Consider the following model: yi = β0 + β1xi + ui
Where E(ui |xi) = 0 and Var(ui |xi) = σ^2xi^2
1. Is the OLS estimator of β1 still unbiased? Show your proof.
2. Derive Var(βˆ 1|x), what kind of problem do we face here?
3. Propose a new estimator to correct the above problem.

Answers

Answer 1

The OLS estimator of β1, denoted as βˆ1, is still unbiased. It is calculated using the formula:

βˆ1 = Σ(xi - x)(yi - y) / Σ(xi - x)^2 = Σ(xi - x)yi / Σ(xi - x)^2

Here, xi represents the ith observed value of the regressor x, x is the sample mean of x, yi is the ith observed value of the dependent variable y, and y is the sample mean of y. The expected value of the OLS estimator of β1 is given by:

E(βˆ1) = β1

Therefore, the OLS estimator of β1 remains unbiased.

The variance of the OLS estimator, denoted as Var(βˆ1|x), can be derived as follows:

Var(βˆ1|x) = Var{Σ(xi - x)yi / Σ(xi - x)^2|x} = 1 / Σ(xi - x)^2 * Σ(xi - x)^2 Var(yi|x) = σ^2 / Σ(xi - x)^2

In this problem, there is heteroscedasticity, which means that Var(ui|xi) is not constant.

To address the issue of heteroscedasticity, the Weighted Least Squares (WLS) estimator can be used. The WLS estimator assigns a weight of 1 / xi^2 to each observation i. The formula for the WLS estimator is:

βWLS = Σ(wi xi yi) / Σ(wi xi^2)

Here, wi represents the weight assigned to each observation.

The expected value of the WLS estimator, E(βWLS), is equal to the OLS estimator, βOLS, which means it is also unbiased for β1.

The variance of the WLS estimator, Var(βWLS), is given by:

Var(βWLS) = 1 / Σ(wi xi^2)

where wi = 1 / Var(ui|xi), taking into account the heteroscedasticity.

The WLS estimator is considered more efficient than the OLS estimator because it incorporates information about the heteroscedasticity of the errors.

Learn More about OLS estimator

https://brainly.com/question/13771038

#SPJ11


Related Questions

Write a function of degree 2 that has an average rate of change of-2 on the interval1<= x <=3.

Answers

The quadratic function with an average rate of change of -2 on the interval 1 <= x <= 3 is:

f(x) = x^2 - 7x - 6.

To find a function of degree 2 with an average rate of change of -2 on the interval 1 <= x <= 3, we need to determine the specific coefficients of the quadratic function.

Let's assume the quadratic function is f(x) = ax^2 + bx + c.

To calculate the average rate of change over the interval [1, 3], we'll use the formula:

Average Rate of Change = (f(3) - f(1)) / (3 - 1) = -2

Substituting the values into the formula, we get:

(a(3)^2 + b(3) + c - (a(1)^2 + b(1) + c)) / 2 = -2

Simplifying the equation, we have:

(9a + 3b + c - (a + b + c)) / 2 = -2

8a + 2b = -6

We have one equation with two variables, so we can set one of the variables to a constant value. Let's assume a = 1:

8(1) + 2b = -6

8 + 2b = -6

2b = -14

b = -7

Now that we have the value of b, we can substitute it back into the equation to find c:

8(1) + 2(-7) = -6

8 - 14 = -6

c = -6

Therefore, the quadratic function with an average rate of change of -2 on the interval 1 <= x <= 3 is:

f(x) = x^2 - 7x - 6.

Learn more about Quadratic function here

https://brainly.com/question/18958913

#SPJ11

Problem 25. Find all eigenvalues and eigenvectors of the backward shift op- erator T = L(F°) defined by T (x1, x2, X3, ...) = (X2, X3, X4, ...). Activate Windows Go to Settings to activate Windows.

Answers

The eigenvalues of the backward shift operator T are λ = 0 and λ = exp(2πik/(n-1)), and the corresponding eigenvectors have x1 ≠ 0.

To find the eigenvalues and eigenvectors of the backward shift operator T, we need to solve the equation T(v) = λv, where v is the eigenvector and λ is the eigenvalue.

Let's consider an arbitrary vector v = (x1, x2, x3, ...), and apply the backward shift operator T to it:

T(v) = (x2, x3, x4, ...)

We want to find the values of λ for which T(v) is equal to λv:

(x2, x3, x4, ...) = λ(x1, x2, x3, ...)

By comparing corresponding components, we have:

x2 = λx1

x3 = λx2

x4 = λx3

...

From the first equation, we can express x2 in terms of x1:

x2 = λx1

Substituting this into the second equation, we get:

x3 = λ(λx1) = λ²x1

Continuing this pattern, we find that xn = λ^(n-1)x1 for n ≥ 2.

Now, let's determine the eigenvalues. For the backward shift operator, the eigenvalues are the values of λ that satisfy the equation λ^(n-1) = λ for some positive integer n.

This equation can be rewritten as:

λ^n - λ = 0

Factoring out λ, we have:

λ(λ^(n-1) - 1) = 0

This equation has two solutions: λ = 0 and λ^(n-1) - 1 = 0.

For λ = 0, the corresponding eigenvector is any vector v = (x1, x2, x3, ...) with x1 ≠ 0.

For λ^(n-1) - 1 = 0, we have λ^(n-1) = 1. This equation has n-1 distinct complex solutions, which can be written as λ = exp(2πik/(n-1)), where k = 0, 1, 2, ..., n-2. The corresponding eigenvectors are v = (x1, x2, x3, ...) with x1 ≠ 0.

Therefore, the eigenvalues of the backward shift operator T are λ = 0 and λ = exp(2πik/(n-1)), where k = 0, 1, 2, ..., n-2, and the corresponding eigenvectors have x1 ≠ 0.

Learn more about eigen value at https://brainly.com/question/32787080

#SPJ11

Find the truth table of each proposition. 1. (pq) v (p-q) 2. [p(-qv r)]^ [qv (p → -r)] 3. [r^(-pv q)] → (rv-q) 4. [(pq) v (r^(-p)] → (rv-q) 5. [(pq) n(qr)] → (pr)

Answers

The truth table for each proposition, we need to consider all possible combinations of truth values for the propositional variables involved.

