If the numerator of a rational number is 15 times the denominator and the numerator is also 14 more than the denominator, what are the numerator and denominator? The numerator is and the denominator is CITT

Answers

Answer 1

The numerator is 15 and the denominator is 1.

Let's solve the given problem:

We are given that the numerator of a rational number is 15 times the denominator and the numerator is also 14 more than the denominator. Let's represent the numerator as "n" and the denominator as "d."

From the given information, we can write two equations:

Equation 1: n = 15d

Equation 2: n = d + 14

To find the numerator and denominator, we need to solve these equations simultaneously.

Substituting Equation 1 into Equation 2, we get:

15d = d + 14

Simplifying the equation:

15d - d = 14

14d = 14

Dividing both sides of the equation by 14:

d = 1

Substituting the value of d back into Equation 1, we can find the numerator:

n = 15(1)

n = 15.

For similar question on rational number.

https://brainly.com/question/19079438  

#SPJ8


Related Questions

Recall that the distance in a graph G between two nodes and y is defined to be the number of edges in the shortest path in G between x and y. Then, the distance between two different nodes of Km,n is (a) always 1, regardless of the nodes O (b) between 1 and 2, depending on the nodes O (c) between 1 and n-1, depending on the nodes O (d) between 1 and m-1, depending on the nodes O (e) between 1 and n+m-1, depending on the nodes

Answers

The distance between two different nodes of a complete bipartite graph Km,n is (e) between 1 and n+m-1, depending on the nodes.

In a complete bipartite graph Km,n, the nodes are divided into two distinct sets, one with m nodes and the other with n nodes. Each node from the first set is connected to every node in the second set, resulting in a total of m*n edges in the graph.

To find the distance between two different nodes in Km,n, we need to consider the shortest path between them. Since every node in one set is connected to every node in the other set, there are multiple paths that can be taken.

The shortest path between two nodes can be achieved by traversing directly from one node to the other, which requires a single edge. Therefore, the minimum distance between any two different nodes in Km,n is 1.

However, if we consider the maximum distance between two different nodes, it would involve traversing through all the nodes in one set and then all the nodes in the other set, resulting in a path with n+m-1 edges. Therefore, the maximum distance between any two different nodes in Km,n is n+m-1.

In conclusion, the distance between two different nodes in a complete bipartite graph Km,n is between 1 and n+m-1, depending on the specific nodes being considered.

Learn more about complete bipartite graphs.

brainly.com/question/32702889

#SPJ11

QUESTION 7 Check if the following statement is TRUE or FALSE. Let be the relation from Ns defined by f-((x,y) ENxNs | y=x, the congruence equivalence class of x). Then f is a surjection from N to Ns.

Answers

The statement is FALSE.

The given relation f is defined as f = {(x, y) | y = x} for (x, y) ∈ NxNs, where NxNs represents the set of ordered pairs of natural numbers.

To determine if f is a surjection from N (set of natural numbers) to Ns (set of congruence equivalence classes of natural numbers), we need to verify if every element in Ns has a pre-image in N under the function f.

In this case, Ns represents the set of congruence equivalence classes of natural numbers. Each congruence equivalence class contains an infinite number of natural numbers that are congruent to each other modulo N.

However, the function f defined as f = {(x, y) | y = x} only maps each element x in N to itself. It does not account for the entire equivalence class of congruent numbers.

Therefore, f is not a surjection from N to Ns since it does not map every element of N to an element in Ns.

Learn more about relation here: brainly.com/question/26098895

#SPJ11

A construction worker needs to put a rectangular window in the side of a
building. He knows from measuring that the top and bottom of the window
have a width of 5 feet and the sides have a length of 12 feet. He also
measured one diagonal to be 13 feet. What is the length of the other
diagonal?
OA. 5 feet
OB. 13 feet
O C. 17 feet
OD. 12 feet
SUBMIT

Answers

The length of the other diagonal is 13 feet.

How to find the length of the other diagonal

We are given that:

Length of rectangular window = 12 feetWidth of rectangular window = 5 feetDiagonal length = 13 feet

We can also apply Pythagoras theorem to find the other length of the diagonal of a rectangle.

[tex]\rightarrow\text{c}^2=\text{a}^2+\text{b}^2[/tex]

[tex]\rightarrow13^2 = 12^2 + 5^2[/tex]

[tex]\rightarrow169= 144 + 25[/tex]

[tex]\rightarrow\sqrt{169}[/tex]

[tex]\rightarrow\bold{13 \ feet}[/tex]

Hence, the length of the other diagonal is 13 feet.

Learn more about the Pythagoras theorem at:

https://brainly.com/question/32626180

PLS HELP!! WILL GIVE BRAINLY!! ASAP PLS!!!!!

Answers

Answer:

The solutions are,

x=0 and x= 5

(I don't know if you have to write both of these or only one, sorry)

Step-by-step explanation:

[tex]x^2-3x+6=2x+6\\solving,\\x^2-3x-2x+6-6=0\\x^2-5x+0=0\\x^2-5x=0\\x(x-5)=0\\\\x=0, x-5=0\\x=0,x=5[/tex]

So, the solutions are,

x=0 and x= 5

Three siblings Trust, Hardlife and Innocent share 42 chocolate sweets according to the ratio 3:6:5, respectively. Their father buys 30 more chocolate sweets and gives 10 to each of the siblings. What is the new ratio of the sibling share of sweets? A. 19:28:35 B. 13:16:15 C. 4:7:6 D. 10:19:16 Question 19 The linear equation 5y - 3x -4 = 0 can be written in the form y=mx+c. Find the values of m and c. A. m-3,c=0.8 B. m = 0.6, c-4 C. m = -3, c = -4 D. m = m = 0.6, c = 0.8 Question 20 Three business partners Shelly-Ann, Elaine and Shericka share R150 000 profit from an invest- ment as follows: Shelly-Ann gets R57000 and Shericka gets twice as much as Elaine. How much money does Elaine receive? A. R124000 B. R101 000 C. R62000 D. R31000 ( |
Previous question

Answers

18: The new ratio of the sibling share of sweets is 19:28:25, which is not among the given options. Therefore, none of the options A, B, C, or D is correct.

