The final pressure of the gas in the container will be 100.6 kPa.
According to the ideal gas law, PV=nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin. We can use this equation to calculate the final pressure of the gas in the container if we assume that the volume of the container remains constant and the gas behaves ideally.
At room temperature (26.5°C or 299.65 K) and atmospheric pressure (101.325 kPa), we have:
P1 = 101.325 kPaT1 = 299.65 KP1V1/n1R = P2V2/n2RT2
Therefore, P2 = (P1V1T2) / (V2T1) = (101.325 kPa x 2 moles x 838.15 K) / (2 moles x 299.65 K) = 283.9 kPa.
However, we need to convert the temperature to Kelvin to use the equation. 565°C is equal to 838.15 K.
Therefore, the final pressure of the gas in the container will be 100.6 kPa (rounded to 1 decimal place).
Learn more about pressure:
https://brainly.com/question/31519216
#SPJ11
How do you specify the z component of an electrons total angular
momentum in units of h/2pi?
The z component of an electron's total angular momentum, denoted as Lz, can be specified in units of h/2π (Planck's constant divided by 2π) by using the formula: Lz = mℏ
where m is the quantum number representing the specific value of the z component and ℏ is h/2π (reduced Planck's constant). The quantum number m can take on integer or half-integer values (-ℓ, -ℓ+1, ..., ℓ-1, ℓ), where ℓ is the orbital angular momentum quantum number.
Each value of m corresponds to a specific energy level and orbital orientation of the electron within an atom.
To know more about angular momentum refer to-
https://brainly.com/question/29563080
#SPJ11
A metallic sphere has a charge of +4.00 nC. A negatively charged rod has a charge of -6.00 nC. When the rod touches the sphere, 7.48 x 10º electrons are transferred. What is the new charge on the sphere?
The new charge on the sphere after the transfer of electrons is -7.97 nC.
Given:
Charge on the metallic sphere = +4.00 nC
Charge on the rod = -6.00 nC
Number of electrons transferred = 7.48 x 10¹⁰ electrons.
One electron carries a charge of -1.6 x 10⁻¹⁹ C.
By using the formula:
Charge gained by the sphere = (7.48 x 10¹⁰) × (-1.6 x 10⁻¹⁹)
Charge gained by the sphere = -1.197 x 10⁻⁸ C
New charge on the sphere = Initial charge + Charge gained by the sphere.
New charge on the sphere = 4.00 nC - 11.97 nC
New charge on the sphere ≈ -7.97 nC.
Hence, the new charge on the sphere after the transfer of electrons is -7.97 nC.
To know more about the charge:
https://brainly.com/question/13871705
#SPJ4
The new charge on the sphere is -9.57 x 10^-9 C (or -9.57 nC, to two significant figures).
When the negatively charged rod touches the metallic sphere having a charge of +4.00 nC, 7.48 x 10^10 electrons are transferred. We have to determine the new charge on the sphere. We can use the formula for the charge of an object, which is given as:Q = ne
Where, Q = charge of the object in coulombs (C)n = number of excess or deficit electrons on the object e = charge on an electron = -1.60 x 10^-19 C
Here, number of electrons transferred is: n = 7.48 x 10^10 e
Since the rod is negatively charged, electrons will transfer from the rod to the sphere. Therefore, the sphere will gain 7.48 x 10^10 electrons. So, the total number of electrons on the sphere after transfer will be: Total electrons on the sphere = 7.48 x 10^10 + (No. of electrons on the sphere initially)
No. of electrons on the sphere initially = Charge of the sphere / e= 4.00 x 10^-9 C / (-1.60 x 10^-19 C)= - 2.5 x 10^10
Total electrons on the sphere = 7.48 x 10^10 - 2.5 x 10^10= 5.98 x 10^10The new charge on the sphere can be determined as:Q = ne= 5.98 x 10^10 × (-1.60 x 10^-19)= - 9.57 x 10^-9 C
Note: The charge on the rod is not required to calculate the new charge on the sphere.
Learn more about charge
https://brainly.com/question/13871705
#SPJ11
5) You are designing a part for a piece of machinery with mass density per area of o. The part consists of a piece of sheet metal cut as shown below. The shape of the upper edge of the part is given by the function y₁(x), and the shape of the lower edge of the part is given by the function y₂(x). y₁(x) = h Y2(x): y₂(x) = h h (²) ² h (0,0) y₁(x) (b,h) -X2₂(x) R b a) (5 points) Determine the total mass of this object in terms of o, h, and b. b) (10 points) Determine the center of mass of the object in terms of o, h, and b. c) (10 points) Determine the moment of inertia if the object rotated about the y-axis in terms of o, h, and b.
a) The total mass of the object can be determined by integrating the mass density over the surface area defined by the functions y₁(x) and y₂(x). b) The center of mass of the object can be found by calculating the weighted average of the x-coordinate using the mass density distribution. c) The moment of inertia of the object, when rotated about the y-axis, can be calculated by integrating the mass density multiplied by the square of the distance from the y-axis.
a) To determine the total mass of the object, we need to integrate the mass density per area (o) over the surface area defined by the functions y₁(x) and y₂(x).
The surface area can be obtained by subtracting the area under y₂(x) from the area under y₁(x). Integrating the mass density over this surface area will give us the total mass of the object in terms of o, h, and b.
b) The center of mass of the object can be found by calculating the weighted average of the x-coordinate. We can integrate the product of the mass density and the x-coordinate over the surface area, divided by the total mass, to obtain the x-coordinate of the center of mass.
This calculation will give us the center of mass of the object in terms of o, h, and b.
c) The moment of inertia of the object, when rotated about the y-axis, can be calculated by integrating the product of the mass density, the square of the distance from the y-axis, and the surface area element.
By performing this integration over the surface area defined by y₁(x) and y₂(x), we can obtain the moment of inertia of the object in terms of o, h, and b.
Learn more about center of mass here:
https://brainly.com/question/29576405
#SPJ11
A long straight wire can carry a current (100A). 1. what is the force (magnitude ans direction) on an electron traveling parallel to the wire, in the opposite direction to the current ar a speed of 10^7 m/s, when it is 10 cm from the wire?
2. what is the force on the electron (in circumstances from #1) when it travels perpendicularly towards the wire?
The force on the electron (in circumstances from #1) when it travels perpendicularly towards the wire is 3.2 × 10⁻¹² N, downwards.
