Given f(x)=2x+1 and g(x)=3x−5, find the following: a. (f∘g)(x) b. (g∘g)(x) c. (f∘f)(x) d. (g∘f)(x)

Answers

Answer 1

The compositions between f(x) and g(x) are:

a. (f∘g)(x) = 6x - 9

b. (g∘g)(x) = 9x - 20

c. (f∘f)(x) = 4x + 3

d. (g∘f)(x) = 6x - 2

How to find the compositions between the functions?

To get a composition of the form:

(g∘f)(x)

We just need to evaluate function g(x) in f(x), so we have:

(g∘f)(x) = g(f(x))

Here we have the functions:

f(x) = 2x + 1

g(x) = 3x - 5

a. (f∘g)(x)

To find (f∘g)(x), we first evaluate g(x) and then substitute it into f(x).

g(x) = 3x - 5

Substituting g(x) into f(x):

(f∘g)(x) = f(g(x))

= f(3x - 5)

= 2(3x - 5) + 1

= 6x - 10 + 1

= 6x - 9

Therefore, (f∘g)(x) = 6x - 9.

b. (g∘g)(x)

To find (g∘g)(x), we evaluate g(x) and substitute it into g(x) itself.

g(x) = 3x - 5

Substituting g(x) into g(x):

(g∘g)(x) = g(g(x))

= g(3x - 5)

= 3(3x - 5) - 5

= 9x - 15 - 5

= 9x - 20

Therefore, (g∘g)(x) = 9x - 20.

c. (f∘f)(x)

To find (f∘f)(x), we evaluate f(x) and substitute it into f(x) itself.

f(x) = 2x + 1

Substituting f(x) into f(x):

(f∘f)(x) = f(f(x))

= f(2x + 1)

= 2(2x + 1) + 1

= 4x + 2 + 1

= 4x + 3

Therefore, (f∘f)(x) = 4x + 3.

d. (g∘f)(x)

To find (g∘f)(x), we evaluate f(x) and substitute it into g(x).

f(x) = 2x + 1

Substituting f(x) into g(x):

(g∘f)(x) = g(f(x))

= g(2x + 1)

= 3(2x + 1) - 5

= 6x + 3 - 5

= 6x - 2

Therefore, (g∘f)(x) = 6x - 2.

Learn more about compositions at:

https://brainly.com/question/10687170

#SPJ4


Related Questions

B Solve Problems 55-74 using augmented matrix methods 61. x1 + 2x2 = 4 2x1 + 4x₂ = −8

Answers

The given system of equations is inconsistent and has no solution.

Is the system of equations solvable using augmented matrix methods?

To solve the system of equations using augmented matrix methods, we can represent the system in matrix form as:

[tex]\left[\begin{array}{cc}1&2\\2&4\end{array}\right][/tex]  [tex]\left[\begin{array}{ccc}x_1\\x_2\end{array}\right][/tex]  = [tex]\left[\begin{array}{ccc}-4\\8\end{array}\right][/tex]

Augmented Matrix

We can write the augmented matrix as:

[tex]\left[\begin{array}{cc|c}1&2&4\\2&4&-8\end{array}\right][/tex]

Row Operations

We'll perform row operations to transform the augmented matrix into row-echelon form or reduced row-echelon form.

R2 = R2 - 2R1 (Multiply the first row by -2 and add it to the second row)

[tex]\left[\begin{array}{cc|c}1&2&4\\0&0&-16\end{array}\right][/tex]

Interpret the Result

From the row-echelon form of the augmented matrix, we can see that the second equation simplifies to 0 = -16, which is not a valid equation.

This implies that the system of equations is inconsistent and has no solution.

Therefore, the given system of equations:

x₁ + 2x₂ = 4

2x₁ + 4x₂ = -8

has no solution.

Learn more about linear equations using augmented matrix methods

brainly.com/question/31396411

#SPJ11

Find the exact volume of the sphere with a radius of 2 m. Leave the answer in terms of pie

Answers

Answer:

[tex]V=\frac{32}{3} \pi[/tex]

Step-by-step explanation:

We first need to know the formula to find the volume of a sphere.

What is the formula to find the volume of a sphere?

The formula to find the volume of a sphere is:

[tex]V=\frac{4}{3} \pi r^{3}[/tex]

(Where V is the volume and r is the radius of the sphere)

If the radius of the sphere is 2, then we can insert that into the formula for r:

[tex]V=\frac{4}{3} \pi (2)^{3}[/tex][tex]V=\frac{4}{3} \pi (8)[/tex][tex]V=\frac{32}{3} \pi[/tex]

Therefore the answer is [tex]V=\frac{32}{3} \pi[/tex].

What is the quotient?
x + 1)3x² - 2x + 7
O , ? 1
3x-5+
ܕ ? 5 +O3x
Q3+5+
O
ܕ ? ܟ ܀ 5
3x + 5+

Answers

The quotient is 3x - 5 + (-5) + 12, which simplifies to 3x + 2.

To find the quotient, we need to perform polynomial long division. The dividend is 3x² - 2x + 7, and the divisor is x + 1.

 3x - 5

x + 1 | 3x² - 2x + 7

We start by dividing the highest degree term of the dividend (3x²) by the divisor (x), which gives us 3x. We then multiply the divisor (x + 1) by the quotient (3x) and subtract it from the dividend:

       3x - 5

    ____________

x + 1 | 3x² - 2x + 7

- (3x² + 3x)

____________

- 5x + 7

We continue the process by dividing the next term (-5x) of the resulting polynomial (-5x + 7) by the divisor (x + 1). This gives us -5.

            -5

    ____________

x + 1 | 3x² - 2x + 7

- (3x² + 3x)

____________

- 5x + 7

- (- 5x - 5)

____________

12

Finally, we divide the remaining term (12) by the divisor (x + 1), which gives us 12.

                  12

    ____________

x + 1 | 3x² - 2x + 7

- (3x² + 3x)

____________

- 5x + 7

- (- 5x - 5)

____________

12

- 12

____________

0

The quotient is 3x + 2 and can be written as 3x + 5 + (-5) + 12.

for such more question on quotient

https://brainly.com/question/11536181

#SPJ8

Jolon used the slope-intercept form to write the equation of a line with slope 3 that passes through the point (5, –2). His work is shown below.
Step 1: Negative 2 = 3 (5) + b
Step 2: negative 2 = 15 + b
Step 3: Negative 2 + 15 = 15 + 15 + b
Step 4: Negative 13 = b
Step 5: y = 3x – 13

Answers

Answer:

Jolon mistakingly added 15 to both sides of the equation in Step 3.  Step 3's correct answer is -2 + 15 = -15 + 15 + b, Step 4's correct answer is -17 = b, and Step 5's correct answer is y = 3x - 17

Step-by-step explanation:

It appears that you're trying to identify Jolon's mistake.  If you're trying to do something else, type it in the comments as the answer I'm providing identifies Jolon's mistake.