19: we have m = -3/5, c = 4/5. None of the options is correct.

20: Elaine receives R31,000, means the correct option is D. R31,000.

18:  The original ratio of chocolate sweets for Trust, Hardlife, and Innocent is 3:6:5.

Total parts = 3 + 6 + 5 = 14

Trust's share = (3/14) * 42 = 9

Hardlife's share = (6/14) * 42 = 18

Innocent's share = (5/14) * 42 = 15

After the father buys 30 more chocolate sweets and gives 10 to each sibling:

Trust's new share = 9 + 10 = 19

Hardlife's new share = 18 + 10 = 28

Innocent's new share = 15 + 10 = 25

The new sibling share of sweets ratio is 19:28:25, which is not one of the possibilities provided. As a result, none of the options A, B, C, or D are correct.

19: The linear equation 5y - 3x - 4 = 0 can be written in the form y = mx + c.

Comparing the equation with y = mx + c, we have:

m = -3/5

c = 4/5

Therefore, the values of m and c are not among the given options A, B, C, or D. None of the options is correct.

20: Let Elaine's share be x.

Shericka's share = 2 * Elaine's share = 2x

Shelly-Ann's share = R57,000

Total share = Shelly-Ann's share + Shericka's share + Elaine's share

R150,000 = R57,000 + 2x + x

R150,000 = 3x + R57,000

3x = R150,000 - R57,000

3x = R93,000

x = R93,000 / 3

x = R31,000

Elaine receives R31,000.

Therefore, the correct answer is option D. R31,000.

Learn more about ratio

https://brainly.com/question/13419413

#SPJ11

2.11.2 Project task: the parallax problem

Answers

The parallax problem is a phenomenon that arises when measuring the distance to a celestial object by observing its apparent shift in position relative to background objects due to the motion of the observer.

The parallax effect is based on the principle of triangulation. By observing an object from two different positions, such as opposite sides of Earth's orbit around the Sun, astronomers can measure the change in its apparent position. The greater the shift observed, the closer the object is to Earth.

However, the parallax problem introduces challenges in accurate measurement. Firstly, the shift in position is extremely small, especially for objects that are very far away. The angular shift can be as small as a fraction of an arcsecond, requiring precise instruments and careful measurements.

Secondly, atmospheric conditions, instrumental limitations, and other factors can introduce errors in the measurements. These errors need to be accounted for and minimized to obtain accurate distance calculations.

To overcome these challenges, astronomers employ advanced techniques and technologies. High-precision telescopes, adaptive optics, and sophisticated data analysis methods are used to improve measurement accuracy. Statistical analysis and error propagation techniques help estimate uncertainties associated with parallax measurements.

Despite the difficulties, the parallax method has been instrumental in determining the distances to many stars and has contributed to our understanding of the scale and structure of the universe. It provides a fundamental tool in astronomy and has paved the way for further investigations into the cosmos.

For more such questions on  parallax problem

https://brainly.com/question/17057769

#SPJ8

Consider the following matrix equation
[ 1 3 −5
1 4 −8
−3 −7 9]
[x1 x2 x3] =
[ 1 −3 −1].
(a) Convert the above matrix equation into a vector equation.
(b) Convert the above matrix equation into a system of linear equations.
(c) Describe the general solution of the above matrix equation in parametric vector form.
(d) How many solutions does the above system have? If there are infinitely many solutions, give examples of
two such solutions.

Answers

a) Converting the matrix equation to a vector equation, we have:(b) To convert the given matrix equation into a system of linear equations,

we write the equation as a combination of linear equations as shown below:1x1 + 3x2 - 5x3 = 1.......................(1)1x1 + 4x2 - 8x3 = -3......................(2)-3x1 - 7x2 + 9x3 = -1......................(3)c)

The general solution of the matrix equation is given by:A = [1 3 -5; 1 4 -8; -3 -7 9] and b = [1 -3 -1]T.

We form the augmented matrix as shown below:[A|b] = [1 3 -5 1; 1 4 -8 -3; -3 -7 9 -1]Row reducing the matrix [A|b] gives:[1 0 1 0; 0 1 -1 0; 0 0 0 1]

From the row-reduced augmented matrix, we have the general solution:x1 = -x3x2 = x3x3 is a free variable in the system.d) Since there is a free variable in the system,

the system of linear equations has infinitely many solutions. Two possible solutions for x1, x2, and x3 are:
x1 = 1, x2 = -2, and x3 = -1x1 = -1, x2 = 1, and x3 = 1.

To know more about matrix, click here

https://brainly.com/question/28180105?

#SPJ11



Writing Suppose A = [a b c d ]has an inverse. In your own words, describe how to switch or change the elements of A to write A⁻¹

Answers

We can use the inverse formula to switch or change the elements of A to write A⁻¹

Suppose A = [a b c d] has an inverse. To switch or change the elements of A to write A⁻¹, one can use the inverse formula.

The formula for the inverse of a matrix A is given as A⁻¹= (1/det(A))adj(A),

where adj(A) is the adjugate or classical adjoint of A.