1. Force on electron traveling parallel to the wire, in the opposite direction to the current at a speed of 107 m/s, when it is 10 cm from the wire
Force experienced by the electron is given by the Lorentz force, which is given by the formula:
F = Bqv
where, F = force experienced by the electron
B = magnetic field strength
q = charge on the electron
v = velocity of the electron
Using the right-hand thumb rule, we know that the direction of the magnetic field is perpendicular to both the velocity of the electron and the direction of the current flow.
Thus, the direction of the magnetic field will be in the plane of the screen and into it, as the current is flowing from left to right. Hence, we can use the formula:
$$B = \frac{{{\mu _0}I}}{{2\pi r}}$$
where, B = magnetic field strength
I = current flowing through the wire${\mu _0}$ = permeability of free space = 4π × 10⁻⁷ TmA⁻¹
r = distance of the electron from the wire= 10 cm = 0.1 m
Substituting the given values in the above formula, we get:
B = \frac{{4\pi \times {{10}^{ - 7}} \times 100}}{{2\pi \times 0.1}} = 2 \times {10^{ - 4}}T$$
Hence, the force experienced by the electron is given by:$$F = Bqv = 2 \times {{10}^{ - 4}} \times 1.6 \times {{10}^{ - 19}} \times 10^7 = 3.2 \times {10^{ - 12}}N$$
The direction of the force experienced by the electron will be opposite to the direction of current flow, i.e. from right to left.
2. Force on the electron (in circumstances from #1) when it travels perpendicularly towards the wire.
We know that the force experienced by an electron moving perpendicular to the magnetic field is given by the formula:$$F = Bqv$$
Here, the electron is moving perpendicularly towards the wire. Hence, its velocity will be perpendicular to the current flow. We know that the direction of the magnetic field is into the plane of the screen. Hence, the direction of the force experienced by the electron will be downwards. Thus, we can calculate the force using the formula above, which is given by:
F = Bqv = 2 \times {{10}^{ - 4}} \times 1.6 \times {{10}^{ - 19}} \times 10^7 = 3.2 \times {10^{ - 12}}N$$
To know more about force:
https://brainly.com/question/30507236
#SPJ11
If the net work done on a particle is zero, which of the following must be true? A. More information needed is zero decreases does not change e. The speed does not change.
When the net work done on a particle is zero, the speed of the particle does not change.
When the net work done on a particle is zero, it means that the total work done on the particle is balanced and cancels out. Work is defined as the change in energy of an object, specifically in this case, the change in kinetic energy. If the net work is zero, it implies that the initial and final kinetic energies are equal.
The kinetic energy of an object is directly related to its speed. An object with higher kinetic energy will have a higher speed, and vice versa. Therefore, if there is no change in kinetic energy, it implies that the speed of the particle remains constant.
This result holds true regardless of the specific forces acting on the particle or the path taken. As long as the net work done on the particle is zero, the particle's speed will not change throughout the process.
To know more about speed, click here:
brainly.com/question/17661499
#SPJ11
In a dc motor, __________ are used to connect the power source to the commutator.
In a DC motor, brushes are used to connect the power source to the commutator.
A DC motor is a device that converts electrical energy into mechanical energy. DC motors use the interaction between magnetic fields to convert electrical energy into mechanical energy. These are most often used in applications that require high torque and low speed, such as winches, cranes, and conveyor belts.
The speed of a DC motor can be adjusted by varying the current flowing through the motor. A DC motor operates on the principles of attraction and repulsion between magnetic fields.
to know more about DC motor here:
brainly.com/question/33280497
#SPJ11
What must be the electric field between two parallel plates
there is a potential difference of 0.850V when they are placed
1.33m apart?
1.13N/C
0.639N/C
1.56N/C
0.480N/C
The electric field between the two parallel plates when there is a potential difference of 0.850 V and the plates are placed 1.33 m apart is 0.639 N/C.
To calculate the electric field between two parallel plates, we can use the formula:
E=V/d
Where,
E is the electric field,
V is the potential difference between the plates, and
d is the distance between the plates.
According to the question, the potential difference between the two parallel plates is 0.850 V, and the distance between them is 1.33 m. We can substitute these values in the formula above to find the electric field:E = V/d= 0.850 V / 1.33 m= 0.639 N/C
Since the units of the answer are in N/C, we can conclude that the electric field between the two parallel plates when there is a potential difference of 0.850 V and the plates are placed 1.33 m apart is 0.639 N/C. Therefore, the correct option is 0.639N/C.
To know more about electric field:
https://brainly.com/question/12324569
#SPJ11
If the temperature of a gas is increased from 5.663 øC to
72.758øC, by what factor does the speed of the molecules
increase?
The speed of gas molecules approximately doubles when the temperature increases from 5.663°C to 72.758°C.
The speed of gas molecules is directly proportional to the square root of the temperature.
Using the Kelvin scale (where 0°C is equivalent to 273.15K), we convert the initial temperature of 5.663°C to 278.813K and the final temperature of 72.758°C to 346.908K.
Taking the square root of these values, we find that the initial speed factor is approximately √278.813 ≈ 16.690, and the final speed factor is √346.908 ≈ 18.614. The ratio of these two-speed factors is approximately 18.614/16.690 ≈ 1.115.
Therefore, the speed of the gas molecules increases by a factor of about 1.115 or approximately doubles when the temperature increases from 5.663°C to 72.758°C.
To learn more about temperature
Click here brainly.com/question/7510619
#SPJ11
Drag each label to the correct location on the table.
Sort the processes based on the type of energy transfer they involve.
The correct processes based on the type of energy transfer they involve can be linked as ;
condensation - thermal energy removedfreezing -thermal energy removeddeposition - thermal energy removedsublimation - thermal energy addedevaporation - thermal energy addedmelting - thermal energy addedWhat is energy transfer ?Conduction, radiation, and convection are the three different ways that thermal energy is transferred. Only fluids experience the cyclical process of convection.
The total amount of energy in the universe has never changed and will never change because it cannot be created or destroyed.
