a comfortable condition during winter. Electrical heaters, well insulated on the outer surface, wrapped around the 0.1m x 0.19m duct, maintains a constant surface temperature of 360K. Air at 275K enters the heated duct section at a flow rate of 0.15 kg/s. Determine the temperature of the air leaving the heated duct. Assuming all the electrical energy is used to heat the air, calculate the power required. (Use Tm = 300K) [14] - Nu, = 0.023 Res Pr.4 T . mo PL = expl h T Tmi mC for Ts = constant where P = perimeter of the duct and L L = length - (b) Discuss the boundary layer profile that would result for a vertical hot plate, and a vertical cold plate, suspended in a quiescent fluid. [6] 4. (a) Outline the steps that a design engineer would follow to determine the (i) Rating for a heat exchanger. (ii) The sizing of a heat exchanger. [2] [2] (b) A shell-and-tube heat exchanger with one shell pass and 30 tube passes uses hot water on the tube side to heat oil on the shell side. The single copper tube has inner and outer diameters of 20 and 24 mm and a length per pass of 3 m. The water enters at 97C and 0.3 kg/s and leaves at 37C. Inlet and outlet temperatures of the oil are 10C and 47C. What is the average convection coefficient for the tube outer surface? Using Laplace Transform to solve the following equations: y+5y=sin2t Problem Description: Write a single C++ program that will print results according to the output below. There are 2 subtasks to print, all should be printed on a single program.Subtask 1: This program is about using for loops. It asks the user for a number n and prints Fibonacci series with first n numbers. First two terms of the Fibonacci series are 1 and all the following terms are sum of its previous two terms. Please use a for loop to calculate the series. Please see the sample output.Subtask 2: This program is about using arrays and using arrays as a parameter of function. It asks the user for a number sz (length of the array).Write a program that implement the following function: array_populate(int num[ ], int sz): This function populates the array num of size sz with random numbers. The numbers should be randomly generated from -99 to 99. show_array(int num[ ], int sz): This function shows the values of the num array of size sz in a single line. sum_of_positive(int num[ ], int sz): This function returns the sum of all positive values of the array num. sum_of_negative(int num[ ], int sz): This function returns the sum of all negative values of the array num. sum_of_even(int num[ ], int sz): This function returns the sum of all even values of the array num. sum_of_odd(int num[ ], int sz): This function returns the sum of all odd values of the array num. Please see the sample output What is the structural formula of 4-methyl pentan-2-ol Offer some participants somewhat of a warning about filters in social media. As you saw (or will see) in the Week 7 lab powerpoint presentation on generating an idea, one way I would recommend doing this is by having some participants first look at celebrity photos with or without a filter component and choose which one they think is more "true to life". Other participants look at landscapes (which are more neutral) that also have a filter versus unfiltered component (clearly realistic or clearly fake). My thought here is that participants who look at filtered photos of celebrities (actual people!) will be more likely to spot the filters in the later study with Katie and Sarah than people who see filtered landscapes. As such, they will be more forewarned about the nature of filters, which might make them view Katie more positively in all conditions (and Sarah more negatively only in the condition where she shared an unfiltered photo of Katie).In this discussion, I want EACH of you to do three things.First, tell me which study you want to do (that is, which second independent variable you find most interesting). You can use one of the ideas above or come up with a unique one on your own. I prefer your own ideas, but if you really like one I mentioned you can use it. You still need to give me two more things, though ...Second, give me a reference in APA format for one peer reviewed research article that has something to do with this second variable. This article does not have to involve Filters at all, but it must have something to do with your second independent variable.Third, give me a hypothesis for what you expect to occur if your new independent variable is chosen for the class project. What do you predict just for that independent variable? What do you predict in terms of the interaction of that new independent variable with your original high versus low expectation independent variable? Write out a step-by-step guide including screenshots about how to deploy a reactJS project to GitHub and host it on GitHub pages.I WILL ONLY UPVOTE FOR A GENUINE ANSWER, COPY-PASTING WILL BE DOWNVOTED! A 1000 kg motor vehicle starts from an initial velocity 1 m/s and after traveling at a distance of 113 m on a straight-line path, its speed is found to be 28 m/s. What is the magnitude of the average net acceleration of the car during the travel on this straight-line path? No need to write the unit. Please write the answer in one decimal place. (eg 1.234 should be written as 1.2). Calculate the value of inductance in a circuit having 3 inductors of rating 3 millihenry each in series. 1mH 0.009H 3mH 9mH What is the voltage across the plates of the capacitor if the capacitance is 10 uF and the Charge stored is 30 uC? 3 V 0.333 V 300 V 30V QUESTION 1: The square foot price obtained by using the means national average data should be adjusted for which of the following? (Select all that apply.) a.staff size b. location of the project c. size of the facility and design fees d. time of the project 8. "Constructive processes" in memory, which often make memories inaccurate, are mental processes in which memories are influenced by: a. direct prior experience we have with the stimulus b. C. d. our (1)What are the advantages of alphabetic language systems overIdeographic language systems? The following four questions refer to this problem statement.. Wastewater flows into primary settling tank at 30 ft/s and has BODs of 220 mg/L. Primary settling removes 30% of the BODs. The aeration tank is 60,000 ft and has MLVSS of 2,300 mg/L. Effluent BOD, from the secondary treatment is 10 mg/L. Question 9 What is the influent BOD, (mg/L) into the aeration tank? Question 10 What is the BODs removal efficiency (%) of the aeration tank? Required information 2.00 2 1.00 ww R 4.00 $2 3.30 8.00 $2 where R = 5.00 Q. An 14.2-V emf is connected to the terminals A and B. What is the current through the 5.00-2 resistor connected directly to point A? B Calculate the lattice energies of the hypothetical compounds NaCl2 and MgCl using Born-Mayer equation, assuming the Mg and Nations and the Na2+ and Mg2+ ions have the same radii. How do these results explain the compounds that are found experimentally? Use the following data in the calculation: Second ionization energies (Mt M2+ +e): Na, 4562 kJ/mol; Mg, 1451 kJ/mol. Enthalpy of formation: NaCl, -411 kJ/mol; MgCl2, -642 kJ/mol. Radius: Na+, 107 pm; Mg+, 86 pm; CT, 167 pm. Madelung constant: MgCl2, 2.385; NaCl, 1.748. Sublimation energy: Na, 107 kJ/mol; Mg, 147 kJ/mol. First ionization energy: Na, 495 kJ/mol; Mg, 738 kJ/mol. Crystal structure: MgCl2, rutile; NaCl, rock salt. [e?141o] = 2.307x10-28 Jm. 9 Commentary on the article by Stphane Courtois entitled: "Is thepolitics of multiculturalism compatible with Quebecnationalism?.