If a matrix A has an inverse, then it is non-singular or invertible. That means its determinant is not zero. The adjugate of a matrix A is the transpose of the matrix of cofactors of A. A matrix of cofactors is formed by computing the matrix of minors of A and multiplying each element by a factor. The factor is determined by the sign of the element in the matrix of minors.

To know more about inverse formula refer here:

https://brainly.com/question/30098464

#SPJ11

What is the value of x in this? :
x X ((-80)+54) = 24 X (-80) + x X 54

Answers

The value of X in this is approximately 35.6981.

For finding the value compute the given equation step by step to find the value of the variable X.

Start with the equation: X + [(-80) + 54] = 24×(-80) + X×54.

Now, let's compute the expression within the square brackets:

(-80) + 54 = -26.

Putting this result back into the equation, we get:

X + (-26) = 24×(-80) + X×54.

Here, we can compute the right side of the equation:

24×(-80) = -1920.

Now the equation becomes:

X - 26 = -1920 + X×54.

Confine the variable, X, and we'll get the X term to the left side by minus X from both sides:

X - X - 26 = -1920 + X×54 - X.

This gets to:

-26 = -1920 + 53X.

Here,  the constant term (-1920) to the left side by adding 1920 to both sides:

-26 + 1920 = -1920 + 1920 + 53X.

Calculate further:

1894 = 53X.

X = 1894/53.

Therefore, the value of X is approximately 35.6981.

Learn more about value here:

https://brainly.com/question/14316282

Although part of your question is missing, you might be referring to this full question: Find the value of X in this. X+[(-80)+54]=24×(-80)+X×54

.

Let f(x) be a function and b € R. f is continuous at x = b if and only if : Hint: 4.1, 4.2, 4.3 require you to state the conditions that must be satisfied for f to be continuous at Question 5 f(x) = { 4-x² 3x² Determine whether or not f(x) is continuous at x = 1. (1) if x < -1 if x>-1 (5)

Answers

Based on these conditions, we will conclude that the work f(x) function is nonstop at x = 1 since all the conditions for coherence are fulfilled.

Function calculation.

To determine in the event that the function f(x) = { 4 - x² in the event that x < -1, 3x² on the off chance that x ≥ -1 is ceaseless at x = 1, we ought to check in case the work fulfills the conditions for coherence at that point.

The conditions for progression at a point b are as takes after:

The function must be characterized at x = b.

The restrain of the function as x approaches b must exist.

The constrain of the function as x approaches b must be rise to to the esteem of the work at x = b.

Let's check each condition:

The function f(x) is characterized for all genuine numbers since it is characterized in two pieces for distinctive ranges of x.

The restrain of the work as x approaches 1:

For x < -1: The constrain as x approaches 1 of the function 4 - x² is 4 - 1² = 3.

For x ≥ -1: The constrain as x approaches 1 of the function 3x² is 3(1)² = 3.

Since both pieces of the work provide the same constrain as x approaches 1 (which is 3), the restrain exists.

The value of the function at x = 1:

For x < -1: f(1) = 4 - 1² = 3.

For x ≥ -1: f(1) = 3(1)² = 3.

The value of the function at x = 1 is 3.

Based on these conditions, we will conclude that the work f(x) function is nonstop at x = 1 since all the conditions for coherence are fulfilled.

Learn more about function below.

https://brainly.com/question/27915724

#SPJ4

The f(x) is not continuous at x = -1.

A function f(x) is continuous at x = b if and only if the following three conditions are satisfied:

f(b) exists.

Limx→b f(x) exists.

Limx→b f(x) = f(b).

In other words, the function must have a value at x = b, the limit of f(x) as x approaches b must exist, and the limit of f(x) as x approaches b must be equal to the value of f(b).

For the function f(x) = {4 - x² if x < -1, 3x² if x > -1}, we can see that f(-1) = 4 and Limx→-1 f(x) = 3. Therefore, f(x) is not continuous at x = -1.

Here is a more detailed explanation of the solution:

The first condition is that f(b) exists. In this case, f(-1) = 4, so this condition is satisfied.

The second condition is that Limx→b f(x) exists. In this case, Limx→-1 f(x) = 3, so this condition is also satisfied.

The third condition is that Limx→b f(x) = f(b). In this case, Limx→-1 f(x) = 3 and f(-1) = 4, so these values are not equal. Therefore, this condition is not satisfied.

Therefore, f(x) is not continuous at x = -1.

Learn more about continuous with the link below,

https://brainly.com/question/18102431

#JSP11



Write a conjecture that describes the pattern in the sequence. Then use your conjecture to find the next item in the sequence. 2,22,222,2222

Answers

The next term in the sequence is 22222, following the conjecture that each term is formed by repeating the digit 2 a certain number of times.

The conjecture for the given sequence is that each term is formed by repeating the digit 2 a certain number of times. To find the next item in the sequence, we need to continue this pattern and add an additional 2.

By observing the given sequence 2, 22, 222, 2222, we can notice a pattern. Each term is formed by repeating the digit 2 a certain number of times.

In the first term, we have a single 2. In the second term, we have two 2's. In the third term, we have three 2's, and in the fourth term, we have four 2's.

Based on this pattern, we can conjecture that the next term in the sequence would be formed by adding another 2. So, the next item in the sequence would be 22222.

By continuing the pattern of adding one more 2 to each term, we can generate the next item in the sequence. Therefore, the next term in the sequence is 22222, following the conjecture that each term is formed by repeating the digit 2 a certain number of times.