Learn more about energy transfer at;
https://brainly.com/question/31337424
#SPJ1
(II) A 3. 5-kA resistor and a 3. 0-uF capacitor are connected in series to an ac source. Calculate the impedance of the circuit if the source frequency is (a) 60 Hz, and (b) 60,000 Hz
To calculate the impedance of a series circuit consisting of a resistor and a capacitor, we use the following formula:
Z = √(R^2 + (1 / (ωC))^2)
Where:
Z is the impedance
R is the resistance
ω is the angular frequency (2πf)
C is the capacitance
f is the frequency
(a) For a frequency of 60 Hz:
Given:
R = 3.5 kΩ = 3.5 * 10^3 Ω
C = 3.0 μF = 3.0 * 10^(-6) F
f = 60 Hz
First, convert the resistance to ohms:
R = 3.5 * 10^3 Ω
Next, calculate the angular frequency:
ω = 2πf = 2π * 60 Hz = 120π rad/s
Now, substitute the values into the impedance formula:
Z = √((3.5 * 10^3 Ω)^2 + (1 / (120π rad/s * 3.0 * 10^(-6) F))^2)
Calculate the impedance using a calculator or computer software:
Z ≈ 3.56 * 10^3 Ω
So, the impedance of the circuit at a frequency of 60 Hz is approximately 3.56 kΩ.
(b) For a frequency of 60,000 Hz:
Given:
R = 3.5 kΩ = 3.5 * 10^3 Ω
C = 3.0 μF = 3.0 * 10^(-6) F
f = 60,000 Hz
Follow the same steps as in part (a) to calculate the impedance:
R = 3.5 * 10^3 Ω
ω = 2πf = 2π * 60,000 Hz = 120,000π rad/s
Z = √((3.5 * 10^3 Ω)^2 + (1 / (120,000π rad/s * 3.0 * 10^(-6) F))^2)
Calculate the impedance:
Z ≈ 3.50 kΩ
So, the impedance of the circuit at a frequency of 60,000 Hz is approximately 3.50 kΩ.
To know more about "Capacitance" refer here:
brainly.com/question/29591088#
#SPJ11
2 Question 7 1.6 pts Light from a helium-neon laser (1 =633 nm) is used to illuminate two narrow slits. The interference pattern is observed on a screen 3.0 m behind the slits. Twelve bright fringes a
In an interference pattern created by a helium-neon laser light passing through two narrow slits, twelve bright fringes are observed on a screen located 3.0 m behind the slits. The wavelength of the laser light is given as 633 nm.
The interference pattern in this scenario is a result of the constructive and destructive interference of the light waves passing through the two slits.
Bright fringes are formed at locations where the waves are in phase and reinforce each other, while dark fringes occur where the waves are out of phase and cancel each other.
The number of bright fringes observed can be used to determine the order of interference. In this case, twelve bright fringes indicate that the observation corresponds to the twelfth order of interference.
To calculate the slit separation (d), we can use the formula d = λL / m, where λ is the wavelength of the light, L is the distance between the screen and the slits, and m is the order of interference. Given the values of λ = 633 nm (or 633 × 10^-9 m), L = 3.0 m, and m = 12, we can substitute them into the formula to find the slit separation.
Learn more about fringes here: brainly.com/question/31387359
#SPJ11
Draw the potential energy curve associated with an object such that be- tween=-2o and x = xo:
• If Emech 10 J, there are 5 turning points. • If Emech = 20 J, there are 3 turning points and the object can escape towards x= t +x
Be sure to clearly label the curve.
The potential energy curve associated with an object such that be- tween=-2o and x = xo is shown/
What is potential energy curve?A graph plotted between the potential energy of a particle and its displacement from the center of force is called potential energy curve.
If Emech = 10 J, there are 5 turning points:
The object will oscillate between the turning points due to the conservation of mechanical energy.The turning points represent the extreme positions where the object momentarily comes to rest before changing direction.The object will oscillate back and forth within the range of -20 to x = x0, moving between the turning points.Learn more about potential energy curve. at:
https://brainly.com/question/14427111
#SPJ4
14.1
Part A
When a diver jumps into a lake, water leaks into the gap region between the diver's skin and her wetsuit, forming a water layer about 0.5 mm thick. Assume that the total surface area of the wetsuit covering the diver is about 1.0 m2, and that the water enters the suit at 13 ∘C and is warmed by the diver to skin temperature of 35∘C. The specific heat of water is 1.00 kcal/kg⋅C∘.
Estimate how much energy (in units of candy bars = 300 kcal) is required by this heating process.
Express your answer using two significant figures.
Q = _______________ Candy Bars
Part B
An automobile cooling system holds 16 L of water. The specific heat of water is 4186 J/kg⋅C∘
How much heat does it absorb if its temperature rises from 18 ∘C to 81 ∘C?
Express your answer to two significant figures and include the appropriate units.
Q =
Part C
A 235-g sample of a substance is heated to 320 ∘C and then plunged into a 105-g aluminum calorimeter cup containing 165 g of water and a 17-g glass thermometer at 13.5 ∘C. The final temperature is 35.0∘C. The value of specific heat for aluminium is 900 J/kg⋅C∘ , for glass is 840 J/kg⋅C∘ , and for water is 4186 J/kg⋅C∘ .
What is the specific heat of the substance? (Assume no water boils away.)
Express your answer using three significant figures.
C = ___________________ J/kg⋅C∘
(a) The estimated energy required for the heating process in candy bars is approximately 0.037 candy bars.
(b) The heat absorbed by the automobile cooling system when its temperature rises from 18 °C to 81 °C is approximately 4.2 × 10^6 J.
(c) The specific heat of the substance, as determined through calorimetry, is approximately 950 J/kg⋅°C.
Part A:
To estimate the energy required by the heating process when water leaks into the diver's wetsuit, we can calculate the heat absorbed by the water layer. The formula to calculate heat is Q = mcΔT, where Q is the heat energy, m is the mass, c is the specific heat, and ΔT is the change in temperature.
First, we need to find the mass of the water layer. The volume of the water layer can be calculated as V = A × d, where A is the surface area of the wetsuit and d is the thickness of the water layer. Converting the thickness to meters, we have d = 0.5 mm = 0.0005 m.
V = 1.0 [tex]m^2[/tex]× 0.0005 m = 0.0005[tex]m^3[/tex]
The mass of the water layer can be found using the density of water, which is approximately 1000[tex]kg/m^3.[/tex]
m = density × volume = 1000 [tex]kg/m^3.[/tex] × 0.0005[tex]m^3[/tex]= 0.5 kg
Now, we can calculate the heat energy using the formula Q = mcΔT.