Let's analyze each proposition one by one:

1. (pq) v (p-q):

p q -q pq (pq) v (p-q)

T T F T T

T F T F T

F T F F F

F F T F T

2. [tex][p(-qv r)]^ {qv (p \to -r)}][/tex]:

p q r -q -v p → -r -qv r [tex][p(-qv r)]^ {qv (p \to -r)}][/tex]

T T T F F F T T

T T F F T T F F

T F T T F F T T

T F F T T T F F

F T T F F T T T

F T F F T T F F

F F T T F T T T

F F F T T T F F

3. [tex][r^{-pv q}] \to (rv-q)][/tex]:

p q r -p -pv q [tex]r^{-pv q}}[/tex] rv-q [tex][r^{-pv q}] \to (rv-q)][/tex]

T T T F T T T T

T T F F T F T T

T F T F F F T T

T F F F F F T T

F T T T T T F F

F T F T T F T T

F F T T F T F T

F F F T F T F T

4. [tex][(pq) v (r^{-p}] \to (rv-q)}[/tex]:

p q r -p -pv q [tex]r^{-p}[/tex] (pq) v [tex]r^{-p}[/tex] rv-q [tex][(pq) v (r^{-p}] \to (rv-q)}[/tex]

T T T F T F T T T

T T F F T T T T T

T F T F F F F T T

T F F F F T T T T

F T T T T F F F T

F T F T T T T T T

F F T T F F F F T

F F F T F T T F F

5. [(pq) n(qr)] → (pr):

p q r pq qr (pq) n (qr) pr [(pq) n (qr)] → (pr)

T T T T T T T T

T T F T F F F T

T F T F F F F T

T F F F F F F T

F T T F T F F T

F T F F F F F T

F F T F F F F T

F F F F F F F T

In the truth tables, T represents true, and F represents false for each combination of truth values for the propositional variables p, q, and r.

To know more about truth table:

https://brainly.com/question/30588184


#SPJ4



Explain why some quartic polynomials cannot be written in the form y=a(x-h)⁴+k . Give two examples.

Answers

Example 1: y = x⁴ – x³ + x² – x + 1. Example 2: y = x⁴ + 6x² + 25.These polynomials have non-zero coefficients for the terms x³ and x², which means they cannot be expressed in the required form.

Quartic polynomials of the form y = a(x – h)⁴ + k cannot represent all quartic functions. Some quartic polynomials cannot be written in this form, for various reasons, including the presence of the term x³.Here are two examples of quartic polynomials that cannot be written in the form y = a(x – h)⁴ + k:

Example 1: y = x⁴ – x³ + x² – x + 1

This quartic polynomial does not have the same form as y = a(x – h)⁴ + k. It contains a term x³, which is not present in the given form. As a result, it cannot be written in the form y = a(x – h)⁴ + k.

Example 2: y = x⁴ + 6x² + 25

This quartic polynomial also does not have the same form as y = a(x – h)⁴ + k. It does not contain any linear or cubic terms, but it does have a quadratic term 6x². This means that it cannot be written in the form y = a(x – h)⁴ + k.Therefore, some quartic polynomials cannot be expressed in the form of y = a(x-h)⁴+k, as mentioned earlier. Two such examples are as follows:Example 1: y = x⁴ – x³ + x² – x + 1

Example 2: y = x⁴ + 6x² + 25

These polynomials have non-zero coefficients for the terms x³ and x², which means they cannot be expressed in the required form. These are the simplest examples of such polynomials; there may be more complicated ones as well, but the concept is the same.

Know more about polynomials here,

https://brainly.com/question/11536910

#SPJ11



Determine whether each statement is always, sometimes, or never true. Explain.

There is exactly one plane that contains noncollinear points A, B , and C .

Answers

Sometimes true.

There is exactly one plane that contains noncollinear points A, B, and C when the three points are not on a straight line. In this case, the plane determined by A, B, and C is unique and can be defined by those three points. The plane contains all the points that lie on the same flat surface as A, B, and C.

However, if points A, B, and C are collinear (meaning they lie on the same line), there is no plane that contains them because a plane requires at least three noncollinear points to define it. In this scenario, the statement would be never true.

Therefore, the statement is sometimes true when the points are noncollinear, and it is never true when the points are collinear.

Learn more about Noncollinear

brainly.com/question/22970570

#SPJ11

2. Let A = 375 374 752 750 (a) Calculate A-¹ and k[infinity](A). (b) Verify the results in (a) using a computer programming (MATLAB). Print your command window with the results and attach here. (you do not need to submit the m-file/codes separately)

Answers

By comparing the calculated inverse of A and its limit as k approaches infinity with the results obtained from MATLAB, one can ensure the accuracy of the calculations and confirm that the MATLAB program yields the expected output.

To calculate the inverse of matrix A and its limit as k approaches infinity, the steps involve finding the determinant, adjugate, and dividing the adjugate by the determinant. MATLAB can be used to verify the results by performing the calculations and displaying the command window output.

To calculate the inverse of matrix A, we start by finding the determinant of A.

Using the formula for a 2x2 matrix, we have det(A) = 375 * 750 - 374 * 752.

Once we have the determinant, we can proceed to find the adjugate of A, which is obtained by interchanging the elements on the main diagonal and changing the sign of the other elements.

The adjugate of A is then given by A^T, where T represents the transpose. Finally, we calculate A^(-1) by dividing the adjugate of A by the determinant.

To verify these calculations using MATLAB, one can write a program that defines matrix A, calculates its inverse, and displays the result in the command window.

The program can utilize the built-in functions in MATLAB for matrix operations and display the output as requested.

By comparing the calculated inverse of A and its limit as k approaches infinity with the results obtained from MATLAB, one can ensure the accuracy of the calculations and confirm that the MATLAB program yields the expected output.

Learn more about Matlab program from the given link:

https://brainly.com/question/30890339

#SPJ11

The total cost of attending a university is $21,300 for the first year. A student’s parents will pay one-third of this cost. An academic scholarship will pay $1,000 and an athletic scholarship will pay $4,000. Which amount is closest to the minimum amount the student will need to save every month in order to pay off the remaining cost at the end of 12 months?

Answers

The student will need to save approximately $1,833.33 every month to pay off the remaining cost of attending university after accounting for their parents' contribution and the scholarships.

The total cost of attending the university for the first year is $21,300. One-third of this cost, which is $7,100, will be covered by the student's parents. The academic scholarship will contribute $1,000, and the athletic scholarship will cover $4,000. Therefore, the total amount covered by scholarships is $5,000 ($1,000 + $4,000).          

To calculate the remaining amount that the student needs to save, we subtract the amount covered by scholarships and the parents' contribution from the total cost: $21,300 - $5,000 - $7,100 = $9,200.  

Since the student needs to save this amount over 12 months, we divide $9,200 by 12 to determine the minimum monthly savings required. Therefore, the student will need to save approximately $766.67 per month to cover the remaining cost.

However, since the question asks for the minimum amount, we round up this figure to the nearest whole number. Thus, the closest minimum amount the student will need to save every month is $833.33.

Learn more about whole number here:

https://brainly.com/question/29766862

#SPJ11

Thirty-hwo peopie vere chosen at random from emplayees of a large company. Their commute times (in hours) Were recorded in a table (showit on the fight). Construct a froquoncy tablo using a class inlerval width of 0.2 starting at 0.15 (Typo integers or simplitiod froctions )

Answers

The frequency table shows the distribution of commute times for 30 randomly chosen employees from a large company. The majority of employees have commute times between 0.15 and 0.35 hours, while fewer employees have longer commute times.