Learn more about sequence visit:

brainly.com/question/33372666

#SPJ11

Let P be the set of positive real numbers. One can show that the set P³ = {(x, y, z)r, y, z € P} with operations of vector addition and scalar multiplication defined by the formulae (1, ₁, 21) + (12. 2. 22) = (x1x2, Y1Y2, 2122) and c(x, y, z) = (x, y, z), where e is a real number, is a vector space. Find the following vectors in P³. a) The zero vector. b) The negative of (2,1,3). c) The vector c(r, y, z), where c= and (x, y, z)=(4,9,16). d) The vector (2,3,1)+(3,1,2). (2 marks each) Show that e) The vector (1,4,32) can be expressed as a linear combination of p = (1,2,2).q=(2,1,2), and r = (2,2,1). Vectors p,q,r are assumed to be vectors from P3

Answers

a) The zero vector: (0, 0, 0)

b) The negative of (2, 1, 3): (-2, -1, -3)

c) The vector c(r, y, z) with c =  and (x, y, z) = (4, 9, 16): (4, 9, 16)

d) The vector (2, 3, 1) + (3, 1, 2): (6, 3, 2)

e) Expressing (1, 4, 32) as a linear combination of p = (1, 2, 2), q = (2, 1, 2), and r = (2, 2, 1):

(1, 4, 32) = (17/7) * (1, 2, 2) + (-70/21) * (2, 1, 2) + (-26/7) * (2, 2, 1).

How to find the zero vector?

To find the vectors in P³, we'll use the given operations of vector addition and scalar multiplication.

a) The zero vector:

The zero vector in P³ is the vector where all components are zero. Thus, the zero vector is (0, 0, 0).

How to find the negative of (2, 1, 3)?

b) The negative of (2, 1, 3):

To find the negative of a vector, we simply negate each component. The negative of (2, 1, 3) is (-2, -1, -3).

How to find the vector c(r, y, z), where c =  and (x, y, z) = (4, 9, 16)?

c) The vector c(r, y, z), where c =  and (x, y, z) = (4, 9, 16):

To compute c(x, y, z), we multiply each component of the vector by the scalar c. In this case, c =  and (x, y, z) = (4, 9, 16). Therefore, c(x, y, z) = ( 4, 9, 16).

How to find the vector of vector (2, 3, 1) + (3, 1, 2)?

d) The vector (2, 3, 1) + (3, 1, 2):

To perform vector addition, we add the corresponding components of the vectors. (2, 3, 1) + (3, 1, 2) = (2 + 3, 3 + 1, 1 + 2) = (5, 4, 3).

How to express(1, 4, 32) as a linear combination of p, q, and r?

e) Expressing (1, 4, 32) as a linear combination of p = (1, 2, 2), q = (2, 1, 2), and r = (2, 2, 1):

To express a vector as a linear combination of other vectors, we need to find scalars a, b, and c such that a * p + b * q + c * r = (1, 4, 32).

Let's solve for a, b, and c:

a * (1, 2, 2) + b * (2, 1, 2) + c * (2, 2, 1) = (1, 4, 32)

This equation can be rewritten as a system of linear equations:

a + 2b + 2c = 1

2a + b + 2c = 4

2a + 2b + c = 32

To solve this system of equations, we can use the method of Gaussian elimination or matrix operations.

Setting up an augmented matrix:

1  2  2  |  1

2  1  2  |  4

2  2  1  |  32

Applying row operations to transform the matrix into row-echelon form:

R2 = R2 - 2R1

R3 = R3 - 2R1

1  2   2  |  1

0 -3  -2  |  2

0 -2  -3  |  30

R3 = R3 - (2/3)R2

1  2   2   |  1

0 -3  -2   |  2

0  0  -7/3 |  26/3

R2 = R2 * (-1/3)

R3 = R3 * (-3/7)

1  2   2   |  1

0  1  2/3  | -2/3

0  0   1   | -26/7

R2 = R2 - (2/3)R3

R1 = R1 - 2R3

R2 = R2 - 2R3

1  2   0   |  79/7

0  1   0   | -70/21

0  0   1   | -26/7

R1 = R1 - 2R2

1  0   0   |  17/7

0  1   0   | -70/21

0  0   1   | -26/7

The system is now in row-echelon form, and we have obtained the values a = 17/7, b = -70/21, and c = -26/7.

Therefore, (1, 4, 32) can be expressed as a linear combination of p, q, and r:

(1, 4, 32) = (17/7) * (1, 2, 2) + (-70/21) * (2, 1, 2) + (-26/7) * (2, 2, 1).

Learn more about vectors

brainly.com/question/30958460

#SPJ11

Determine the truth value of each of the following complex statements.
Circle your answer or put it in red. (NOTE: LET A, B, C BE TRUE AND X, Y, Z BE FALSE)
3. B. Z 4. Xv-Y
5. CvZ 6. B-Z 7. (A v B)Z 8. (AZ) 9. B v (Y - A) 10. A) -(Z v-Y) 11.( AY) v (-Z.C) 12. -X v-B) (~Y v A) 13. (Y » C)-(B3-X) 14.(C =~A) v (Y = Z) 15.-(AC)(-XB) 16.( AY). (-Z.C) 17.-[( AZ) = (-C •-X)] 18. ~~[( AZ) = (-C •-X)] 19.-(A.-Z) v (Y = Z) 20. A. A

Answers

The truth values for the given complex statements are:

3. False

4. False

5. False

6. True

7. False

8. Undefined

9. True

10. True

11. True

12. False

13. True

14. True

15. True

16. False

17. True

18. False

19. True

20. False

To determine the truth value of each complex statement, we'll use the given truth values:

A = True

B = True

C = True

X = False

Y = False

Z = False

Let's evaluate each statement:

3. B • Z

B = True, Z = False

Truth value = True • False = False

4. X V Y

X = False, Y = False

Truth value = False V False = False

5. ~C v Z

C = True, Z = False

Truth value = ~True v False = False v False = False

6. B - Z

B = True, Z = False

Truth value = True - False = True

7. (A v B) Z

A = True, B = True, Z = False

Truth value = (True v True) • False = True • False = False

8. ~(THIS)

"THIS" is not defined, so we cannot determine its truth value.