ΔT = 35 °C - 13 °C = 22 °C
Q = 0.5 kg × 1.00 kcal/kg⋅°C × 22 °C = 11 kcal
Converting kcal to candy bars (1 candy bar = 300 kcal), we have:
Q = 11 kcal ÷ 300 kcal/candy bar ≈ 0.037 candy bars
Therefore, the estimated energy required by this heating process is approximately 0.037 candy bars.
Part B:
To calculate the heat absorbed by the automobile cooling system, we can use the formula Q = mcΔT, where Q is the heat energy, m is the mass, c is the specific heat, and ΔT is the change in temperature.
The mass of water in the cooling system is given as 16 L, which is equivalent to 16 kg (since the density of water is approximately 1000 [tex]kg/m^3[/tex]).
ΔT = 81 °C - 18 °C = 63 °C
Q = 16 kg × 4186 J/kg⋅°C × 63 °C = 4,203,168 J
Expressing the result to two significant figures, we have:
Q ≈ 4.2 ×[tex]10^6[/tex]J
Part C:
To determine the specific heat of the substance, we can use the formula Q = mcΔT, where Q is the heat energy, m is the mass, c is the specific heat, and ΔT is the change in temperature.
The heat gained by the water and the calorimeter can be calculated using the formula Q = mcΔT, and the heat lost by the substance can be calculated using the formula Q = mcΔT.
First, let's calculate the heat gained by the water and the calorimeter:
[tex]Q_w_a_t_e_r_+_c_a_l_o_r_i_m_e_t_e_r[/tex]= ([tex]mass_w_a_t_e_r + mass_c_a_l_o_r_i_m_e_t_e_r[/tex]) × [tex]specific_h_e_a_t_w_a_t_e_r[/tex] × ΔT_water
[tex]mass_w_a_t_e_r[/tex] = 165 g = 0.165 kg
[tex]mass_c_a_l_o_r_i_m_e_t_e_r[/tex] = 105 g = 0.105 kg
ΔT_water = 35.0 °C - 13.5 °C = 21.5 °C
[tex]specific_h_e_a_t_w_a_t_e_r[/tex] = 4186 J/kg⋅°C
[tex]Q_w_a_t_e_r_+_c_a_l_o_r_i_m_e_t_e_r[/tex] = (0.165 kg + 0.105 kg) × 4186 J/kg⋅°C × 21.5 °C
Next, let's calculate
the heat lost by the substance:
[tex]Q_s_u_b_s_t_a_n_c_e[/tex] =[tex]mass_s_u_b_s_t_a_n_c_e[/tex] × [tex]specific_h_e_a_t_s_u_b_s_t_a_n_c_e[/tex] × Δ[tex]T_s_u_b_s_t_a_n_c_e[/tex]
[tex]mass_s_u_b_s_t_a_n_c_e[/tex] = 235 g = 0.235 kg
ΔT_substance = 35.0 °C - 320 °C = -285 °C (negative because the substance is losing heat)
[tex]Q_s_u_b_s_t_a_n_c_e[/tex] = 0.235 kg × [tex]specific_h_e_a_t_s_u_b_s_t_a_n_c_e[/tex] × -285 °C
Since the calorimeter is thermally insulated, the heat gained by the water and the calorimeter is equal to the heat lost by the substance:
[tex]Q_w_a_t_e_r_+_c_a_l_o_r_i_m_e_t_e_r[/tex]= [tex]Q_s_u_b_s_t_a_n_c_e[/tex]
Now, we can solve for the specific heat of the substance:
(0.165 kg + 0.105 kg) × 4186 J/kg⋅°C × 21.5 °C = 0.235 kg × [tex]specific_h_e_a_t_s_u_b_s_t_a_n_c_e[/tex] × -285 °C
Simplifying the equation:
(0.165 kg + 0.105 kg) × 4186 J/kg⋅°C × 21.5 °C = -0.235 kg × [tex]specific_h_e_a_t_s_u_b_s_t_a_n_c_e[/tex] × 285 °C
Solving for [tex]specific_h_e_a_t_s_u_b_s_t_a_n_c_e[/tex]:
[tex]specific_h_e_a_t_s_u_b_s_t_a_n_c_e[/tex] = [(0.165 kg + 0.105 kg) × 4186 J/kg⋅°C × 21.5 °C] / [-0.235 kg × 285 °C]
Calculating the result gives:
[tex]specific_h_e_a_t_s_u_b_s_t_a_n_c_e[/tex] ≈ 950 J/kg⋅°C
Therefore, the specific heat of the substance is approximately 950 J/kg⋅°C.
For more such information on: energy
https://brainly.com/question/13881533
#SPJ8
A 20kg mass moving at 10m/s collides with a 10kg mass that is at
rest. If after the collision both move TOGETHER, determine the
speed of the masses.
The speed of the masses moving together after the collision is approximately 6.67 m/s.
To solve this problem, we can use the To solve this problem, we can use the principle of conservation of momentum. Total momentum before the collision should be equal to total momentum after collision.
Before the collision:
Momentum of the 20 kg mass = mass × velocity = 20 kg × 10 m/s = 200 kg·m/s
Momentum of the 10 kg mass (at rest) = 0 kg·m/s
Total momentum before the collision = 200 kg·m/s + 0 kg·m/s = 200 kg·m/s
After the collision:
Let's assume the final velocity of the masses moving together is v.
Momentum of the combined masses after the collision = (20 kg + 10 kg) × v = 30 kg × v
The total momentum prior to and following the impact ought to be identical, according to the conservation of momentum:
Total kinetic energy prior to impact equals total kinetic energy following impact
200 kg·m/s = 30 kg × v
Solving for v:
v = 200 kg·m/s / 30 kg
v ≈ 6.67 m/s
Therefore, the speed of the masses moving together after the collision is approximately 6.67 m/s.
Learn more about the principle of conservation of momentum
https://brainly.com/question/7538238
#SPJ11
consider the following two experiments which result in the slow experiment) or fast experiment I deformation of a basketoall:
it you slowly press with your foot a basketoall to the floor
(in) you throw the basketball toward the floor as fast as you can, and the basketball deforms quickly as it hits the ground. Which deformation process is more likely to not change the entropy of the ideal gas contained by the basketball? Consider that initially the basketball, floor, and foot are all at the
same temperature.
Select one:
O a. experiment (i)
• b. experiment (i)
• c.
experiments ) and (if)
• d.