To construct a frequency table with a class interval width of 0.2 starting at 0.15 for the given commute times, we first need to sort the commute times in ascending order. Once the commute times are sorted, we can count the frequency of each class interval. Here's an example table:

```

Commute Times (in hours):

0.22, 0.33, 0.17, 0.24, 0.38, 0.19, 0.28, 0.15, 0.25, 0.21,

0.26, 0.36, 0.23, 0.31, 0.32, 0.29, 0.18, 0.35, 0.27, 0.39,

0.16, 0.37, 0.30, 0.34, 0.20

```

Sort the commute times in ascending order:

```

0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24,

0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34,

0.35, 0.36, 0.37, 0.38, 0.39

```

Determine the class intervals:

Starting from 0.15, the class intervals with a width of 0.2 are as follows:

```

0.15 - 0.35

0.35 - 0.55

0.55 - 0.75

0.75 - 0.95

```

Count the frequency of each class interval:

```

Class Interval    Frequency

0.15 - 0.35         10

0.35 - 0.55          8

0.55 - 0.75          2

0.75 - 0.95          5

```

The resulting frequency table represents the number of employees with commute times falling within each class interval.

To know more about frequency table, refer to the link below:

https://brainly.com/question/29084532#

#SPJ11

4. Consider the ODE blow: Use a step size of 0.25, where y(0) = 1. dy dx :(1+2x) √y (b) Euler's method of y (0.25). Evaluate the error. (5pt.)

Answers

Using Euler's approach, the error in the estimated value of y(0.25) is approximately 0.09375 or 0.094.

Given the ODE and initial condition as:

dy/dx = (1+2x)√y, y(0) = 1

Using Euler's method, we have to evaluate the value of y(0.25) with a step size of h = 0.25.

Step 1: Calculation of f(x,y)f(x, y) = dy/dx = (1+2x)√y

Step 2: Calculation of y(0.25)

Using Euler's method, we can approximate the value of y at x=0.25 as follows:y1 = y0 + hf(x0, y0)where y0 = 1, x0 = 0 and h = 0.25f(x0, y0) = f(0, 1) = (1+2(0))√1 = 1y1 = 1 + 0.25(1) = 1.25

Therefore, y(0.25) = 1.25.

Step 3: Calculation of the exact value of y(0.25)We can find the exact value of y(0.25) by solving the ODE:

dy/dx = (1+2x)√ydy/√y = (1+2x) dxIntegrating both sides:

∫dy/√y = ∫(1+2x)dx2√y = x^2 + 2x + C, where C is athe constant of integration Since y(0) = 1,

we can solve for C as follows: 2√1 = 0^2 + 2(0) + C => C = 2

Therefore, the exact solution of the ODE is given by:2√y = x^2 + 2x + 2Solving for y, we get:y = [(x^2 + 2x + 2)/2]^2

The exact value of y(0.25) is given by:y(0.25) = [(0.25^2 + 2(0.25) + 2)/2]^2= (2.3125/2)^2= 1.15625

Step 4: Calculation of the errorError = |Exact value - Approximate value|Error = |1.15625 - 1.25| = 0.09375

Therefore, the error in the approximate value of y(0.25) using Euler's method is 0.09375 or 0.094 (approx).

Learn more about Euler's method

https://brainly.com/question/30699690

#SPJ11

6. Using the polar form of complex numbers, calculate the value of: 11 (-7V/³ + 1/i) " 7√3 2 12 % = giving your answer in polar form. Find all complex numbers w such that w =z, giving your answer in polar form.

Answers

The expression for all complex numbers such that w = z is 77cis(240°) + k(360°), where k is an integer.

Given: 11(-7V/³+ 1/i)

To solve this expression using the polar form of complex numbers, we can write it as: 11(12cis(150°)).

By multiplying the moduli and adding the angles, we get: 11(12cis(150°)) = 132cis(150°).

To find all complex numbers w such that w = z, we need to find the polar form of z.

Simplifying 11(-7V/³+ 1/i), we have:

11(-7cis(60°) + cis(90°)) = -77cis(60°) + 11cis(90°).

Therefore, the polar form of z is 77cis(240°).

Hence, all complex numbers w such that w = z can be expressed as:

77cis(240°) + k(360°), where k is an integer.

Learn more about complex numbers

https://brainly.com/question/20566728

#SPJ11

QUESTION 2 How many arrangements of the letters in FULFILLED have the following properties simultaneously? - No consecutive F′s. - The vowels E,I,U are in alphabetical order. - The three L′s are next to each other.

Answers

There are 4 arrangements of the letters in FULFILLED that satisfy all the given properties simultaneously.

To determine the number of arrangements, we can break down the problem into smaller steps:

⇒ Arrange the three L's together.

We treat the three L's as a single entity and arrange them among themselves. There is only one way to arrange them: LLL.

⇒ Arrange the remaining letters.

We have the letters F, U, F, I, E, D. Among these, we need to ensure that no two F's are consecutive, and the vowels E, I, and U are in alphabetical order.

To satisfy the condition of no consecutive F's, we can use the concept of permutations with restrictions. We have four distinct letters: U, F, I, and E. We can arrange these letters in a line, leaving spaces for the F's. The number of arrangements can be calculated as:

P^UFI^E = 4! / (2! * 1!) = 12,

where P represents permutations.

Next, we need to ensure that the vowels E, I, and U are in alphabetical order. Since there are three vowels, they can be arranged in only one way: EIU.

Multiplying the number of arrangements from Step 1 (1) with the number of arrangements from Step 2 (12) and the number of arrangements for the vowels (1), we get:

Total arrangements = 1 * 12 * 1 = 12.

Therefore, there are 4 arrangements of the letters in FULFILLED that satisfy all the given properties simultaneously.

To know more about permutations with restrictions, refer here:

https://brainly.com/question/33193507#

#SPJ11

Solve the following and show your solutions. 2pts each
A. If f(x) = 6x2 + 3x-2
1. Find f(4)
2. Find f(3)
3. Find f (7)
4. Find f(5)
5. Find f(10)

Answers

The solutions to the following algebraic equations are:

The given equation is of the second degree and thus a quadratic equation.

Given,

F(x)=6x²+3x-2

1) F(4) ; x=4

(∴substitute x=4 in the equation and solve)

Thus, F(4)= 6×(4)²+3(4)-2=106.

F(4)=106.

2) F(3); x=3

Thus, F(3)=6×(3)²+3×(3)-2=61.

F(3)=61.

3) F(7); x=7

Thus, F(7)=6×(7)²+3×(7)-2=313.

F(7)=313.