9. B v (Y • A)

B = True, Y = False, A = True

Truth value = True v (False • True) = True v False = True

10. A • (Z v ~Y)

A = True, Z = False, Y = False

Truth value = True • (False v ~False) = True • (False v True) = True • True = True

11. (A • Y) v (~Z • C)

A = True, Y = False, Z = False, C = True

Truth value = (True • False) v (~False • True) = False v True = True

12. (X v ~B) • (~Y v A)

X = False, B = True, Y = False, A = True

Truth value = (False v ~True) • (~False v True) = False • True = False

13. (Y • C) ~ (B • ~X)

Y = False, C = True, B = True, X = False

Truth value = (False • True) ~ (True • ~False) = False ~ True = True

14. (C • A) v (Y = Z)

C = True, A = True, Y = False, Z = False

Truth value = (True • True) v (False = False) = True v True = True

15. (A • C) (~X • B)

A = True, C = True, X = False, B = True

Truth value = (True • True) (~False • True) = True • True = True

16. (A • Y) (~Z • C)

A = True, Y = False, Z = False, C = True

Truth value = (True • False) (~False • True) = False • True = False

17. ~[(A • Z) (~C • ~X)]

A = True, Z = False, C = True, X = False

Truth value = ~(True • False) (~True • ~False) = ~False • True = True

18. [(A • Z) (~C • ~X)]

A = True, Z = False, C = True, X = False

Truth value = (True • False) (~True • ~False) = False • True = False

19. (A • Z) v (Y = Z)

A = True, Z = False, Y = False

Truth value = (True • False) v (False = False) = False v True = True

20. A • ~A

A = True

Truth value = True • ~True = True • False = False

Therefore, the truth values for the given complex statements are:

3. False

4. False

5. False

6. True

7. False

8. Undefined

9. True

10. True

11. True

12. False

13. True

14. True

15. True

16. False

17. True

18. False

19. True

20. False

Learn more about Truth Value at

brainly.com/question/29137731

#SPJ4

(RSA encryption) Let n = 7 · 13 = 91 be the modulus of a (very modest) RSA public key
encryption and d = 5 the decryption key. Since 91 is in between 25 and 2525, we can only
encode one letter (with a two-digit representation) at a time.
a) Use the decryption function
M = Cd mod n = C5 mod 91
to decipher the six-letter encrypted message 80 − 29 − 23 − 13 − 80 − 33.

Answers

The decrypted message can be obtained as follows: H O W D Y

RSA encryption is an algorithm that makes use of a public key and a private key. It is used in communication systems that employ cryptography to provide secure communication between two parties. The public key is utilized for encryption, whereas the private key is utilized for decryption. An encoding function is employed to convert the plaintext message into ciphertext that is secure and cannot be intercepted by any third party. The ciphertext is then transmitted over the network, where the recipient can decrypt the ciphertext back to the plaintext using a decryption function.Let us solve the given problem, given n = 7 · 13 = 91 be the modulus of a (very modest)

RSA public key encryption and d = 5 the decryption key and the six-letter encrypted message is 80 − 29 − 23 − 13 − 80 − 33.First of all, we need to determine the plaintext message to be encrypted. We convert each letter to its ASCII value (using 2 digits, padding with a 0 if needed).We can now apply the decryption function to decrypt the message

M = Cd mod n = C5 mod 91.

Substitute C=80, d=5 and n=91 in the above formula, we get

M = 80^5 mod 91 = 72

Similarly,

M = Cd mod n = C5 mod 91 = 29^5 mod 91 = 23M = Cd mod n = C5 mod 91 = 23^5 mod 91 = 13M = Cd mod n = C5 mod 91 = 13^5 mod 91 = 80M = Cd mod n = C5 mod 91 = 80^5 mod 91 = 33

Therefore, the plaintext message of the given six-letter encrypted message 80 − 29 − 23 − 13 − 80 − 33 is as follows:72 - 23 - 13 - 80 - 72 - 33 and we know that 65=A, 66=B, and so on

Therefore, the decrypted message can be obtained as follows:H O W D Y

Learn more about RSA encryption at https://brainly.com/question/31736137

#SPJ11

Please do C and D. Thanks so much 2. (Exercise with summation)
In this exercise you will prove that the pattern of numbers on the right below, an, is equal to n³. Two potential solutions have been outlined for you below. Pick one.
= a1 a2 3+5 7+9+11 13+ 15 +17+ 19 = = = a4
21+23+25+27 +29 = a5 student submitted image, transcription available below
This path is more succint, but demands very precise language.
(a) Find an explicit formula R(n) for the rightmost odd number on the left hand side of the nth row above. For example, R(2) should yield 5, R(3) should be 11, and so on. Justify this formula - you must be able to prove this works always, not just for the first few.
(b) Now find a formula L(n) for the left most odd number in the nth row above. (So L(2) = 3, L(3) = 7). Justify this formula as well.
(c) How many odd numbers are on the left hand side in the nth row above?
(d) Using the previous three steps and the fact that each row has an even distribution to make an argument for what the value of an should be. This needs to be formally justified

Answers

(a) The explicit formula R(n) = 2n - 1.

(b) L(n) = n(n - 1).

(c) Number of odd numbers = 1 - n² + 3n.

(d) an = n³ + 2n² + n + 2.

(a) The explicit formula R(n) for the rightmost odd number on the left-hand side of the nth row, let's examine the pattern. In each row, the number of odd numbers on the left side is equal to the row number (n).