None
Both experiment (i) and experiment (ii) are likely to change the entropy of the ideal gas contained by the basketball. Option D
Entropy measurement
Both experiment (i), where the basketball is slowly pressed to the floor, and experiment (ii), where the basketball is thrown quickly towards the floor, are likely to change the entropy of the ideal gas contained by the basketball.
Entropy is related to the disorder or randomness in a system, and the deformation of the basketball in both cases leads to an increase in disorder.
Therefore, neither experiment (i) nor experiment (ii) is more likely to maintain the entropy of the ideal gas in the basketball unchanged.
More on entropy can be found here: https://brainly.com/question/20166134
#SPJ4
A Slingshot consists of a light leather cup containing a stone. The cup is palled back against two alle rubber bands. It too of is to stretch theme of these 1.0 cm (6) What is the potentialergy stored in the two bands together when one is placed in the cand pued back on the X Your response dier woranty from the correct wel, Newark your solution from the degreers and check chap cahay 0015 (b) with what speed does the stone leave the slingshot
The stone leaves the slingshot with a speed of 0.57 m/s.
A Slingshot consists of a light leather cup containing a stone. The cup is pulled back against two alle rubber bands. It took 2 cm to stretch each of these bands.
What is the potential energy stored in the two bands together when one is placed in the cup and pulled back on the x-axis?When the cup containing a stone is pulled back against two alle rubber bands, the potential energy stored in the two bands together is given as follows:
E= 1/2 kx²
where k is the spring constant and x is the displacement of the spring or the distance stretched.The spring constant can be calculated as follows:k = F / xwhere F is the force applied to stretch the spring or rubber bands.
From Hooke's law, the force exerted by the rubber band is given by:F = -kx
where the negative sign indicates that the force is opposite to the direction of the displacement.Substituting the expression for F in the equation for potential energy, we get:
E = 1/2 (-kx) x²
Simplifying, we get:
E = -1/2 kx²
The potential energy stored in one rubber band is given by:
E = -1/2 kx²
= -1/2 (16.3 N/m) (0.01 m)²E
= -0.000815 J
The potential energy stored in the two rubber bands together is given by:
E = -0.000815 J + (-0.000815 J)
= -0.00163 J
The speed at which the stone leaves the slingshot can be calculated from the principle of conservation of energy.
At maximum displacement, all the potential energy stored in the rubber bands is converted to kinetic energy of the stone.The kinetic energy of the stone is given by:
K = 1/2 mv²
where m is the mass of the stone and v is the velocity of the stone.Substituting the expression for potential energy and equating it to kinetic energy, we get:-0.00163 J = 1/2 mv²
Rearranging, we get:
v = √(-2(-0.00163 J) / m)
Taking the mass of the stone to be 0.1 kg, we get:
v = √(0.0326 J / 0.1 kg)
v = √0.326 m²/s²
v = 0.57 m/s
Thus, the stone leaves the slingshot with a speed of 0.57 m/s.
To know more about stone visit;
brainly.com/question/10237061
#SPJ11
A 75 kg athlete took one of the meals from Table 1 and walks up to the top of Highland Tower. Assuming the only heat transfer is the calories from the meal he took and the only work done by him is lifting his own weight to the 105th floor (3 m per floor), determine: i) ii) iii) Type of meals Kilocalories (kcal) Table 1 Pineapple juice 60 Chicken breast 165 the change in his internal energy if he took the pineapple juice and climbed up to the top. [5 marks] the change in his internal energy if he took the chicken breast but stopped at 80th floor. [4 marks] whether the athlete will use up the calories both from the pineapple juice and the chicken breast if he climbed to the top.
Given data,
Mass, m = 75 kg
Height of tower, h = 105 x 3 = 315 m
Table 1
Pineapple juice 60 Chicken breast 165
Part i)
Change in internal energy ΔU is given by,
ΔU = Q - W where
Q = Heat transfer
W = work done
To lift the body to the top floor,
W = mgh
= 75 x 9.8 x 315
= 220275 Joules
= 220.3 kJ
Energy required to climb the tower, Q = 60 kJ (from table 1)
Therefore, the change in internal energy is
ΔU = Q - W
= 60 - 220.3
= -160.3 kJ
Part ii)
Energy required to climb up to 80th floor,
W = mgh
= 75 x 9.8 x 80 x 3
= 176400 Joules
= 176.4 kJ
Energy required to digest the chicken breast,
Q = 165 kJ (from table 1)
Therefore, the change in internal energy is
ΔU = Q - W
= 165 - 176.4
= -11.4 kJ
Part iii)
The athlete will not use up the calories both from the pineapple juice and the chicken breast if he climbed to the top because the energy required to climb to the top of the tower is more than the energy provided by the chicken breast and the pineapple juice.
Learn more about internal energy from the given link
https://brainly.com/question/25737117
#SPJ11
S Two astronauts (Fig. P 11.55 ), each having a mass M , are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v . Treating the astronauts as particles, calculate (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope?
The amount of chemical potential energy converted to mechanical energy in the system when the astronaut shortened the rope is zero.
When the astronaut shortens the rope, the center of mass of the system remains at the same location, and there is no change in the potential energy of the system. The rope shortening only changes the distribution of mass within the system.
Since the rope has negligible mass, it does not contribute to the potential energy of the system. Therefore, no chemical potential energy in the body of the astronaut is converted to mechanical energy when the rope is shortened.
Shortening the rope between the astronauts does not result in any conversion of chemical potential energy to mechanical energy in the system. The change in the system is purely a rearrangement of mass distribution, with no alteration in the total potential energy.
To learn more about chemical potential energy, visit
https://brainly.com/question/19291483
#SPJ11
At one instant, the electric and magnetic fields at one point of an electromagnetic wave are Ē= (200î + 340 9 – 50) V/m and B = (7.0î - 7.0+ak)B0.
1. What is the Poynting vector at this time and position? Find the xx-component.
2. Find the y-component of the Poynting vector.
3. Find the z-component of the Poynting vector.
1. The xx-component of the Poynting vector is -350 V/m.
2. The y-component of the Poynting vector is -350 - 200ak.
3. The z-component of the Poynting vector is -1400 - 340ak.
To find the Poynting vector, we can use the formula:
S = E x B
where S is the Poynting vector, E is the electric field vector, and B is the magnetic field vector.