4) F(5); x=5

Thus, F(5)=6×(5)²+3×(5)-2=163.

F(5)=163.

5) F(10); x=10

Thus, F(10)= 6×(10)²+3×(10)-2=628.

F(10)=628.

To learn more about solving algebraic equations:

https://brainly.com/question/28001154?referrer=searchResults

https://brainly.com/question/30484978?referrer=searchResults

Astandard 52 -card deck conlains four kings, fwelve face cards, thirteen hearts (all red), thirteen diamonds (all red), thirteen spades (all black), and thirteen dubs (all black). Of the 2.596,960-diferent five-card hands possible, decide how many would consist of the following (a) all damonds - (b) all black cards (c) all kinga (a) There are ways to have a hand with all damonds. (Simplify your answer)

Answers

(a) There are 13 ways to have a hand with all diamonds.
(b) There are 26 ways to have a hand with all black cards.
(c) There are 4 ways to have a hand with all kings.

The number of different five-card hands possible from a standard 52-card deck is 2,598,960. We need to determine how many of these hands would consist of the following:

(a) All diamonds
(b) All black cards
(c) All kings

(a) To find the number of hands that consist of all diamonds, we need to consider that there are 13 diamonds in the deck. Therefore, there are only 13 ways to choose all diamonds for a five-card hand.

(b) To determine the number of hands that consist of all black cards, we need to consider that there are 26 black cards in the deck (13 spades and 13 clubs). Therefore, there are 26 ways to choose all black cards for a five-card hand.

(c) Finally, to find the number of hands that consist of all kings, we need to consider that there are 4 kings in the deck. Therefore, there are only 4 ways to choose all kings for a five-card hand.


To know more about standard 52-card deck, refer to the link below:

https://brainly.com/question/3175566#

#SPJ11

Let T: R2X2 → R2x2 be the mapping defined by T(A) = A + AT − tr(A) for the 2-by-2 matrix A, where tr(A) is the trace of A and I is the 2-by-2 identity matrix. (a) Find the matrix of T with respect to the standard basis of R²×2 (b) Calculate the rank and nullity of T, and give bases for the image and kernel of T.

Answers

The matrix of the mapping T with respect to the standard basis of R²×2 is:[tex]\[\begin{bmatrix}2 & 0 & 0 & 1 \\0 & 2 & 1 & 0 \\0 & 1 & 2 & 0 \\1 & 0 & 0 & 2 \\\end{bmatrix}\][/tex]

The rank of T is 3 and the nullity is 1. The basis for the image of T is given by the columns of the matrix of T corresponding to the pivot columns, which are:

[tex]\[\left\{\begin{bmatrix}2 \\0 \\0 \\1 \\\end{bmatrix},\begin{bmatrix}0 \\2 \\1 \\0 \\\end{bmatrix},\begin{bmatrix}0 \\1 \\2 \\0 \\\end{bmatrix}\right\}\][/tex]

The basis for the kernel of T is given by the solutions to the homogeneous equation T(A) = 0, which can be found by solving the equation:

[tex]\[\begin{bmatrix}2 & 0 & 0 & 1 \\0 & 2 & 1 & 0 \\0 & 1 & 2 & 0 \\1 & 0 & 0 & 2 \\\end{bmatrix}\begin{bmatrix}x \\y \\z \\w \\\end{bmatrix}=\begin{bmatrix}0 \\0 \\0 \\0 \\\end{bmatrix}\][/tex]

The solutions to this equation form a basis for the kernel of T.

To learn more about matrix refer:

https://brainly.com/question/27929071

#SPJ11

Please help, need urgently. Thanks.​

Answers

Answer:

[tex]60cm^{2}[/tex]

Step-by-step explanation:

What is the area?

The area is the total space taken up by a flat (2-D) surface or shape. The area is always measured in square units.

If we look at this shape, we can split it into 3 separate shapes (shown below)

The top rectangle in blue has a length of 2cm and a width of 10cm. We know the width is 10 because if we were to look at the width of the yellow rectangle and add on the original width you would get:

2cm + 8cm = 10cm

Now that we know that the length is 2 and the width is 10, we can use the following formula to solve for the area of a rectangle:

l × w = h

(Where l = length and h = height)

Inserting 2 in for our length and 10 for our width:

2 × 10 = 20

Therefore, the area of the blue rectangle is [tex]20cm^{2}[/tex].

Looking at the bottom green rectangle, it has the same dimensions as the blue, so it will also have an area of [tex]20cm^{2}[/tex].

The same goes for the yellow rectangle. It has a length of 10 and a width of 2. These are also the same dimensions as before, so we can once again conclude that the area of the yellow rectangle is [tex]20cm^{2}[/tex]

We have 3 rectangles with areas of [tex]20cm^{2}[/tex] each, so we can use either one of these expressions to solve for the entire area:

[tex]20cm^{2}+20cm^{2}+20cm^{2}=60cm^{2}[/tex]

Or we can use:

[tex]20cm^{2}[/tex] × 3 = [tex]60cm^{2}[/tex]

Therefore the area of the entire shape is [tex]60cm^{2}[/tex]

ralph wants to estimate the percentage of coworkers that use the company's healthcare. he asks a randomly selected group of 200 coworkers whether or not they use the company's healthcare. what is the parameter?

Answers

The parameter is the percentage of coworkers who use the company's healthcare.

In statistics, the parameter is a numeric measurement that defines the characteristics of the population. It is generally denoted with Greek letters. In the provided scenario,

Ralph wants to estimate the percentage of coworkers that use the company's healthcare. He asks a randomly selected group of 200 coworkers whether or not they use the company's healthcare. Here, the parameter is the percentage of coworkers who use the company's healthcare.

To know more about percentage refer to:

https://brainly.com/question/32197511

#SPJ11

Q4) Let x denote the time taken to run a road race. Suppose x is approximately normally distributed with a mean of 190 minutes and a standard deviation of 21 minutes. If one runner is selected at random, what is the probability that this runner will complete this road race: In less than 160 minutes? * 0.764 0.765 0.0764 0.0765 In 215 to 245 minutes? * 0.1128 O 0.1120 O 0.1125 0.1126

Answers

a.  The probability that this runner will complete this road race: In less than 160 minutes is 0.0764. The correct answer is C.

b.  The probability that this runner will complete this road race: In 215 to 245 minutes is 0.1125 The correct answer is C.

a. To find the probability for each scenario, we'll use the given normal distribution parameters:

Mean (μ) = 190 minutes

Standard Deviation (σ) = 21 minutes

Probability of completing the road race in less than 160 minutes:

To calculate this probability, we need to find the area under the normal distribution curve to the left of 160 minutes.

Using the z-score formula: z = (x - μ) / σ

z = (160 - 190) / 21

z ≈ -1.4286

We can then use a standard normal distribution table or statistical software to find the corresponding cumulative probability.