In Step 3, Jolon added 15 to both sides.  However, doing this would have given you (-2 + 15) = (15 + 15 + b), which becomes -13 = 30 + b.  In order to eliminate 15 on the right-hand side of the equaiton, Jolon instead needed to subtract 15 from both sides, which gives you (-2 - 15) = (15 - 15 + b).  This simplifies to -17 = b.You can check that -17 = b is correct by plugging in 3 for m, (5, -2) for (x, y), and -17 for b in the slope-intercept form (y = mx + b) and checking that you get the same answer on both sides of the equation:

-2 = 3(5) - 17

-2 = 15 - 17

-2 = -2

Thus, Step 3 should be:  (-2 + 15) = (-15 + 15 + b), Step 4 should be:  -17 = b, and Step 5 should be:  y = 3x - 17

The answer is:

y = 3x - 17

Work/explanation:

We need to write the equation in slope intercept form.

y = mx + b

where m = slope and b = y intercept; x and y are the co-ordinates of a point on the line

Plug in the data

[tex]\sf{y=mx+b}[/tex]

[tex]\sf{y=3x+b}[/tex]

[tex]\sf{-2=3(5)+b}[/tex]

[tex]\sf{-2=15+b}[/tex]

[tex]\sf{-2-15=b}[/tex]

[tex]\sf{-17=b}[/tex]

Hence, the answer is y = 3x - 17; Jolon was wrong because he shouldn't have added 15 to each side; he should have subtracted it instead. Also, 15 + 15 doesn't cancel out to 0. As a result, he got a wrong answer. The right one is y = 3x - 17.

Simplify the equation. Please show work.

Answers

Answer:

x

Step-by-step explanation:

[tex]\sqrt{\frac{2x^2 +4x +2}{2} } -1\\\\= \sqrt{x^2 + 2x + 1} -1\\ \\=\sqrt{x^2 + x+x+1} -1\\\\=\sqrt{x(x+1)+(x+1)} -1\\\\=\sqrt{(x+1)(x+1)} -1\\\\=\sqrt{(x+1)^2} -1\\\\=x+1 - 1\\\\= x[/tex]

Suppose that U = [0, [infinity]o) is the universal set. Let A = [3,7] and B = (5,9] be two intervals; D = {1, 2, 3, 4, 5, 6} and E = {5, 6, 7, 8, 9, 10} be two sets. Find the following sets and write your answers in set/interval notations: 1. 2. (a) (b) (c) (AUE) NBC (AC NB) UE (A\D) n (B\E) Find the largest possible domain and largest possible range for each of the following real-valued functions: (a) F(x) = 2 x² - 6x + 8 Write your answers in set/interval notations. (b) G(x) 4x + 3 2x - 1 =

Answers

1)

(a) A ∪ E:

A ∪ E = {3, 4, 5, 6, 7, 8, 9, 10}

Interval notation: [3, 10]

(b) (A ∩ B)':

(A ∩ B)' = U \ (A ∩ B) = U \ (5, 7]

Interval notation: (-∞, 5] ∪ (7, ∞)

(c) (A \ D) ∩ (B \ E):

A \ D = {3, 4, 7}

B \ E = (5, 6]

(A \ D) ∩ (B \ E) = {7} ∩ (5, 6] = {7}

Interval notation: {7}

2)

(a) The largest possible domain for F(x) = 2x² - 6x + 8 is U, the universal set.

Domain: U = [0, ∞) (interval notation)

Since F(x) is a quadratic function, its graph is a parabola opening upwards, and the range is determined by the vertex. In this case, the vertex occurs at the minimum point of the parabola.

To find the largest possible range, we can find the y-coordinate of the vertex.

The x-coordinate of the vertex is given by x = -b/(2a), where a = 2 and b = -6.

x = -(-6)/(2*2) = 3/2

Plugging x = 3/2 into the function, we get:

F(3/2) = 2(3/2)² - 6(3/2) + 8 = 2(9/4) - 9 + 8 = 9/2 - 9 + 8 = 1/2

The y-coordinate of the vertex is 1/2.

Therefore, the largest possible range for F(x) is [1/2, ∞) (interval notation).

(b) The function G(x) = (4x + 3)/(2x - 1) is undefined when the denominator 2x - 1 is equal to 0.

Solve 2x - 1 = 0 for x:

2x - 1 = 0

2x = 1

x = 1/2

Therefore, the function G(x) is undefined at x = 1/2.

The largest possible domain for G(x) is the set of all real numbers except x = 1/2.

Domain: (-∞, 1/2) ∪ (1/2, ∞) (interval notation)

Learn more about Interval notation here

https://brainly.com/question/29184001

#SPJ11

 
21. If M = 103, u = 115, tev = 2.228, and SM = 3.12, what is the 95% confidence interval? O [-12.71, -11.29] [218.89, 224.95] [-18.95, -5.05] O [-17.35, -6.65]

Answers

The correct 95% confidence interval is [96.05, 109.94]. Thus, option E is correct.

M = 103 (estimate)

u = 115 (mean)

T value = 2.228 (t-value)

SM = 3.12 (standard error)

The confidence interval of 95% can be calculated by using  the formula:

Confidence interval = estimate ± (critical value) * (standard error)

Confidence interval = M ± tev * SM

Substituting the above-given values into the equation:

Confidence interval = 103 ± 2.228 * 3.12

Confidence interval = 103 ± 6.94

The 95% confidence interval is then =  [103 - 6.94, 103 + 6.94]

Therefore, we can conclude that the correct 95% confidence interval is [96.05, 109.94].

To learn more about Confidence interval

https://brainly.com/question/32278466

#SPJ4

The complete question is:

If M = 103, u = 115, tev = 2.228, and SM = 3.12, what is the 95% confidence interval?

a. [-12.71, -11.29]

b. [218.89, 224.95]

c. [-18.95, -5.05]

d. [-17.35, -6.65]

e. [96.05, 109.94].