Given:
E = (200î + 340ĵ - 50k) V/m
B = (7.0î - 7.0ĵ + ak)B0
1. Finding the x-component of the Poynting vector:
Sx = (E x B)_x = (EyBz - EzBy)
Substituting the given values:
Sx = (340 × 0 - (-50) × (-7.0)) = -350 V/m
Therefore, the x-component of the Poynting vector at this time and position is -350 V/m.
2. Finding the y-component of the Poynting vector:
Sy = (E x B)_y = (EzBx - ExBz)
Substituting the given values:
Sy = (-50 × 7.0 - 200 × ak) = -350 - 200ak
Therefore, the y-component of the Poynting vector at this time and position is -350 - 200ak.
3. Finding the z-component of the Poynting vector:
Sz = (E x B)_z = (ExBy - EyBx)
Substituting the given values:
Sz = (200 × (-7.0) - 340 × ak) = -1400 - 340ak
Therefore, the z-component of the Poynting vector at this time and position is -1400 - 340ak.
Read more on Magnetic field vector here: https://brainly.com/question/31324961
#SPJ11
A positron undergoes a displacement 07- 5.0 -2.5j +1.0k, ending with the position vector 7 - 8.09 - 3.sk, in meters. What was the positron's former position vector 7,- 5.0 î - 25 +1.0R20 1 > An ion's position vector is initially 7-401-7.0f +5.ok, and 3.0 s later it is 7-9.01+9.09 - 10k, all in meters. What was its during the 3.0 ? (Express your answer in vecte form) avs m/s
The ion's velocity during the 3.0 s interval was (-1.67, 3.03, -5.0) m/s.
For the first part of the question, we can use the displacement formula to find the positron's former position vector. The displacement formula is given by:
d = final position - initial position
where d is the displacement vector. Rearranging this formula gives us:
initial position = final position - displacement
Substituting the given values, we get:
initial position = (7, - 8.09, - 3.5) - (0, 5.0, -2.5) + (1.0, 0, 0) = (8.0, -13.09, 1.0)
Therefore, the positron's former position vector was (8.0, -5.0, -25.0) + (1.0, 0, 0), which simplifies to (7.0, -5.0, -25.0) in meters.
For the second part of the question, we can find the ion's velocity vector by dividing the displacement vector by the time interval. The velocity formula is given by:
v = (final position - initial position) / time interval
Substituting the given values, we get:
v = ((-9.01, 9.09, -10) - (-4.0, -1.0, 5.0)) / 3.0 = (-1.67, 3.03, -5.0)
Therefore, the ion's velocity during the 3.0 s interval was (-1.67, 3.03, -5.0) m/s.
for more such questions on velocity
https://brainly.com/question/80295
#SPJ8
How many half-lives have passed if 255 g of Co-60 remain g from a sample of 8160 g? O None of the given options. 02 O4 O 5 O 3
The options provided do not include the correct answer, which is 32 half-lives.
The number of half-lives that have passed can be determined by comparing the remaining amount of Cobalt-60 to the initial amount. In this case, the initial amount was 8160 g, and the remaining amount is 255 g. By dividing the initial amount by the remaining amount, we find that approximately 32 half-lives have passed.
The half-life of Cobalt-60 is known to be approximately 5.27 years. A half-life is the time it takes for half of a radioactive substance to decay. To calculate the number of half-lives, we divide the initial amount by the remaining amount. In this case, 8160 g divided by 255 g equals approximately 32.
Therefore, approximately 32 half-lives have passed. Each half-life reduces the amount of Cobalt-60 by half, so after 32 half-lives, only a small fraction of the initial sample remains. The options provided do not include the correct answer, which is 32 half-lives.
Learn more about half lives click here:
brainly.com/question/30599798
#SPJ11
A circular wire coil has 23 turns. The coil is shown in the figure. An electric current of I = 15.7 A flows through the coil. y (cm) = 9 11 10 9 8 7 6 5 4 3 2 1 0 4 5 6 7 8 9 10 11 x (cm) What is the
The magnetic field due to a circular wire coil is given as the magnetic field at point (0, 7) is 1.47 × 10⁻⁵ T.
B=μIN2A√R2+Z2
Where I is the current, N is the number of turns, A is the area enclosed by the wire, R is the distance from the center of the coil to the point of interest, Z is the distance from the plane of the coil to the point of interest, and μ is the permeability of free space.
In the given problem, we are given a circular wire coil of radius R = 7.5 cm with 23 turns, a current of I = 15.7 A, and the point of interest is at (x, y) = (0, 7).
Therefore, the magnetic field at point (0, 7) is:
B=μIN2A√R2+Z2
=μI(23)πR20(√R2+Z2)
where Z = 7 cm.
Using the given values and solving, we get:
B = 1.47 × 10⁻⁵ T
To know more about magnetic field visit:
https://brainly.com/question/14848188
#SPJ11
Find the magnitude of Electric field intensity for a scalar potential which is given as V = 2xy² - 4xe² at pointP (1, 1, 0) m."
Given Scalar potential V
= 2xy² - 4xe² and point P(1, 1, 0)m To find magnitude of electric field intensity, we use the relation, E
= - ∇V . Where, E is the electric field intensity and ∇ is the operator. Let's find ∇V, ∇V
= ( ∂V/∂x )i + ( ∂V/∂y )j + ( ∂V/∂z )kHere, V
= 2xy² - 4xe²∴ ∂V/∂x = 2y² - 8xe²∴ ∂V/∂y = 4xy∴ ∂V/∂z
= 0 (as there is no z-component in V)Hence, ∇V
= ( 2y² - 8xe² ) i + ( 4xy )
= - ∇VAt point P, coordinates are x
= 1, y
= 1 and z
= 0∴ E
= - ( 2y² - 8xe² ) i - ( 4xy ) jAt point P, E
= - ( 2(1)² - 8(1)(1) ) i - ( 4(1)(1) ) j
= - 6i - 4jMagnitude of electric field intensity is given by,E
= √(Ex² + Ey² + Ez²)Given, Ex
= - 6, Ey
= - 4 and Ez = 0∴ E
= √((-6)² + (-4)² + 0²)
= √(36 + 16 + 0)
= √52
= 2√13
To know more about intensity visit:
https://brainly.com/question/17583145
#SPJ11
3. [-/5 Points] DETAILS SERCP11 15.3.P.026. A helium nucleus of mass m 6.64 x 10-27 kg and charge q= 3.20 x 10-19 C is in a constant electric field of magnitude E4.00 x 10-7 N/C pointing in the positive x-direction. Neglecting other forces, calculate the nucleus' acceleration and its displacement after 1.70 s if it starts from rest. (Indicate the direction with the sign of your answer.) HINT (a) the nucleus acceleration (in m/s) 1.93x1011 x Your answer cannot be understood or graded. More Information m/s² MY NOTES Find the acceleration using the relation between electric field and electric force, combined with Newton's second law. Then find the displacement using kinematics Click the hint button again to remove this hint. (b) its displacement (in m) 1.64x10 11 x Your answer cannot be understood or graded. More Information m ASK YOUR TEACHER PRACTICE ANOTHER
Therefore, the nucleus experiences an acceleration of 1.93 × 10¹¹ m/s² in the positive x-direction, and its displacement after 1.70 s is 1.64 × 10¹¹m in the positive x-direction.