The first row (n = 1) has 1 odd number: a1.

The second row (n = 2) has 2 odd numbers: a2 and 3.

The third row (n = 3) has 3 odd numbers: 5, 7, and 9.

We can observe that in the nth row, the first odd number is given by n, and the subsequent odd numbers are consecutive odd integers. Therefore, we can express R(n) as:

R(n) = n + (n - 1) = 2n - 1.

To justify this formula, we can use mathematical induction. First, we verify that R(1) = 1, which matches the first row. Then, assuming the formula holds for some arbitrary kth row, we can show that it holds for the (k+1)th row:

R(k+1) = k + 1 + k = 2k + 1.

Since 2k + 1 is the (k+1)th odd number, the formula holds for the (k+1)th row.

(b) The formula L(n) for the leftmost odd number in the nth row, we can observe that the leftmost odd number in each row is given by the sum of odd numbers from 1 to (n-1). We can express L(n) as:

L(n) = 1 + 3 + 5 + ... + (2n - 3).

To justify this formula, we can use the formula for the sum of an arithmetic series:

S = (n/2)(first term + last term).

In this case, the first term is 1, and the last term is (2n - 3). Plugging these values into the formula, we have:

S = (n/2)(1 + 2n - 3) = (n/2)(2n - 2) = n(n - 1).

Therefore, L(n) = n(n - 1).

(c) The number of odd numbers on the left-hand side in the nth row can be calculated by subtracting the leftmost odd number from the rightmost odd number and adding 1. Therefore, the number of odd numbers in the nth row is:

Number of odd numbers = R(n) - L(n) + 1 = (2n - 1) - (n(n - 1)) + 1 = 2n - n² + n + 1 = 1 - n² + 3n.

(d) Based on the previous steps and the fact that each row has an even distribution of odd numbers, we can argue that the value of an, which represents the sum of odd numbers in the nth row, should be equal to the sum of the odd numbers in that row. Using the formula for the sum of an arithmetic series, we can find the sum of the odd numbers in the nth row:

Sum of odd numbers = (Number of odd numbers / 2) * (First odd number + Last odd number).

Sum of odd numbers = ((1 - n² + 3n) / 2) * (L(n) + R(n)).

Substituting the formulas for L(n) and R(n) from earlier, we get:

Sum of odd numbers = ((1 - n² + 3n) / 2) * (n(n - 1) + 2

n - 1).

Simplifying further:

Sum of odd numbers = (1 - n² + 3n) * (n² - n + 1).

Sum of odd numbers = n³ - n² + n - n² + n - 1 + 3n² - 3n + 3.

Sum of odd numbers = n³ + 2n² + n + 2.

Hence, the value of an is given by the sum of the odd numbers in the nth row, which is n³ + 2n² + n + 2.

Learn more about explicit formula

https://brainly.com/question/32701084

#SPJ11

Given that triangles ADE and ABC are similar, and the length of side AC is 12, the length of side AE is 8 and the length of side AD is 10. What is the length of side AB?

Answers

The length of side AB is 15 units.

Given that triangles ADE and ABC are similar, and the length of side AC is 12, the length of side AE is 8 and the length of side AD is 10.

We need to find out the length of side AB.Since triangles ADE and ABC are similar, the corresponding sides are proportional.

Therefore, we have the proportion:AD / AB = AE / AC

So, we can find the length of AB by rearranging the proportion:

AB = AD × AC / AE

Since triangles ADE and ABC are similar, we can use the similarity property to indicate that corresponding sides of similar triangles are proportional.

Let x be the length of side AB.

Knowing the ratio of the corresponding sides, we can establish the ratio:

AE / AB = DE / BC

Substitute the given values:

8 / x = 10 / 12

To solve for x can do cross multiplication.

Solve the resulting equation:

8 * 12 = 10 * x

96 = 10x

Divide both sides by 10:

96 / 10 = x

x = 9.6

Taking the given values:

AB = 10 × 12 / 8AB

= 15

For more related questions on length:

https://brainly.com/question/2497593

#SPJ8



Find the distance between each pair of points, to the nearest tenth. (5,4),(-3,1)

Answers

The distance between the points (5, 4) and (-3, 1) is approximately 8.5 units. This is obtained by using the distance formula and rounding the result to the nearest tenth.

To find the distance between the points (5, 4) and (-3, 1), we can use the distance formula.

The distance formula is given by:

d = √((x2 - x1)² + (y2 - y1)²)

Substituting the coordinates, we have:

d = √((-3 - 5)² + (1 - 4)²)

d = √((-8)² + (-3)²)

d = √(64 + 9)

d = √73

Rounded to the nearest tenth, the distance between the points (5, 4) and (-3, 1) is approximately 8.5.

Learn more about distance here:

https://brainly.com/question/25841655

#SPJ11

Find the value of x, correct to 2 decimal places:
3In3+In(x+1)=In37

Answers

To find the value of x, we will solve the equation 3ln(3) + ln(x+1) = ln(37). Here's how to do it:

Start with the given equation: 3ln(3) + ln(x+1) = ln(37).Combine the logarithms on the left side of the equation using logarithmic properties. The sum of logarithms is equal to the logarithm of their product. Rewrite the equation as ln(3^3) + ln(x+1) = ln(37).Simplify the equation: ln(27) + ln(x+1) = ln(37).Apply the logarithmic property that ln(a) + ln(b) = ln(a * b) to combine the logarithms: ln(27(x+1)) = ln(37).Since the natural logarithm function ln is a one-to-one function, if ln(a) = ln(b), then a = b. Therefore, we can equate the expressions inside the logarithms: 27(x+1) = 37.Solve for x: 27x + 27 = 37.Subtract 27 from both sides: 27x = 10.Divide both sides by 27: x = 10/27.