From the standard normal distribution table, the cumulative probability for z ≈ -1.4286 is approximately 0.0764.

Therefore, the probability of completing the road race in less than 160 minutes is approximately 0.0764. The correct answer is C.

b. Probability of completing the road race in 215 to 245 minutes:

To calculate this probability, we need to find the area under the normal distribution curve between 215 and 245 minutes.

First, we calculate the z-scores for each endpoint:

For 215 minutes:

z1 = (215 - 190) / 21

z1 ≈ 1.1905

For 245 minutes:

z2 = (245 - 190) / 21

z2 ≈ 2.6190

Next, we find the cumulative probabilities for each z-score.

From the standard normal distribution table:

The cumulative probability for z ≈ 1.1905 is approximately 0.8820.

The cumulative probability for z ≈ 2.6190 is approximately 0.9955.

To find the probability between these two z-scores, we subtract the cumulative probability at the lower z-score from the cumulative probability at the higher z-score:

Probability = 0.9955 - 0.8820

Probability ≈ 0.1125

Therefore, the probability of completing the road race in 215 to 245 minutes is approximately 0.1125. The correct answer is C.

Learn more about probability at https://brainly.com/question/32274851

#SPJ11

Save-the-Earth Company reports the following income statement accounts for the year ended December 31. Sales discounts $ 930
Office salaries expense 3,800
Rent expense—Office space 3,300
Advertising expense 860
Sales returns and allowances 430
Office supplies expense 860
Cost of goods sold 12,600
Sales 56,000
Insurance expense 2,800
Sales staff salaries 4,300
Prepare a multiple-step income statement for the year ended December 31.

Answers

The operating income is obtained by subtracting the total operating expenses from the gross profit. Lastly, the net income before taxes is calculated.

Income Statement for the Year Ended December 31

Sales: $56,000

Less: Sales discounts: $930

Less: Sales returns and allowances: $430

Net Sales: $54,640

Cost of Goods Sold: $12,600

Gross Profit: $42,040

Operating Expenses:

Office salaries expense: $3,800

Rent expense—Office space: $3,300

Advertising expense: $860

Office supplies expense: $860

Insurance expense: $2,800

Sales staff salaries: $4,300

Total Operating Expenses: $15,920

Operating Income (Gross Profit - Operating Expenses): $26,120

Net Income before Taxes: $26,120

Note: This income statement follows the multiple-step format, which separates operating and non-operating activities. It begins with sales and subtracts sales discounts and returns/allowances to calculate net sales. Then, it deducts the cost of goods sold to determine the gross profit. Operating expenses are listed separately, including office-related expenses, advertising, and salaries. The operating income is obtained by subtracting the total operating expenses from the gross profit. Lastly, the net income before taxes is calculated.

Learn more about profit here

https://brainly.com/question/29785281

#SPJ11

Determine the Laplace transform of the following functions. f(t) = t sint cost (i) (ii) f(t) = e²¹ (sint + cost)²

Answers

The Laplace transform of f(t) is: L[f(t)] = e²¹s/(s^2+1)^2

the solutions to determine the Laplace transform of the following functions:

(i) f(t) = t sint cost

Use code with caution. Learn more

The Laplace transform of t is 1/s^2, the Laplace transform of sint is 1/(s^2+1), and the Laplace transform of cost is 1/(s^2+1). Therefore, the Laplace transform of f(t) is: L[f(t)] = 1/s^4 + 1/(s^2+1)^2

(ii) f(t) = e²¹ (sint + cost)²

The Laplace transform of e²¹ is e²¹s, the Laplace transform of sint is 1/(s^2+1), and the Laplace transform of cost is 1/(s^2+1).

Therefore, the Laplace transform of f(t) is: L[f(t)] = e²¹s/(s^2+1)^2

Learn more about laplace with the given link,

https://brainly.com/question/28167584

#SPJ11

Using the properties of Laplace transformation;

a. The Laplace transform of f(t) = t * sin(t) * cos(t) is F(s) = 2s / (s² + 4)².

b. The Laplace transform of f(t) = e²¹ * (sin(t) + cos(t))² is F(s) = e²¹* (1/s + 2 / (s² + 4)).

What is the Laplace transformation of the functions?

(i) To find the Laplace transform of f(t) = t * sin(t) * cos(t), we can use the properties of the Laplace transform. The Laplace transform of f(t) is denoted as F(s).

Using the product rule property of the Laplace transform, we have:

L{t * sin(t) * cos(t)} = -d/ds [L{sin(t) * cos(t)}]

To find L{sin(t) * cos(t)}, we can use the formula for the Laplace transform of the product of two functions:

L{sin(t) * cos(t)} = (1/2) * [L{sin(2t)}]

The Laplace transform of sin(2t) can be calculated using the formula for the Laplace transform of sin(at):

L{sin(at)} = a / (s² + a²)

Substituting a = 2, we get:

L{sin(2t)} = 2 / (s² + 4)

Now, substituting this result into the expression for L{sin(t) * cos(t)}:

L{sin(t) * cos(t)} = (1/2) * [2 / (s² + 4)] = 1 / (s² + 4)

Finally, taking the derivative with respect to s:

L{t * sin(t) * cos(t)} = -d/ds [L{sin(t) * cos(t)}] = -d/ds [1 / (s² + 4)]

                      = -(-2s) / (s² + 4)²

                      = 2s / (s² + 4)²

Therefore, the Laplace transform of f(t) = t * sin(t) * cos(t) is F(s) = 2s / (s² + 4)².

(ii) To find the Laplace transform of f(t) = e²¹ * (sin(t) + cos(t))², we can again use the properties of the Laplace transform.

First, let's simplify the expression (sin(t) + cos(t))²:

(sin(t) + cos(t))² = sin^2(t) + 2sin(t)cos(t) + cos^2(t)

                    = 1 + sin(2t)

Now, the Laplace transform of e²¹ * (sin(t) + cos(t))² can be calculated as follows:

L{e²¹ * (sin(t) + cos(t))²} = e²¹ * L{1 + sin(2t)}

The Laplace transform of 1 is 1/s, and the Laplace transform of sin(2t) can be calculated as we did in part (i):

L{sin(2t)} = 2 / (s² + 4)

Now, substituting these results into the expression:

L{e²¹ * (sin(t) + cos(t))²} = e²¹ * (1/s + 2 / (s² + 4))

                              = e²¹ * (1/s + 2 / (s² + 4))

Therefore, the Laplace transform of f(t) = e²¹ * (sin(t) + cos(t))² is F(s) = e²¹* (1/s + 2 / (s² + 4)).

Learn more on Laplace transformation here;

https://brainly.com/question/29583725

#SPJ4

Solve by using Lagrange Multipliers for the following problem: Minimize f(x, y, z) = x² + y² + z², Constraint: + y + z = 9, x>0, y > 0, z> 0.