Use the difference quotient (Newton's quotient) to find when the function f(x)=2x^2−4x+5 has a local minimum.

Answers

The function f(x) = 2x^2 - 4x + 5 has a local minimum at x = 1.

To find when the function f(x) = 2x^2 - 4x + 5 has a local minimum, we can use Newton's quotient.

Step 1: Find the derivative of the function f(x) with respect to x.

The derivative of f(x) = 2x^2 - 4x + 5 is f'(x) = 4x - 4.

Step 2: Set the derivative equal to zero and solve for x to find the critical points.

Setting f'(x) = 0, we have 4x - 4 = 0. Solving for x, we get x = 1.

Step 3: Use the second derivative test to determine whether the critical point is a local minimum or maximum.

To do this, we need to find the second derivative of f(x). The second derivative of f(x) = 2x^2 - 4x + 5 is f''(x) = 4.

Step 4: Substitute the critical point x = 1 into the second derivative f''(x).

Substituting x = 1 into f''(x), we get f''(1) = 4.

Step 5: Interpret the results.

Since f''(1) = 4, which is positive, the function f(x) = 2x^2 - 4x + 5 has a local minimum at x = 1.

Therefore, the function f(x) = 2x^2 - 4x + 5 has a local minimum at x = 1.

To know more about  "local minimum"

https://brainly.com/question/2437551

#SPJ11

Consider f: R2[x] --> R2 defined by f(ax2 + bx + c) = (a,b) and g: R2 --> R3[x] defined by g(a,b) = ax3
Which of the following statements is true:
a) Ker f has dimension of 2
b) Ker (g o f) has dimension of 2
c) Ker f Ker (f o g)
d) Ker g Ker (g o f)

Answers

The correct answer is: The dimensions of Ker(g o f), Ker(f), and Ker(g) are 2, 1, and 1, respectively. And the options (b), (c), and (d) are True.

Given information : f: R2[x] → R2 defined by f(ax2 + bx + c) = (a, b) and g: R2 → R3[x] defined by g(a, b) = ax3

Solution:

We know that:

Ker(f) = {p(x) ∈ R2[x]:

f(p(x)) = 0}

Ker(g) = {(a,b) ∈ R2:

g(a,b) = 0}

Now, let's check each option one by one.

(a) Ker f has dimension of 2

Since f: R2[x] → R2 where f(ax2 + bx + c) = (a, b)

Therefore, Ker(f) = {p(x) ∈ R2[x]:

f(p(x)) = (0, 0)}

⇒ {p(x) ∈ R2[x]: a = 0,

b = 0}

⇒ {p(x) ∈ R2[x]: p(x) = c}

Hence, dim(Ker(f)) = 1

Therefore, option (a) is False.

(b) Ker (g o f) has dimension of 2Now, (g o f): R2[x] → R3[x] given by (g o f)(ax2 + bx + c) = g(f(ax2 + bx + c))

= g(a, b)

= a x3

Now, Ker(g) = {(a,b) ∈ R2:

g(a,b) = 0} = {(a,b) ∈ R2:

a = 0}

Therefore, Ker(g o f) = {p(x) ∈ R2[x]:

g(f(p(x))) = 0}

= {p(x) ∈ R2[x]:

f(p(x)) = (0, b), b ∈ R}

= {p(x) ∈ R2[x]:

p(x) = bx + c, b ∈ R}

Thus, dim(Ker(g o f)) = 2

Therefore, option (b) is True.

(c) Ker f ⊆ Ker (f o g)

We know, Ker(f) = {p(x) ∈ R2[x]:

f(p(x)) = (0, 0)}

Also, Ker(f o g) = {p(x) ∈ R2[x]:

f(g(p(x))) = 0}

Now, g(p(x)) = ax3

= 0

⇒ a = 0

Therefore, g(p(x)) = 0 ∀ p(x) ∈ Ker(f)

⇒ Ker(f) ⊆ Ker(f o g)

Hence, option (c) is True.

(d) Ker g ⊆ Ker (g o f)

Now, Ker(g) = {(a,b) ∈ R2:

g(a,b) = 0}

= {(a,b) ∈ R2: a = 0}

Also, Ker(g o f) = {p(x) ∈ R2[x]:

g(f(p(x))) = 0}

Now, let's take p(x) = ax2 + bx + c

∴ g(f(p(x))) = g(a, b)

= a x3

Therefore, Ker(g) ⊆ Ker(g o f)

Hence, option (d) is True.

Conclusion: The correct options are: (b) Ker (g o f) has dimension of 2. (c) Ker f ⊆ Ker (f o g)(d) Ker g ⊆ Ker (g o f).

Thus, the correct answer is: The dimensions of Ker(g o f), Ker(f), and Ker(g) are 2, 1, and 1, respectively. And the options (b), (c), and (d) are True.

To know more about dimensions visit

https://brainly.com/question/8048555

#SPJ11

A portfolio is 70% invested in an index fund and 30% in a risk-free asset. The index fund has a standard deviation of returns of 15%. Calculate the standard deviation for the total portfolio returns.

Answers

The standard deviation for the total portfolio returns can be calculated using the weighted average of the standard deviations of the index fund and the risk-free asset. The standard deviation for the total portfolio returns is 10.5%.


The standard deviation of a portfolio measures the variability or risk associated with the portfolio's returns. In this case, the portfolio is 70% invested in an index fund (with a standard deviation of returns of 15%) and 30% invested in a risk-free asset.

To calculate the standard deviation of the total portfolio returns, we use the weighted average formula:

Standard deviation of portfolio returns = √[(Weight of index fund * Standard deviation of index fund)^2 + (Weight of risk-free asset * Standard deviation of risk-free asset)^2 + 2 * (Weight of index fund * Weight of risk-free asset * 1Covariance  between index fund and risk-free asset)]

Since the risk-free asset has a standard deviation of zero (as it is risk-free), the second term in the formula becomes zero. Additionally, the covariance between the index fund and the risk-free asset is also zero because they are independent. Therefore, the formula simplifies to:

Standard deviation of portfolio returns = Weight of index fund * Standard deviation of index fund

Plugging in the values, we get:

Standard deviation of portfolio returns = 0.70 * 15% = 10.5%

Hence, the standard deviation for the total portfolio returns is 10.5%. This means that the total portfolio's returns are expected to have a variability or risk represented by this standard deviation.