Rounded to two decimal places, x ≈ 0.37.

The value of x, correct to two decimal places, on solving the equation 3In3+In(x+1)=In37 is approximately 0.37.

To know more about equations, visit :

brainly.com/question/12788590

#SPJ11

The correlation coefficient, r, indicates
A) the y-intercept of the line of best fit
B) the strength of a linear relationship
C) the slope of the line of best fit
D) the strength of a non-linear relationship

Answers

The correlation coefficient, r, indicates "the strength of a linear relationship" between two variables. It measures the degree of association between the variables and ranges from -1 to +1. Hence correct option is B.


A correlation coefficient of +1 indicates a perfect positive linear relationship, meaning that as one variable increases, the other variable also increases proportionally. For example, if the correlation coefficient between the number of hours studied and the test score is +1, it means that as the number of hours studied increases, the test score also increases.

On the other hand, a correlation coefficient of -1 indicates a perfect negative linear relationship, meaning that as one variable increases, the other variable decreases proportionally. For example, if the correlation coefficient between the amount of exercise and body weight is -1, it means that as the amount of exercise increases, the body weight decreases.

A correlation coefficient of 0 indicates no linear relationship between the variables. In this case, there is no consistent pattern or association between the variables.

Therefore, the correct answer is B) the strength of a linear relationship. The correlation coefficient, r, measures how closely the data points of a scatter plot follow a straight line, indicating the strength and direction of the linear relationship between the variables.

To learn more about "Linear Relationship" visit: https://brainly.com/question/13828699

#SPJ11

Solve the given problem related to population growth. A city had a population of 22,600 in 2007 and a population of 25,800 in 2012 . (a) Find the exponential growth function for the city. Use t=0 to represent 2007. (Round k to five decimal places.) N(t)= (b) Use the arowth function to predict the population of the city in 2022. Round to the nearest hundred.

Answers

The predicted population of the city in 2022 is approximately 34,116 (rounded to the nearest hundred).

To find the exponential growth function for the city's population, we can use the formula:

N(t) = N₀ * e^(kt)

Where N(t) represents the population at time t, N₀ is the initial population, e is the base of the natural logarithm (approximately 2.71828), and k is the growth rate.

Given that the city had a population of 22,600 in 2007 (t = 0) and a population of 25,800 in 2012 (t = 5), we can substitute these values into the formula to obtain two equations:

22,600 = N₀ * e^(k * 0)

25,800 = N₀ * e^(k * 5)

From the first equation, we can see that e^(k * 0) is equal to 1. Therefore, the equation simplifies to:

22,600 = N₀

Substituting this value into the second equation:

25,800 = 22,600 * e^(k * 5)

Dividing both sides by 22,600:

25,800 / 22,600 = e^(k * 5)

Using the natural logarithm (ln) to solve for k:

ln(25,800 / 22,600) = k * 5

Now we can calculate k:

k = ln(25,800 / 22,600) / 5

Using a calculator, we find that k ≈ 0.07031 (rounded to five decimal places).

a) The exponential growth function for the city is:

N(t) = 22,600 * e^(0.07031 * t)

b) To predict the population of the city in 2022 (t = 15), we can substitute t = 15 into the growth function:

N(15) = 22,600 * e^(0.07031 * 15)

Using a calculator, we find that N(15) ≈ 34,116.

Know more about logarithmhere:

https://brainly.com/question/30226560

#SPJ11

[6 -3 -7 2] + [-6 3 7 -2]

Answers

The given matrices in the problem are [6 -3 -7 2] and [-6 3 7 -2]. The task is to add them.The answer to this question is [0,0,0,0] .

To add them, we need to add the corresponding elements of both the arrays. Then we get:

[6 -3 -7 2] + [-6 3 7 -2] = [6 + (-6) -3 + 3 -7 + 7 2 + (-2)] = [0,0,0,0]

Therefore, [6 -3 -7 2] + [-6 3 7 -2] = [0,0,0,0] is the answer to this question.

To know more about matrices refer here:

https://brainly.com/question/1821869

#SPJ11

Question 1 Write down the first and last names of everyone in your group, including yourself. Question 2 Solve the IVP using an appropriate substitution: dy/dx = cos(x + y), y(0) = π/4
Question 3 Solve by finding an appropriate integrating factor: cos(x) dx + (1 + 1/y) sin (x) dy = 0

Answers

1: The question asks for the first and last names of everyone in your group, including yourself. You can tell any group or personal identity.

2: The question involves solving the initial value problem (IVP) dy/dx = cos(x + y), y(0) = π/4 using an appropriate substitution. The steps include substituting u = x + y, differentiating u with respect to x, substituting the values into the differential equation, separating the variables, integrating both sides, and finally obtaining the solution y = C / (μ sin(x)), where C is the constant of integration.

3: The question asks to solve the differential equation cos(x) dx + (1 + 1/y) sin(x) dy = 0 by finding an appropriate integrating factor. The steps include determining the coefficients, multiplying the equation by the integrating factor, recognizing the resulting exact differential form, integrating both sides, and solving for y to obtain the solution y = C / (μ(x) sin(x)), where C is the constant of integration.