Answers

The solution to the given minimization problem subject to the constraint is x = y = z = 3, which minimizes the function f(x, y, z) = x² + y² + z² under the given constraints.

To solve the given problem using Lagrange multipliers, we first set up the Lagrangian function:

L(x, y, z, λ) = f(x, y, z) - λ(g(x, y, z))

Where f(x, y, z) = x² + y² + z² is the objective function and g(x, y, z) = x + y + z - 9 is the constraint function. λ is the Lagrange multiplier.

Next, we calculate the partial derivatives of L concerning x, y, z, and λ, and set them equal to zero:

∂L/∂x = 2x - λ = 0

∂L/∂y = 2y - λ = 0

∂L/∂z = 2z - λ = 0

∂L/∂λ = x + y + z - 9 = 0

From the first three equations, we can solve for x, y, and z in terms of λ:

x = λ/2

y = λ/2

z = λ/2

Substituting these values into the fourth equation, we have:

(λ/2) + (λ/2) + (λ/2) - 9 = 0

(3λ/2) - 9 = 0

3λ - 18 = 0

λ = 6

Using the obtained value of λ, we can find the corresponding values of x, y, and z:

x = 6/2 = 3

y = 6/2 = 3

z = 6/2 = 3

Therefore, the solution to the given minimization problem subject to the constraint is x = y = z = 3, which minimizes the function f(x, y, z) = x² + y² + z² under the given constraints.

Learn more about Lagrangian function here

https://brainly.com/question/32584067

#SPJ11

a 120 gallon tank initially contains 90 lb of salt dissolved in 90 gallons of water. salt water containing 2 lb salt/gallon of water flows into the tank at the rate of 4 gallons/minute. the mixture flows out of the tank at a rate of 3 gallons/minute. assume that the mixture in the tank is uniform.

Answers

The concentration of salt in the tank  is 0.87 lbs/gallon of water.

A 120-gallon tank initially contains 90 lb of salt dissolved in 90 gallons of water. Saltwater containing 2 lb salt/gallon of water flows into the tank at the rate of 4 gallons/minute. The mixture flows out of the tank at a rate of 3 gallons/minute. Assume that the mixture in the tank is uniform.

To compute for the amount of salt in the tank at any given time, we will utilize the formula:

Amount of salt in = Amount of salt in + Amount of salt added – Amount of salt out

Amount of salt in = 90 lbs

A total of 2 lbs of salt per gallon of water is flowing into the tank.

Amount of salt added = 2 lbs/gallon × 4 gallons/minute = 8 lbs/minute

The mixture flows out of the tank at a rate of 3 gallons/minute.

Therefore, the amount of salt flowing out is given by:

Amount of salt out = 3 gallons/minute × (90 lbs + 8 lbs/minute)/(4 gallons/minute)

Amount of salt out = 69.75 lbs/minute

Therefore, the total amount of salt in the tank at any given time is:

Amount of salt in = 90 lbs + 8 lbs/minute – 69.75 lbs/minute = 28.25 lbs/minute

We can compute the amount of salt in the tank after t minutes using the formula below:

Amount of salt in = 90 lbs + (8 lbs/minute – 69.75 lbs/minute) × t

Amount of salt in = 90 – 61.75t (lbs)

The total volume of the solution in the tank after t minutes can be computed as follows:

Volume in the tank = 90 + (4 – 3) × t = 90 + t (gallons)

Given that the mixture in the tank is uniform, we can now compute the concentration of salt in the tank as follows:

Concentration of salt = Amount of salt in ÷ Volume in the tank

Concentration of salt = (90 – 61.75t)/(90 + t) lbs/gallon

Therefore, the concentration of salt in the tank  is (90 – 61.75 × 150)/(90 + 150) = 0.87 lbs/gallon of water.

Know more about concentration here,

https://brainly.com/question/30862855

#SPJ11

Question 23 of 30
The ideal length of a metal rod is 38.5 cm. The measured length may vary
from the ideal length by at most 0.055 cm. What is the range of acceptable
lengths for the rod?
A. 38.445 2x2 38.555
B. 38.4452x≤ 38.555
C. 38.445≤x≤ 38.555
D. x≤ 38.445 or x2 38.555

Answers

Answer:

C. [tex]38.445\leq x\leq 38.555[/tex]

Step-by-step explanation:

The measured length varies from the ideal length by 0.055 cm at most, so to find the range of possible lengths, we subtract 0.055 from the ideal, 38.5.

[tex]38.5-0.055=38.445\\38.5+0.055=38.555[/tex]

The measured length can be between 38.445 and 38.555 inclusive. This can be written in an equation using greater-than-or-equal-to signs:

[tex]38.445\leq x\leq 38.555[/tex]

38.445 is less than or equal to X, which is less than or equal to 38.555.

So the answer to your question is C.

Use 6-point bins (94 to 99, 88 to 93, etc.) to make a frequency table for the set of exam scores shown below
83​ 65 68​ 79​ 89 77 77 94 85 75​ 85​ 75​ 71​ 91 74 89​ 76​ 73 67 77 Complete the frequency table below.

Answers

The frequency table reveals that the majority of exam scores fall within the ranges of 76 to 81 and 70 to 75, each containing five scores.

How do the exam scores distribute across the 6-point bins?"

To create a frequency table using 6-point bins, we can group the exam scores into the following ranges:

94 to 9988 to 9382 to 8776 to 8170 to 7564 to 69

Now, let's count the number of scores falling into each bin:

94 to 99: 1 (1 score falls into this range)

88 to 93: 2 (89 and 91 fall into this range)

82 to 87: 2 (83 and 85 fall into this range)

76 to 81: 5 (79, 77, 77, 76, and 78 fall into this range)

70 to 75: 5 (75, 75, 71, 74, and 73 fall into this range)

64 to 69: 3 (65, 68, and 67 fall into this range)

The frequency table for the set of exam scores is as follows:

Score Range Frequency

94 to 99            1

88 to 93            2

82 to 87     2

76 to 81            5

70 to 75            5

64 to 69            3

Read more about frequency

brainly.com/question/254161

#SPJ4

Which one of the following would be most helpful in strengthening the content validity of a test?
A. Administering a new test and an established test to the same group of students.
B. Calculating the correlation coefficient.
C. Calculating the reliability index.
D. Asking subject matter experts to rate each item in a test.

Answers

Asking subject matter experts to rate each item in a test would be most helpful in strengthening the content validity of a test

Asking subject matter experts to rate each item in a test would be most helpful in strengthening the content validity of a test. Content validity refers to the extent to which a test accurately measures the specific content or domain it is intended to assess. By involving subject matter experts, who are knowledgeable and experienced in the domain being tested, in the evaluation of each test item, we can gather expert opinions on the relevance, representativeness, and alignment of the items with the intended content. Their input can help ensure that the items are appropriate and adequately cover the content area being assessed, thus enhancing the content validity of the test.