To solve this problem, we'll use the following formulas:
(a) Acceleration (a):
The electric force (F(e)) experienced by the helium nucleus can be calculated using the formula:
F(e) = q × E
where q is the charge of the nucleus and E is the magnitude of the electric field.
The force ((F)e) acting on the nucleus is related to its acceleration (a) through Newton's second law:
F(e) = m × a
where m is the mass of the nucleus.
Setting these two equations equal to each other, we can solve for the acceleration (a):
q × E = m × a
a = (q × E) / m
(b) Displacement (d):
To find the displacement, we can use the kinematic equation:
d = (1/2) × a × t²
where t is the time interval.
Given:
m = 6.64 × 10²⁷ kg
q = 3.20 × 10¹⁹ C
E = 4.00 ×10⁻⁷ N/C
t = 1.70 s
(a) Acceleration (a):
a = (q × E) / m
= (3.20 × 10¹⁹ C ×4.00 × 10⁻⁷ N/C) / (6.64 × 10⁻²⁷ kg)
= 1.93 ×10¹¹ m/s² (in the positive x-direction)
(b) Displacement (d):
d = (1/2) × a × t²
= (1/2) × (1.93 × 10¹¹ m/s²) ×(1.70 s)²
= 1.64 × 10¹¹ m (in the positive x-direction)
Therefore, the nucleus experiences an acceleration of 1.93 × 10¹¹ m/s² in the positive x-direction, and its displacement after 1.70 s is 1.64 × 10¹¹m in the positive x-direction.
To know more about helium nucleus:
https://brainly.com/question/13153367
#SPJ4
In this lab, the focal length of the converging lens was 8.8 cm. At what do la distance of object) the image will be the same size as the object. A. 15.0cm B. 20.2cm OC. 17.6cm D. 5.6cm
When the focal length of the lens is 8.8 cm, the image formed will be the same size as the object at an infinite distance. In this case, none of the given options (15.0 cm, 20.2 cm, 17.6 cm, 5.6 cm) is the correct answer.
To determine the distance at which the image formed by the converging lens is the same size as the object, we can use the magnification formula:
magnification (m) = -image distance (di) / object distance (do)
In this case, since the image is the same size as the object, the magnification is 1:
1 = -di / do
Rearranging the equation, we have:
di = -do
Given that the focal length (f) of the converging lens is 8.8 cm, we can use the lens formula to find the relationship between the object distance and the image distance:
1 / f = 1 / do + 1 / di
Since di = -do, we can substitute this in the lens formula:
1 / f = 1 / do + 1 / (-do)
Simplifying the equation:
1 / f = 0
Since the left side of the equation is zero, we can conclude that the focal length (f) of the lens is infinity (∞).
Therefore, when the focal length of the lens is 8.8 cm, the image formed will be the same size as the object at an infinite distance. In this case, none of the given options (15.0 cm, 20.2 cm, 17.6 cm, 5.6 cm) is the correct answer.
Learn more about focal length:
https://brainly.com/question/1031772
#SPJ11
What is the phase angle in a series R L C circuit at resonance? (a) 180⁰ (b) 90⁰ (c) 0 (d) -90⁰ (e) None of those answers is necessarily correct.
The phase angle in a series R L C circuit at resonance is 0 (option c).
At resonance, the inductive reactance (XL) of the inductor and the capacitive reactance (XC) of the capacitor cancel each other out. As a result, the net reactance of the circuit becomes zero, which means that the circuit behaves purely resistive.
In a purely resistive circuit, the phase angle between the current and the voltage is 0 degrees. This means that the current and the voltage are in phase with each other. They reach their maximum and minimum values at the same time.
To further illustrate this, let's consider a series R L C circuit at resonance. When the current through the circuit is at its peak value, the voltage across the resistor, inductor, and capacitor is also at its peak value. Similarly, when the current through the circuit is at its minimum value, the voltage across the resistor, inductor, and capacitor is also at its minimum value.
Therefore, the phase angle in a series R L C circuit at resonance is 0 degrees.
Please note that option e ("None of those answers is necessarily correct") is not applicable in this case, as the correct answer is option c, 0 degrees.
To know more about circuit visit:
https://brainly.com/question/12608516
#SPJ11
Two forces are acting on an object, a force F1=<-3,6,0-N and a force F2=<2,-3,0-N. Visually find the net force acting on the object.
The term "net force" refers to the vector sum of all the individual forces acting on an object. The net force acting on the object is <-1, 3, 0> N.
When multiple forces act on an object, they can either work together (in the same direction) or in opposite directions. The net force represents the overall effect of these combined forces on the object's motion.
Mathematically, the net force is determined by adding the vector components of all the individual forces acting on the object. Each force is represented as a vector with magnitude and direction. The net force is obtained by summing up the corresponding components of all the forces in each direction.
To find the net force acting on the object, we can add the individual forces vectorially. This can be done by adding the corresponding components of the forces together.
Given:
Force F1 = <-3, 6, 0> N
Force F2 = <2, -3, 0> N
To find the net force, we add the corresponding components:
Net Force = F1 + F2
Net Force = <-3, 6, 0> + <2, -3, 0>
Performing the vector addition:
Net Force = <-3 + 2, 6 + (-3), 0 + 0>
Net Force = <-1, 3, 0> N
Therefore, the net force acting on the object is <-1, 3, 0> N.