Learn more about standard deviation here : brainly.com/question/13498201

#SPJ11

Suppose A,B,C are events such that A∩ C=B∩ Cˉ. Show that ∣P[A]−P[B]∣≤P[C]

Answers

It has been proved that if A ∩ C = B ∩ C', then |P(A) - P(B)| ≤ P(C).

To show that |P(A) - P(B)| ≤ P(C) using the definition of conditional probability, we can follow these steps:

Firstly, we can write P(A) = P(A ∩ C) + P(A ∩ C') by the law of total probability.Secondly, we can write P(B) = P(B ∩ C) + P(B ∩ C') by the law of total probability.We know that A ∩ C = B ∩ C' which implies A ∩ C' = B ∩ C. Therefore, P(A) = P(A ∩ C) + P(A ∩ C') = P(B ∩ C) + P(B ∩ C') = P(B).Let's now show that P(A ∩ C) ≤ P(C). Since A ∩ C ⊆ C, we have P(A ∩ C) ≤ P(C) by the monotonicity of probability (that is, if A ⊆ B, then P(A) ≤ P(B)).Also, P(A) = P(B) implies P(A) - P(B) = 0. Therefore, |P(A) - P(B)| = 0 ≤ P(C).Hence, we can conclude that |P(A) - P(B)| ≤ P(C).

Therefore, it has been proved that if A ∩ C = B ∩ C', then |P(A) - P(B)| ≤ P(C).

Learn more about conditional probability

https://brainly.com/question/10567654

#SPJ11

You spin the spinner once.
5
6
2
3
What is P(even)?

Answers

The probability of getting an even number on the spinner after one spin is: 1/2

What is the probability of the Spinner?

We are given the spinner as shown in the attached image and we see that it has the following numbers:

5, 6, 2 and 3

Now, we want to find the probability of getting an even number for each spin.

The probability is:

Probability = Number of favorable outcomes/Total number of outcomes.

There are two even numbers out of the 4 numbers on the spinner.

Thus:

P(even number) = 2/4 = 1/2

Read more about probability of the Spinner at: https://brainly.com/question/3765462

#SPJ1



What is each quotient?

b. (4-i)/6i

Answers

The final quotient is (-24i - 6)/36.

To find the quotient, we can use the process of complex division. We need to multiply the numerator and denominator by the conjugate of the denominator, which is -6i.

So, (4-i)/6i can be rewritten as ((4-i)(-6i))/((6i)(-6i)).

Simplifying this expression, we get (-24i + 6i^2)/(-36i^2).

Now, we can substitute i^2 with -1, since i^2 is equal to -1.

Therefore, the expression becomes (-24i + 6(-1))/(-36(-1)).

Simplifying further, we get (-24i - 6)/36.

The final quotient is (-24i - 6)/36.

To know more about quotient refer here:

https://brainly.com/question/16134410

#SPJ11

Hannah earns $10.25
an hour,H at her job at Target. She spends $4
each day on gas getting to and from work. Write an algebraic expression to represent the total amount of money she will bring home each day?

Answers

115 dollars

Step-by-step explanation:

assuming that a day is 12 hours she earns 123 dollars she usually uses 4 from work and back which is 8 dollars do 123 - 8 = 115

Alright! Let's break down the problem into simpler parts.

1. Hannah earns $10.25 for every hour she works.

2. She spends $4 on gas each day to get to and from work.

Now, let's use a letter to represent something we don't know. Let's use the letter 'H' to represent the number of hours Hannah works in a day.

So, the money Hannah earns in a day by working 'H' hours is:

Money earned = Hourly wage × Number of hours

              = $10.25 × H

              = 10.25H  (this means 10.25 times H)

Now, she spends $4 on gas each day, so we need to subtract this from the money she earns.

Total money she brings home in a day = Money earned - Money spent on gas

                                      = 10.25H - $4

                                      = 10.25H - 4

That's our algebraic expression!

In simple words, to find out how much money Hannah brings home in a day, you multiply the number of hours she works by $10.25 and then subtract $4 for the gas.

For example, if Hannah works for 8 hours in one day, you would plug 8 in place of 'H' in the expression:

= 10.25 × 8 - 4

= $82 - $4

= $78

So, Hannah would bring home $78 that day.

1.5. The sale price of a laptop is R3 700,00, which is only 65% of the original price. Calculate the original price. (3) 1.6. Mr Dhlamini is a Grade 4 teacher. There are 15 boys and 10 girls in his mathematics class. 161 What in the ratio of hour to girls? (2)

Answers

1.5. The original price of a laptop that has been sold at R3 700 is R5 692.31.

1.6. The ratio of boys to girls in Mr. Dhlamini's mathematics class is 3:2.

1.5. The original price of a laptop that has been sold at R3 700 at 65% of its original price can be calculated by the following formula:

Original Price × Percentage sold at = Sale price

Rearranging the formula, we get:

Original Price = Sale price ÷ Percentage sold at

Substituting the values we get:

Original Price = R3 700 ÷ 0.65 = R5 692.31

Therefore, the original price of the laptop was R5 692.31.

1.6. The ratio of boys to girls in Mr Dhlamini's mathematics class can be found by dividing the number of boys by the number of girls.

Number of boys in class = 15

Number of girls in class = 10

Ratio of boys to girls = Number of boys ÷ Number of girls

Ratio of boys to girls = 15 ÷ 10 = 3/2

Therefore, the ratio of boys to girls in Mr Dhlamini's mathematics class is 3:2.

Learn more about Sale price here: https://brainly.com/question/7459025

#SPJ11

Suppose a polynomial function of degree 4 with rational coefficients has the following given numbers as zeros. Find the other zero(s)
13-√5
The other zero(s) is/are
(Type an exact answer, using radicals and i as needed. Use a comma to separate answers as needed.)

Answers

The zeros of the polynomial are given by 13 - √5, 13 + √5, α, α, where α may or may not be rational.

Given that a polynomial function of degree 4 with rational coefficients has 13 - √5 as one of its zeros. We need to find the other zero of the polynomial.

To find the other zero of the polynomial, let's consider the conjugate of 13 - √5, which is 13 + √5.If α is a root of the polynomial then so is its conjugate, that is α.

Hence, the other zeros of the polynomial will be 13 + √5, and two more zeros (which are not mentioned in the question statement) which may or may not be rational.

To know more about polynomial visit:

https://brainly.com/question/11536910

#SPJ11

pls help asap if you can!!!