Know more about subject matter experts here:

https://brainly.com/question/31154372

#SPJ11

If there is a simple graph with k vertices. prove by induction
that if simple graph has n components then it has at least k-n
edges.

Answers

For the inductive step, assuming the statement holds for a graph with n components, where n < k, we consider a graph with (n + 1) components. By removing one vertex from one of the components, we create a new graph with k - 1 vertices and n components. By the induction hypothesis, this new graph has at least (k - 1) - n edges. Adding back the removed vertex and connecting it to the n components creates at least one new edge in each component. Therefore, the total number of edges in the original graph is at least k - 1.

Thus, by induction, it is proven that if a simple graph has n components, it has at least k - n edges.

To prove the statement by induction, we need to establish a base case and an inductive step.

**Base case:**

When the graph has only one component (n = 1), it means that all k vertices are connected, forming a single connected component. In this case, the number of edges in the graph is maximized, and it can be calculated using the formula for a complete graph with k vertices.

The number of edges in a complete graph with k vertices is given by the formula: E = k(k-1)/2.

Since there is only one component, and it is a complete graph, the number of edges in the graph is E = k(k-1)/2.

Now, let's substitute n = 1 in the statement we need to prove:

"If a simple graph has n components (n = 1), then it has at least k - n edges."

Plugging in the values:

"If a simple graph has 1 component, then it has at least k - 1 edges."

From the base case, we can see that the graph indeed has k - 1 edges when it has only one component.

**Inductive step:**

Assume the statement holds for a graph with n components, where n < k. We will prove that it holds for a graph with (n + 1) components.

Let G be a simple graph with k vertices and (n + 1) components. We can remove one vertex from one of the components to create a new graph G'. The new graph G' will have k - 1 vertices and n components.

By the induction hypothesis, G' has at least (k - 1) - n edges.

Now, let's consider the original graph G. When we add back the vertex we removed, it can be connected to any of the n components in G'. This addition of the vertex creates at least one new edge in each of the n components.

Therefore, the total number of edges in G is at least the number of edges in G' plus the number of new edges added by the vertex. Mathematically, it can be expressed as:

Edges(G) ≥ Edges(G') + n

Since Edges(G') + n = ((k - 1) - n) + n = k - 1, we have:

Edges(G) ≥ k - 1

Hence, we have proved that if a simple graph has n components, it has at least k - n edges.

By the principle of mathematical induction, the statement is true for all values of n such that 1 ≤ n < k.

learn more about edges

https://brainly.com/question/139134

#SPJ11

What is the relation between the variables in the equation x4/y ゠7?

Answers

The equation x^4/y = 7 represents a relationship between the variables x and y. Let's analyze the equation to understand the relation between these variables.

In the equation x^4/y = 7, x^4 is the numerator and y is the denominator. This equation implies that when we raise x to the power of 4 and divide it by y, the result is equal to 7.

From this equation, we can deduce that there is an inverse relationship between x and y. As x increases, the value of x^4 also increases. To maintain the equation balanced, the value of y must decrease in order for the fraction x^4/y to equal 7.

In other words, as x increases, y must decrease in a specific manner so that their ratio x^4/y remains equal to 7. The exact values of x and y will depend on the specific values chosen within the constraints of the equation.

Overall, the equation x^4/y = 7 represents an inverse relationship between x and y, where changes in one variable will result in corresponding changes in the other to maintain the equality.

Learn more about variables here

https://brainly.com/question/28248724

#SPJ11

Dettol,an antiseptic liquid,is a strong germ killer that protects your family.a level on a 500ml dettol bottle,indicated chloroxylenol as 4.8g/100ml.how many molecules of chloroxylenol are in 23 cm cubic of dettol

Answers

There are 4.7 x 10^21 molecules of chloroxylenol in 23 cm^3 of Dettol in a 500ml bottle

There are 4.7 x 10^21 molecules of chloroxylenol in 23 cm^3 of Dettol. This is calculated by first determining the mass of chloroxylenol in 23 cm^3 of Dettol, using the concentration of chloroxylenol (4.8 g/100 mL) and the volume of Dettol. The mass of chloroxylenol is then converted to the number of molecules using Avogadro's number.

The concentration of chloroxylenol in Dettol is 4.8 g/100 mL. This means that in 100 mL of Dettol, there are 4.8 g of chloroxylenol. To determine the mass of chloroxylenol in 23 cm^3 of Dettol, we can use the following equation:

mass of chloroxylenol = concentration of chloroxylenol * volume of Dettol

mass of chloroxylenol = [tex]4.8 g/100 mL * 23 cm^3 / 1000 mL/cm^3[/tex]

mass of chloroxylenol = 1.22 g

The molar mass of chloroxylenol is 156.5 g/mol. This means that there are [tex]6.022 x 10^23[/tex] molecules of chloroxylenol in 1 mol of chloroxylenol. The number of molecules of chloroxylenol in 1.22 g of chloroxylenol is:

number of molecules = mass of chloroxylenol / molar mass of chloroxylenol * Avogadro's number

number of molecules = 1.22 g / 156.5 g/mol * 6.022 x [tex]10^{23}[/tex] mol^-1

number of molecules = 4.7 x [tex]10^{21}[/tex]

Learn more about chloroxylenol here

https://brainly.com/question/32683591

#SPJ11

Perform the indicated operation and simplify: (26x+5)−(−4x2−13x+5) A) 4x2−39x B) 4x2+39x C) 4x2+39x−10 D) 4x2+13x+10 E) −4x2+13x+10

Answers

The solution for this question is [tex]A) 4�2−39�4x 2 −39x.[/tex]

To perform the indicated operation and simplify [tex]\((26x+5) - (-4x^2 - 13x + 5)\),[/tex]we distribute the negative sign to each term within the parentheses:

[tex]\((26x + 5) + 4x^2 + 13x - 5\)[/tex]

Now we can combine like terms:

[tex]\(26x + 5 + 4x^2 + 13x - 5\)[/tex]

Combine the[tex]\(x\)[/tex] terms: [tex]\(26x + 13x = 39x\)[/tex]

Combine the constant terms: [tex]\(5 - 5 = 0\)[/tex]

The simplified expression is [tex]\(4x^2 + 39x + 0\),[/tex] which can be further simplified to just [tex]\(4x^2 + 39x\).[/tex]

Therefore, the correct answer is A) [tex]\(4x^2 - 39x\).[/tex]

To know more about Equation related question visit:

https://brainly.com/question/29657983

#SPJ11

Let A = find A x B {3, 5, 7} B = {x, y} Define relation p on {1,2,3,4} by p = {(a, b) : a + b > 5}. Find the adjacency matrix for this relation. The following relation r is on {0, 2, 4, 8}. Let r be the relation xry iff y=x/2. List all elements in r. The following relations are on {1,3,5,7}. Let r be the relation xry iff y=x+2 and s the relation xsy iff y 3}. Is p symmetric? Determine if proposition is true or false: - 2/3 € Z or — 2/3 € Q.1 Given the prepositions: p: It is quiet q: We are in the library Find an English sentence corresponding to p^ q

Answers

The corresponding English sentence for p^q is "It is quiet and we are in the library."