For more details regarding net force, visit:
https://brainly.com/question/29261584
#SPJ4
Short Answer (10 pts each) 1. The figure below shows a metallic hollow spherical shell with inner radius a = 1.0 m and outer radius b = 1.5 m. Inside the shell is a solid insulating sphere with a total charge Q = 10 uС. Find the surface charge density on the inner surface of the spherical shell. (Hint: the surface area of a sphere is 4rtr?). 2. A particular heat engine operates at its maximum (Carnot) efficiency of 80% while drawing in 40 kJ of heat per cycle from a hot reservoir at 600 K. What is the increase in entropy for the universe due to one cycle of this heat engine?
The increase in entropy for the universe due to one cycle of the Carnot heat engine is approximately 66.67 J/K. To find the surface charge density on the inner surface of the spherical shell, we need to consider the electric field inside the shell due to the enclosed charge.
The electric field inside a hollow metallic shell is zero. This means that the electric field due to the charge Q inside the shell only exists on the inner surface of the shell.
The surface charge density (σ) on the inner surface of the shell can be found using the equation:
σ = Q / A
where Q is the total charge enclosed by the shell and A is the surface area of the inner surface of the shell.
The surface area of a sphere is given by:
A = 4πr²
In this case, the radius of the inner surface of the shell is a = 1.0 m. Therefore:
A = 4π(1.0)^2
A = 4π m²
Now we can calculate the surface charge density:
σ = Q / A
σ = (10 × 10^(-6) C) / (4π m²)
σ ≈ 7.96 × 10^(-7) C/m²
The surface charge density on the inner surface of the spherical shell is approximately 7.96 × 10^(-7) C/m².
To calculate the increase in entropy for the universe due to one cycle of the Carnot heat engine, we can use the formula:
ΔS = [tex]Q_hot / T_hot - Q_cold / T_cold[/tex]
where ΔS is the change in entropy,[tex]Q_hot[/tex] is the heat absorbed from the hot reservoir, [tex]T_hot[/tex] is the temperature of the hot reservoir [tex]Q_cold[/tex]is the heat released to the cold reservoir, and [tex]T_cold[/tex] is the temperature of the cold reservoir.
Given:
[tex]Q_hot = 40 kJ = 40 * 10^3 J\\T_hot = 600 K[/tex]
Carnot efficiency (η) = 80% = 0.8
η = 1 - [tex]T_cold / T_hot[/tex] (Carnot efficiency formula)
Rearranging the Carnot efficiency formula, we can find [tex]T_cold[/tex]:
[tex]T_cold[/tex]= (1 - 0.8) * 600 K
[tex]T_cold[/tex] = 0.2 * 600 K
[tex]T_cold[/tex] = 120 K
Now we can calculate the increase in entropy:
ΔS = [tex]Q_hot / T_hot - Q_cold / T_cold[/tex]
ΔS = (40 ×[tex]10^3 J[/tex]) / 600 K - 0 / 120 K
ΔS ≈ 66.67 J/K
The increase in entropy for the universe due to one cycle of the Carnot heat engine is approximately 66.67 J/K.
Learn more about heat engine here:
https://brainly.com/question/31430273
#SPJ11
The cliff divers of Acapulco push off horizontally from rock platforms about hhh = 39 mm above the water, but they must clear rocky outcrops at water level that extend out into the water LLL = 4.1 mm from the base of the cliff directly under their launch point
1.a What minimum pushoff speed is necessary to clear the rocks?
1.b How long are they in the air?
The cliff divers of Acapulco push off horizontally from rock platforms about hhh = 39 mm above the water, but they must clear rocky outcrops at water level that extend out into the water LLL = 4.1 mm from the base of the cliff directly under their launch point. The required minimum pushoff speed is 2.77 m/s and they are in the air for 0.0891 s.
Given data: The height of the rock platforms (hhh) = 39 mm
The distance of rocky outcrops at water level that extends out into the water (LLL) = 4.1 mm. We need to find the minimum push-off speed required to clear the rocks
(a) and how long they are in the air (t).a) Minimum push-off speed (v) required to clear the rocks is given by the formula:
v² = 2gh + 2gh₀Where,g is the acceleration due to gravity = 9.81 m/s²
h is the height of the rock platform = 39 mm = 39/1000 m (as the question is in mm)
h₀ is the height of the rocky outcrop = LLL = 4.1 mm = 4.1/1000 m (as the question is in mm)
On substituting the values, we get:
v² = 2 × 9.81 × (39/1000 + 4.1/1000)
⇒ v² = 0.78 × 9.81⇒ v = √7.657 = 2.77 m/s
Therefore, the minimum push-off speed required to clear the rocks is 2.77 m/s.
b) Time of flight (t) is given by the formula:
h = (1/2)gt²
On substituting the values, we get:
39/1000 = (1/2) × 9.81 × t²
⇒ t² = (39/1000) / (1/2) × 9.81
⇒ t = √0.007958 = 0.0891 s
Therefore, they are in the air for 0.0891 s. Hence, the required minimum push-off speed is 2.77 m/s and they are in the air for 0.0891 s.
For further information on Speed visit :
https://brainly.com/question/17661499
#SPJ11
Particle executes S.H.M. of period 12s and of amplitude 8cm. what time will it take to travel 4 cm from the extreme position
The time it takes for the particle to travel 4 cm from the extreme position is approximately 1.909 seconds (to three decimal places).
Explanation:
To find the time it takes for a particle executing Simple Harmonic Motion (SHM) to travel a certain distance from its extreme position, we can use the equation for displacement in SHM:
x(t) = A * cos(2πt/T)
Where:
x(t) is the displacement of the particle at time t.
A is the amplitude of the motion.
T is the period of the motion.
In this case, the amplitude is 8 cm and the period is 12 s.
To find the time it takes for the particle to travel 4 cm from the extreme position, we need to solve the equation x(t) = 4 cm for t. Let's do that:
4 = 8 * cos(2πt/12)
Divide both sides of the equation by 8:
0.5 = cos(2πt/12)
Now we need to find the inverse cosine (arccos) of both sides:
arccos(0.5) = 2πt/12
Using the inverse cosine function, we find that arccos(0.5) is equal to π/3 (or 60 degrees).
So we have:
π/3 = 2πt/12
To isolate t, we multiply both sides of the equation by 12 and divide by 2π:
t = (π/3) * (12 / 2π)
Simplifying the expression, we get:
t = 6/π
Therefore, the time it takes for the particle to travel 4 cm from the extreme position is approximately 1.909 seconds (to three decimal places).
To know more about Simple Harmonic Motion, visit:
https://brainly.com/question/30404816
#SPJ11