Answers

Answer:

We have no information about the sides of these triangles. So we can't tell if these triangles are congruent.

Homework: Section 4.2 Homework Find a general solution to the given differential equation. 25w+60w +36w=0

Answers

The general solution is r = -3/2.

To find the general solution to the given differential equation:

25w'' + 60w' + 36w = 0

we can start by assuming a solution of the form w(t) = [tex]e^{rt}[/tex], where r is a constant to be determined.

First, let's find the derivatives of w(t):

w'(t) = rw(t)

w''(t) = r²w(t)

Substituting these derivatives into the differential equation, we have:

25r²w(t) + 60rw(t) + 36w(t) = 0

Dividing through by w(t) (since it is assumed to be nonzero), we get:

25r² + 60r + 36 = 0

Now, we can solve this quadratic equation for r. Dividing through by 4, we have:

6.25r² + 15r + 9 = 0

Factoring the quadratic, we get:

(2.5r + 3)(2.5r + 3) = 0

This equation has a repeated root of -3/2. Therefore, the solution for r is:

r = -3/2

Since the quadratic equation has a repeated root, the general solution to the given differential equation is of the form:

w(t) = (C1 + C2t)[tex]e^{-3t/2}[/tex]

where C1 and C2 are arbitrary constants that can be determined from initial conditions or boundary conditions, if provided.

The complete question is:

Find a general solution to the given differential equation.

25w'' + 60w' + 36w = 0

To know more about general solution:

https://brainly.com/question/32554050


#SPJ4

The general solution of the differential equation is w = C.

Given differential equation is

25w + 60w + 36w = 0.

To find the general solution to the given differential equation using differential equation.

Solution:

We need to solve the differential equation

25w + 60w + 36w = 0

Let's simplify the given differential equation

25w + 60w + 36w

= 0w(25 + 60 + 36)

= 0w(121)

= 0w

= 0

We know that the general solution of a differential equation of the first order and first degree has one arbitrary constant C.

Therefore, the general solution of the differential equation is w = C.

Now, this solution has not been explicitly found, so in order to do that, you must know the initial conditions for the differential equation.

learn more about differential equation on:

https://brainly.com/question/1164377

#SPJ11

Solve the given linear programming problem using the table method. Maximize P=6x₁ + 7x₂ subject to: 2x₁ + 3x₂ ≤ 12 2x₁ + x₂ 58 X₁, X₂ 20 OA. Max P = 55 at x₁ = 4, x₂ = 4 OB. Max P = 32 at x₁ = 3, x₂ = 2 OC. Max P = 24 at x₁ = 4, x₂ = 0 OD. Max P = 32 at x₁ = 2, X₂ = 3 ***

Answers

The optimal solution is: x₁ = 3, x₂ = 0, P = 3(6) + 0(7) = 18. The correct answer is:

OC. Max P = 24 at x₁ = 4, x₂ = 0

To solve the linear programming problem using the table method, we need to create a table and perform iterations to find the optimal solution.

```

 |  x₁  |  x₂  |   P   |

-------------------------

C |  6   |  7   |   0   |

-------------------------

R |  2   |  3   |   12  |

-------------------------

R |  2   |  1   |   58  |

```

In the table, C represents the coefficients of the objective function P, and R represents the constraint coefficients.

To find the optimal solution, we'll perform the following iterations:

**Iteration 1:**

The pivot column is determined by selecting the most negative coefficient in the bottom row. In this case, the pivot column is x₁.

The pivot row is determined by finding the smallest non-negative ratio of the right-hand side values divided by the pivot column values. In this case, the pivot row is R1.

Perform row operations to make the pivot element (2 in R1C1) equal to 1 and make all other elements in the pivot column equal to 0.

```

 |  x₁  |  x₂  |   P   |

-------------------------

R |  1   |  1.5 |   6   |

-------------------------

C |  0   |  0.5 |   -12 |

-------------------------

R |  2   |  1   |   58  |

```

**Iteration 2:**

The pivot column is x₂ (since it has the most negative coefficient in the bottom row).

The pivot row is R1 (since it has the smallest non-negative ratio of the right-hand side values divided by the pivot column values).

Perform row operations to make the pivot element (1.5 in R1C2) equal to 1 and make all other elements in the pivot column equal to 0.

```

 |  x₁  |  x₂  |   P   |

-------------------------

R |  1   |  0   |   3   |

-------------------------

C |  0   |  1   |   -24 |

-------------------------

R |  2   |  0   |   52  |

```

Since there are no negative coefficients in the bottom row (excluding the P column), the solution is optimal.

The optimal solution is:

x₁ = 3

x₂ = 0

P = 3(6) + 0(7) = 18

Therefore, the correct answer is:

OC. Max P = 24 at x₁ = 4, x₂ = 0

Learn more about linear programming

https://brainly.com/question/30763902

#SPJ11

The equation 4x² + 17x +4 = 0 has two solutions A and B where A < B and A = ___?
B= ___?
Give your answers to 3 decimal places or as exact expressions.

Answers

From The equation 4x² + 17x +4 = 0, The value of A is -2 and B is -1/2.

The equation 4x² + 17x + 4 = 0 is given. It can be solved using quadratic formula given byx = (-b ± sqrt(b² - 4ac))/(2a)

The coefficients of the equation can be written as a = 4, b = 17, and c = 4.

Now substitute the values of a, b and c in the formula of quadratic equation.

x = (-b ± sqrt(b² - 4ac))/(2a)

x = [-17 ± sqrt(17² - 4(4)(4))]/(2(4))

x = (-17 ± sqrt(225))/8

x = (-17 ± 15)/8

We can further simplify the equation and we get,x = (-17 + 15)/8 or x = (-17 - 15)/8x = -1/2 or x = -2

Now, we know that A < B

Therefore, A = -2 and B = -1/2.

Learn more about quadratic formula at

https://brainly.com/question/32686611

#SPJ11

Start by finding the change in vertical and horizontal distance from (3, 12) to (9, 36)

Answers

The change in vertical distance is 24 and the change in horizontal distance is 6 between the points (3, 12) and (9, 36).

To find the change in vertical and horizontal distance between two points, we use the concept of coordinates.

The coordinates of a point consist of two values: the x-coordinate and the y-coordinate. In a Cartesian coordinate system, the x-coordinate represents the horizontal position, and the y-coordinate represents the vertical position.