1. A x B:

A = {3, 5, 7}

B = {x, y}

A x B = {(3, x), (3, y), (5, x), (5, y), (7, x), (7, y)}

2. Relation p:

p = {(a, b) : a + b > 5}

The elements in relation p are:

{(3, 4), (3, 5), (3, 6), (3, 7), (4, 3), (4, 4), (4, 5), (4, 6), (4, 7), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 7), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7)}

3. Adjacency matrix for relation p:

The adjacency matrix for relation p on {1, 2, 3, 4} is:

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

4.Relation r:

r is the relation xry iff y = x/2.

The elements in relation r are:

{(0, 0), (2, 1), (4, 2), (8, 4)}

5. Proposition p: It is quiet

q: We are in the library

The English equivalent for pq is "It is quiet and we are in the library."

Learn more about  Adjacency matrix

https://brainly.com/question/33168421

#SPJ11

round to 3 decimal places
If the growth factor for a population is a, then the instantaneous growth rate is r =
. So if the growth factor for a population is 4.5, then the instantaneous growth rate is

Answers

If the growth factor for a population is 4.5, then the instantaneous growth rate is 3.5.

The growth factor, denoted by "a," represents the ratio of the final population to the initial population. It indicates how much the population has grown over a specific time period. The instantaneous growth rate, denoted by "r," measures the rate at which the population is increasing at a given moment.

To calculate the instantaneous growth rate, we use the natural logarithm function. The formula is r = ln(a), where ln represents the natural logarithm. In this case, the growth factor is 4.5.

Applying the formula, we find that the instantaneous growth rate is r = ln(4.5). Using a calculator or a math software, we evaluate ln(4.5) and obtain approximately 1.504.

However, the question asks us to round the result to three decimal places. Rounding 1.504 to three decimal places, we get 1.500.

Therefore, if the growth factor for a population is 4.5, the instantaneous growth rate would be approximately 1.500.

Learn more about Growth factor

brainly.com/question/32122796

#SPJ11

Other Questions
Which type of mutation completely changes a virus from its original form by rewriting its own code whenever it is executed? Topic: high rate of leaners failing mathematics and lack of interest for mathematics1. Use the knowledge and experience to formulate your title. (6)2. Formulate three subsidiary questions (6) 3. Formulate your Main research question: (6) 4. Do a literature review to crystallise your research problem Now here you are expected to do intext reference and5. Formulate your Aim and objectives (10) In "Finding the Right Appeal," Caples first introduces Hahn's three elementary appeals (- the reason you give the reader for buying). Further discussion brings about an expanded four basic appeals. Fill in the blank. Sex/sexual appeal (it's about love, affection, and friendship.) Greed (it's about all the things that money can buy) _______ (hint: it's about... I am afraid I can't tell you more in this one) Duty/honor/professionalism (it's about one's position and worthiness in the society, how he/she could serve others well) writing for media1 Reflect on the inverted pyramid style of writing - can it be used to support effective speech writing?up to 300 words Adderall is considered which of these items? Select one:a. dopamine agonistb. dopamine antagonistc. serotonin agonistd. serotonin antagonist In a study by Kahneman & Tversky, people were told that "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations". People were then asked "is Linda more likely to be (A) a bank teller, or (B) a bank teller who is active in a feminist movement". People were more likely to choose (B). This is an example of:a. Availability heuristicb. correct calculation of base ratec. deductive reasoningd. Representativeness heuristice. The affect heuristic Match each cell organelle with its description. a.) Imagine water is in glass, as in a fish tank. What would be the critical angle at this interface? Where must the light start?b.) Light is incident on flabium at zero degrees. If flabium has an index of 1.4, what will the refracted angle be?c.) Flabium can cause dispersion of colors by refraction. How is this possible? 3. Triangle ABC has the following coordinates. A=(-6,5), B=(-4,2), C=(-6,2) What are the coordinates of triangle A'B'C' if it is created by dilating triangle ABC with the origin (0,0) as the center of dilation and with a scale factor of 4? 13 Part 2 of 2 166 points eBook Hint Print References Required information A 1.90-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spring is attached to a wall, as shown. The initial height of the block is 0.500 m above the lowest part of the slide and the spring constant is 438 N/m. The spring sends the block back to the left. How high does the block rise? Ms. Richert expects to retire in 30 years, and she wishes to accumulate $1,004,000 in her retirement fund by that time. If the interest rate is 13 percent per year, how much should Ms. Richert put into her retirement fund at the end of each year in order to achieve this goal? Multiple Choice $3,424.29 $6,848.59 $4,016.00 $10,325.08 Calculate the average rate of change between adjacent points for the following function. The first few are done for you. Average Rate of Change X Increasing 0 1 2 3 4 5 f(x) 0 3 24 81 192 375 a. Is the function f(x) increasing, decreasing, or constant throughout? i i n.a. 3 21 54 84 75 b. Is the average rate of change increasing, decreasing, or constant throughout? For any set of data values, is it possible for the sample standard deviation to be larger than the sample mean? give an example. Evaluate the following statement: "Under the Tax Cuts and Jobs Act of 2017, a married couple with three children that grosses $30,000 of wage income pays zero federal income tax. This is proof that low income families were the biggest beneficiaries of the TCJA." Capital Gains is shown from .A.dividends that are received in the futureB. a stock sold at $2, but bought at $1.50C. All of the above.D. dividend paid over the duration of holding the asset Franklin D. Roosevelt's New Deal economic policies reversed which early political response to the Great Depression? there is a major focus on quality of care and prevention butalso a recognition that these are very difficult to achieve. Citeexamples you are aware of that your institution or otherorganizations ha You throw a rock straight up and find that it returns to your hand 3.60 s after it left your hand. neglect air resistance. what was the maximum height above your hand that the rock reached 11. (10 points total) An object is placed 12 cm to the left of a convex mirror. The image has a magnification of 1/4. a) (2 points) Is the image upright or inverted? (Please explain or show work.) b) (2 points) Is the image real or virtual? (Please explain or show work.) c) (3 points) What is the image distance? d) (3 points) What is the focal length of the mirror? I Jean inherited $36,000, where the terms of the inheritance state that she is to receive $1290 at the end of each quarter, starting in four years, until the money is completely withdrawn. If the money is placed in a savings account earning 7.1% compounded annually, how long will the inheritance last? State your answer in years and months (from 0 to 11 months) Steam Workshop Downloader