Given two points (x1, y1) and (x2, y2), we can calculate the change in vertical distance (change in y) by subtracting the y-coordinates: y2 - y1. This gives us the difference in the vertical position between the two points.

Similarly, we can calculate the change in horizontal distance (change in x) by subtracting the x-coordinates: x2 - x1. This gives us the difference in the horizontal position between the two points.

In the case of the given points (3, 12) and (9, 36), we subtract the y-coordinates to find the change in vertical distance: 36 - 12 = 24. This means that the vertical distance between the points is 24 units.

We also subtract the x-coordinates to find the change in horizontal distance: 9 - 3 = 6. This means that the horizontal distance between the points is 6 units.

Therefore, the change in vertical distance is 24 and the change in horizontal distance is 6 between the points (3, 12) and (9, 36).

Learn more about horizontal distance here:-

https://brainly.com/question/15008542

#SPJ11

f=-N+B/m ????????????

Answers

The given equation is f=-N+B/m. This equation represents a relationship between the variables f, N, B, and m. The equation can be rearranged to solve for any one of the variables in terms of the others. Here are the steps to solve for B:
Add N to both sides of the equation to isolate B/m on one side: f+N=B/m
Multiply both sides of the equation by m to isolate B: B=fm+Nm
Therefore, the equation to solve for B is B=fm+Nm.

50 POINTS
Find the geometric probabilty of landing in the shaded area of the picture. The small circle has a diameter of 20 in and the larger circle has a diameter of 48 in. Round to the nearest hundredth place. Show and explain all work.

Answers

The geometric probability of landing in the shaded area is 0.17. This is calculated by finding the ratio of the area of the smaller circle to the area of the larger circle.

Given, the diameter of the small circle is 20 in and the diameter of the larger circle is 48 in. In order to find the geometric probability of landing in the shaded area of the picture, we need to calculate the ratio of the area of the smaller circle to the area of the larger circle.

The area of a circle is given by the formula: [tex]$A = \pir^2$[/tex], where r is the radius of the circle. We know that the diameter of the small circle is 20 in, so the radius is 10 in. Similarly, the diameter of the large circle is 48 in, so the radius is 24 in.

Area of the smaller circle = [tex]\pi(10)^2 = 100\pi in^2[/tex]

Area of the larger circle = [tex]\pi(24)^2 = 576\pi in^2[/tex]

Area of shaded region = Area of the larger circle - Area of the smaller circle = [tex]576\pi-100\pi = 476\pi in^2[/tex]

The probability of landing in the shaded region is the ratio of the area of the smaller circle to the area of the larger circle. Hence, geometric probability = [tex]\frac{100\pi}{576\pi} = 0.17[/tex](rounded to the nearest hundredth place).

Thus, the geometric probability of landing in the shaded area of the picture is 0.17. In summary, the geometric probability of landing in the shaded area of the picture is obtained by calculating the ratio of the area of the smaller circle to the area of the larger circle.

For more questions on probability

https://brainly.com/question/23417919

#SPJ8

Solve the quadratic equation by completing the square. X^2−10x+23=0 First, choose the appropriate form and fill in the blanks with the correct numbers. Then, solve the equation. If there is more than one solution, separate them with commas.

Answers

The quadratic equation x^2 - 10x + 23 = 0, obtained by completing the square, are x = 5 + √2 and x = 5 - √2.

To solve the quadratic equation x^2 - 10x + 23 = 0 by completing the square, we can follow these steps:

Step 1: Make sure the coefficient of x^2 is 1 (if it's not already). In this case, the coefficient of x^2 is already 1.

Step 2: Move the constant term to the right side of the equation. We have x^2 - 10x = -23.

Step 3: Take half of the coefficient of x (in this case, -10) and square it: (-10/2)^2 = 25.

Step 4: Add the result from Step 3 to both sides of the equation:

x^2 - 10x + 25 = -23 + 25

x^2 - 10x + 25 = 2

Step 5: Rewrite the left side of the equation as a perfect square:

(x - 5)^2 = 2

Step 6: Take the square root of both sides:

√(x - 5)^2 = ±√2

x - 5 = ±√2

Step 7: Solve for x:

x = 5 ± √2

The solutions to the quadratic equation x^2 - 10x + 23 = 0, obtained by completing the square, are x = 5 + √2 and x = 5 - √2.

Learn more about square root here

https://brainly.com/question/29286039

#SPJ11

What is the range in the following data? 1.0, 7.0, 4.8, 1.0, 11.2, 2.2, 9.4 Your Answer:

Answers

The range or the given data is calculated as 10.2 . Range is the difference between minimum value and maximum value.

To find the range in the following data 1.0, 7.0, 4.8, 1.0, 11.2, 2.2, 9.4, we can make use of the formula for range in statistics which is given as follows:[\large Range = Maximum\ Value - Minimum\ Value\]

To find the range in the following data 1.0, 7.0, 4.8, 1.0, 11.2, 2.2, 9.4, we need to arrange the data in either ascending or descending order, but since we only need to find the range, it is not necessary to arrange the data.

From the data given above, we can easily identify the minimum value and maximum value and then find the difference to get the range.

So, Minimum Value = 1.0

Maximum Value = 11.2

Range = Maximum Value - Minimum Value

                  = 11.2 - 1.0

                     = 10.2

Therefore, the range of the given data is 10.2.

Learn more about Range:

brainly.com/question/30339388

#SPJ11



Peter bought a 1 In ./ 12ft scale model of the Mercury-Redstone rocket.b. If the diameter of the rocket is 70 inches, what is the diameter of the model? Round to the nearest half inch.

Answers

The diameter of the 1 in./12 ft scale model of the Mercury-Redstone rocket is approximately 5.8 inches.

To calculate the diameter of the model, we need to determine the scale factor between the model and the actual rocket. In this case, the scale is given as 1 in./12 ft. This means that for every 12 feet of the actual rocket, the model represents 1 inch.

Given that the diameter of the actual rocket is 70 inches, we can set up a proportion to find the diameter of the model. Let's denote the diameter of the model as "x":

(1 in.) / (12 ft) = x / (70 in.)

To solve this proportion, we can cross-multiply and then divide:

1 in. * 70 in. = 12 ft * x

70 = 12x

x = 70 / 12 ≈ 5.83 inches

Rounding to the nearest half inch, the diameter of the model is approximately 5.8 inches.

To know more about scale models, refer here:

https://brainly.com/question/17581605#

#SPJ11



In the problem, you will explore properties of other special parallelograms.


a. Geometric Draw three parallelograms, each with all four sides congruent. Label one parallelogram A B C D , one M N O P , and one W X Y Z . Draw the two diagonals of each parallelogram and label the intersections R .

Answers

To explore the properties of parallelograms with all four sides congruent, we can draw three such parallelograms: ABCD, MNOP, and WXYZ. Then we draw the diagonals of each parallelogram and label their intersections as point R.

When drawing the three parallelograms, ABCD, MNOP, and WXYZ, it is important to ensure that all four sides of each parallelogram are congruent. This means that the opposite sides of the parallelogram are equal in length.

Once the parallelograms are drawn, we can proceed to draw the diagonals of each parallelogram. The diagonals of a parallelogram are the line segments that connect the opposite vertices of the parallelogram.

After drawing the diagonals, we label their intersections as point R. It is important to note that the diagonals of a parallelogram intersect at their midpoint. This means that the point of intersection, R, divides each diagonal into two equal segments.

By constructing these three parallelograms and drawing their diagonals, we can observe and explore various properties of parallelograms. These properties may include relationships between the lengths of sides, angles formed by the diagonals, symmetry, and more.

Studying and analyzing these properties can help deepen our understanding of the characteristics and geometric properties of parallelograms with all four sides congruent.

Learn more about parallelograms here:

brainly.com/question/28854514

#SPJ11

15
What is the first 4 terms of the expansion for \( (1+x)^{15} \) ? A. \( 1-15 x+105 x^{2}-455 x^{3} \) B. \( 1+15 x+105 x^{2}+455 x^{3} \) C. \( 1+15 x^{2}+105 x^{3}+445 x^{4} \) D. None of the above

Answers

The first four terms of the expansion for (1+x)^15 are 1 + 15x + 105x^2 + 455x^3. Thus, option B is correct.

Term expansion refers to the process of expanding an expression or equation by distributing or simplifying terms. In algebraic expressions, terms are the individual components separated by addition or subtraction operators. For example, in the expression 3x + 2y - 5z, the terms are 3x, 2y, and -5z.

The first four terms of the expansion for (1+x)^15 are as follows:

(1+x)^15 = C(15,0) * 1^15 * x^0 + C(15,1) * 1^14 * x^1 + C(15,2) * 1^13 * x^2 + C(15,3) * 1^12 * x^3 + ...

Simplifying further:

(1+x)^15 = 1 + 15x + 105x^2 + 455x^3 + ...

Therefore, the answer is option B) 1 + 15x + 105x^2 + 455x^3.

Hence, The first four terms of the expansion for (1+x)^15 are 1 + 15x + 105x^2 + 455x^3

Learn more about term expansion

https://brainly.com/question/12007677

#SPJ11

(a) What is ϕ(12) ? (b) Solve the following linear congruence using Euler's theorem. 19x≡13(mod12) The unique solution x 0 such that 0≤x 0 <12 is

Answers

The unique solution x0 such that 0 ≤ x0 < 12 is 7

(a). The Euler's totient function is defined as the number of integers between 1 and n that are relatively prime to n.

The value of ϕ(12) is calculated below.

ϕ(12) = ϕ(2^2 × 3)

ϕ(12) = ϕ(2^2) × ϕ(3)

ϕ(12) = (2^2 - 2^1) × (3 - 1)

ϕ(12) = 4 × 2

ϕ(12) = 8

Answer: ϕ(12) = 8

(b) Solve the following linear congruence using Euler's theorem. 19x≡13(mod12)Let a = 19, b = 13, and m = 12.

We can solve for x using Euler's theorem as follows.$$x \equiv a^{\varphi(m)-1}b \pmod{m}$$

where ϕ(m) is the Euler's totient function.ϕ(12) = 8x ≡ 19^(8-1) × 13 (mod 12)x ≡ 19^7 × 13 (mod 12)x ≡ (-5)^7 × 13 (mod 12)x ≡ -78125 × 13 (mod 12)x ≡ -1015625 (mod 12)x ≡ 7 (mod 12)

Therefore, the unique solution x0 such that 0 ≤ x0 < 12 is 7.

learn more about solution from given link

https://brainly.com/question/27371101

#SPJ11

Answer in to comments pls cause I can’t see

Answers

Answer:

A - the table represents a nonlinear function because the graph does not show a constant rate of change

Step-by-step explanation:

you can tell this is true, because the y value does not increase by the same amount every time

Other Questions
Each division of the PNS has specific functions. Sorteach function into the bin that correctly matches it with the division of the PNS.(View Available Hintis) 1. Taste 2. Kidney pain 3. Innervation of smooth muscle 4. Skeletal muscle innervation 5. Temperature of skin 6. Innervation of heart 7. Autonomic nervous system 8. Chemical change of blood 9. Stretch of stornach 10. Proprioception of limbs 11. Touch and pressure 12. Hearing a) Somatic sensory b) Visceral sensong c) Somatic motor d) Visceral motor Dr. Aguinis measures job satisfaction and number of years ofeducation. In examining her scatterplot, she sees the cloud ofpoints has no slope. This indicates which type of relationship?a.Negat How has the internet influenced the five forces with an industry?- What are the two ways that can achieve cost and price advantages according to the paper? Which is better?- Does the internet overturn the traditional way for doing business? What are some reasons given? Find the yield to maturity of a bond that matures in 10 years, is currently selling at $950 and has an annual coupon payment of 8% paid, semi-annually. CAREFUL! a) 3.89% b) 4.88% c) 8.69% d) 8.77% After looking at the projections of the HomeNet project, you decide that they are not realistic. It is unlikely that sales will be constant over the four-year life of the project. Furthermore, other companies are likely to offer competing products, so the assumption that the sales price will remain constant is also likely to be optimistic. Finally, as production ramps up, you anticipate lower per unit production costs resulting from economies of scale. Therefore, you decide to redo the projections under the following assumptions: Sales of 50,000 units in year 1 increasing by 52,000 units per year over the life of the project, a year 1 sales price of $ 260 /unit, decreasing by 11 % annually and a year 1 cost of $ 120 /unit decreasing by 21% annually. In addition, new tax laws allow you to depreciate the equipment, costing $ 7.5 million over three rather than five years using straight-line depreciation.a. Keeping the underlying assumptions in Table 1 ( ) that research and development expenditures total $ 15 million in year 0 and selling, general, and administrative expenses are $ 2.8 million per year, recalculate unlevered net income. (That is, reproduce Table 1 under the new assumptions given above. Note that we are ignoring cannibalization and lost rent.)b. Recalculate unlevered net income assuming, in addition, that each year 20 % of sales comes from customers who would have purchased an existing Cisco router for $ 100 /unit and that this router costs $ 60 /unit to manufacture. 200 kV photons in an incident beam will be attenuated by 1.5 mm of lead barrier. If there are 250,000 photons in the said beam.... How much photons will be left after it passes through the lead barrier. Show all solutions (5 points) Pitocin (oxycotin) at 40 ml/hr. Supplied: One liter bag of normal saline containing 30 units of Pitocin. Directions: Determine how many units of Pitocin the patient is receiving per hour. ECE110 -- Final Project Guidelines For this project, you'll write a 2 to 3 page paper that explains safe indoor and outdoor learning environments for one of the following age groups: 6 to 12 months 1 to 3 years 3 to 5 years Include the following components: Introductory paragraph. Share an opening paragraph that shows the importance of providing a healthy and safe indoor and outdoor learning environment. Paragraph 2. Discuss an ideal location, space, and security of a center, school, or other facility, and explain appropriate facility maintenance and upkeep. Paragraph 3. Identify and describe two age-appropriate indoor learning activities that reinforce the importance of health, nutrition, and safety. Paragraph 4. Identify and describe two other age-appropriate outdoor learning activities that reinforce the importance of health, nutrition, and safety. Paragraph 5. Identify a disability or allergy that may have an impact on a child successfully completing at least one of the activities you identified. Share an adaptation that you could include to allow him or her to participate. Conclusion paragraph. Summarize the main points of the paper, and discuss the information mentioned in the body paragraphs. Final Project Essentials: A cover page that includes the title of the paper, the course title (ECE110-Wellness and Safety in Early Childhood), my name, and the date of submission A reference page, at the end of your project, that correctly lists each resource you used to support your thoughts in your paper Times New Roman or Arial, Size 12 font Your paper is 2 to 3 full pages (2 pages is the minimum) You should have a minimum of 2 research articles for this assignment, and they need to be cited correctly in APA formatting style Double-space your writing Review your work for clarity (complete sentences) and to avoid grammatical, punctuation, and spelling errors Your final project must be your own original work. You may not submit a previously written paper or submit any work other than your own. To avoid plagiarism, be sure to include citations for the outside sources (research, your textbook, etc.) that support your statements. It's always necessary to give another author credit! Here APA format (Links to an external site.) is more information about citing research in . It is always best to quote another source sparingly (aim for less than 20% of your total submission) and, instead, paraphrase (or summarize) the main idea of what the author is saying -- be sure to still give the original author credit (in-text citation). If you have any questions about citing your work, be sure to reach out to me. A 1 046-kg satellite orbits the Earth at a constant altitude of 109-km. (a) How much energy must be added to the system to more the satellite into a circular orbit with altitude 204 km? (b) What is the change in the system's kinetic energy? __________ MJ (c) What is the change in the system's potential energy? __________ MJ 1. An air-track glider attached to a spring oscillates between then 15.0 cm mark and the 55.0 cm mark on the track. The glider is observed to complete 8 oscillations in 41 seconds. (a) What is the period of oscillation? (b) What is the cyclical frequency of oscillation? (c) What is the amplitude of oscillation? (d) What is the maximum speed of the glider? Problem no 8: Fishing bank is approaching to stagnant cutter with velocity of 10 m/s. Sound radar emits sound beam of frequency f=10 kHz. Compute he frequency of recorded reflexive beam. Velocity of sound in water is equal v=1500 m/s-. Draw the situational figure. It turns out that the ATT is actually identifiable under a slightly weaker set of assumptions. Formally write down this weaker set of assumptions using the potential outcome notation, and prove its sufficiency for identifying the ATT. Explain each of your steps. (Hint: both the assumptions above can be weakened slightly. You may want to start by writing down the ATT and then see what changes you need to "turn it into" the difference in means estimand.) (I do not need the answer for this, I just need an answer for the following question).Question I need answer: In simple but precise language, explain the difference between the two sets of assumptions, and why one set is weaker than the other. Is the difference likely to matter in practice, and if so, under what circumstances? Hogwarts Express LLC is a manufacturer of Train Engines. Luckily they rely on a robust quality control system for in-process product inspection and not on magic to build high quality products. As part of the manufacturing process, they inspect each batch of train engines 3 separate times. Every day they manufacturer 3 batches of engines. Each batch contains 50 engines. They operate 20 days per month. Because of this extensive quality control process, they only have 2 defects per batch. What is the Hogwarts Express Defects Per Million Opportunities (DPMO)? 667 266,667 40,000 16,667 13.333 i. Write Z= -3 - 3i in polar form. Clearly show all the working.ii. Find the value of Z^7 and write the answer in the form a+bi.Note: Leave your answer in surd form. A simple pendulum has a frequncy of w at sea level, and a frequency of w1 at the top of mount everest. Assuming the earth is a perfect sphere with radius 6400 km, and height of mount everest is 8.8 km above the earth's surface, what is the ratio of w1/w? of LiteratureWrite a short paragraph in which you evaluate whatmakes the poem effective and give your opinion of thepoem overall. 1. What were the factors that led to the new imperialism? What were the impacts of the new imperialism on the colonies and the mother country?2. What factors combined to bring about Germanys defeat in World War I? What were the penalties to be paid by the Germans according to the Treaty of Versailles, and why were they so harsh? Assume that the stock market begins a period of sustained decreases after a pause. Outline an options strategy_that would help someone benefit from this improvement in the stock market and how this should work. Given the functions: f(x)=x-3x g(x)=2x h(x)=5x-4 Evaluate the function (hog)(x) for x=2. Write your answer in exact simplified form. Select "Undefined" if applicable. (hog) (2) is Undefined X The Ritz-Carlton hotel in St. Louis has 140 standard rooms. It offers a $110 discount fare targeting leisure travelers and regular fare $200 targeting business travelers. Demand for low fare rooms arrives early and is abundant. The demand for high fare rooms follows a normal distribution with mean 40 and standard deviation 10. a) What is the optimal booking limit for the low-fare customers?b) Assume demand for regular-fare rooms is price insensitive (demand stays the same regardless of the regular fare). What value of the regular fare would make a booking limit of 70 optimal Steam Workshop Downloader