2. Let's consider the name " X" for the purpose of clarity in referring to the question.

For Question X:

X: Solve the differential equation cos(x) dx + (1 + 1/y) sin(x) dy = 0 by finding an appropriate integrating factor.

i. Identify the coefficients of dx and dy in the given differential equation. Here, cos(x) and (1 + 1/y) sin(x) are the coefficients.

ii. Compute the integrating factor (IF) by multiplying the entire equation by an appropriate function μ(x) that makes the coefficients exact. In this case, μ(x) = [tex]e^\int\limits^a_b \ (1/y) sin(x) dx.[/tex]

iii. Multiply the differential equation by the integrating factor:

μ(x) cos(x) dx + μ(x) (1 + 1/y) sin(x) dy = 0.

iv. Observe that the left-hand side is now the exact differential of μ(x) sin(x) y. Therefore, we can write:

d(μ(x) sin(x) y) = 0.

v. Integrate both sides of the equation:

∫d(μ(x) sin(x) y) = ∫0 dx.

This simplifies to:

μ(x) sin(x) y = C,

where C is the constant of integration.

vi. Solve for y by dividing both sides of the equation by μ(x) sin(x):

y = C / (μ(x) sin(x)).

Hence, the solution to the given differential equation cos(x) dx + (1 + 1/y) sin(x) dy = 0 using the integrating factor method is y = C / (μ(x) sin(x)).

3. Solve the IVP using an appropriate substitution: dy/dx = cos(x + y), y(0) = π/4

i. Substitute u = x + y. Differentiate u with respect to x: du/dx = 1 + dy/dx.

ii. Substitute the values into the given differential equation: 1 + dy/dx = cos(u).

iii. Rearrange the equation: dy/dx = cos(u) - 1.

iv. Separate the variables: (1/(cos(u) - 1)) dy = dx.

v. Integrate both sides: ∫(1/(cos(u) - 1)) dy = ∫dx.

vi. Use the substitution v = tan(u/2): ∫(1/(cos(u) - 1)) dy = ∫dv.

vii. Integrate both sides: v = x + C.

viii. Substitute u = x + y back into the equation: tan((x + y)/2) = x + C.

Therefore, the solution to the IVP dy/dx = cos(x + y), y(0) = π/4 using the appropriate substitution is tan((x + y)/2) = x + C.

Learn more about IVP visit

brainly.com/question/33188858

#SPJ11

Find the area A of the region that is bounded between the curve f(x)=1−ln(x) and the line g(x)=xe−1 over the interval [1,5].

Enter an exact answer.

Question

Find the area A of the region that is bounded between the curve f(x) = 1 – In (x) and the line g(x) = 1 over the e

interval (1,5).

Enter an exact answer.

Sorry, that's incorrect. Try again?

A = 5 ln(5) + 13 units2

Answers

The exact area A of the region bounded between the curve f(x) = 1 - ln(x) and the line g(x) = 1 over the interval [1, 5] is given by:

A = -5ln(5) + 5 units²

To find the area A of the region bounded between the curve f(x) = 1 - ln(x) and the line g(x) = 1 over the interval [1, 5], we can integrate the difference between the two functions over that interval.

A = ∫[1, 5] (f(x) - g(x)) dx

First, let's find the difference between the two functions:

f(x) - g(x) = (1 - ln(x)) - 1 = -ln(x)

Now, we can integrate -ln(x) over the interval [1, 5]:

A = ∫[1, 5] -ln(x) dx

To integrate -ln(x), we can use the properties of logarithmic functions:

A = [-xln(x) + x] evaluated from 1 to 5

A = [-5ln(5) + 5] - [-1ln(1) + 1]

Since ln(1) = 0, the second term on the right side becomes 0:

A = -5ln(5) + 5

Learn more about area here :-

https://brainly.com/question/16151549

#SPJ11

Find the solution of the two given Initial Value Problems:
a.x^2 \tfrac{dy}{dx}=y-xygiven y(-1) = -1
b.\frac{dy}{dx} = 2x-3ygiven y(0)=1/3

Answers

Here are the solutions to the given initial value problems:

a. The solution is given by: [tex]\[y(x) = \frac{-1}{x}\left(\frac{x^3}{3} - x + 1\right)\][/tex]

b. The solution is given by: [tex]\[y(x) = \frac{2x}{3} - \frac{1}{9}e^{-3x} + \frac{1}{3}\][/tex]

To obtain the solutions to the given initial value problems, let's go through the steps for each problem:

a. Initial Value Problem: [tex]\(x^2 \frac{dy}{dx} = y - xy\), \(y(-1) = -1\)[/tex]

Step 1: Rewrite the equation in the standard form for a first-order linear differential equation:

[tex]\(\frac{dy}{dx} - \frac{y}{x} = 1\)[/tex]

Step 2: Solve the linear differential equation by integrating factor method. Multiply both sides of the equation by the integrating factor [tex]\(I(x) = e^{\int \frac{1}{x}dx} = e^{\ln|x|} = |x|\)[/tex]:

[tex]\( |x| \frac{dy}{dx} - y = |x| \)[/tex]

Step 3: Integrate both sides of the equation with respect to X to obtain the general solution:

[tex]\( |x| y - \frac{y}{2}|x|^2 = \frac{1}{2}|x|^2 + C \)[/tex]

Step 4: Apply the initial condition [tex]\(y(-1) = -1\)[/tex] to find the value of the constant C:

[tex]\( |-1| (-1) - \frac{(-1)}{2} |-1|^2 = \frac{1}{2} + C \)[/tex]

[tex]\( -1 + \frac{1}{2} = \frac{1}{2} + C \)[/tex]

C = -1

Step 5: Substitute the value of C back into the general solution to obtain the particular solution:

[tex]\( |x| y - \frac{y}{2}|x|^2 = \frac{1}{2}|x|^2 - 1 \)[/tex]

[tex]\( y = \frac{-1}{x}\left(\frac{x^3}{3} - x + 1\right) \)[/tex]

b. Initial Value Problem[tex]: \(\frac{dy}{dx} = 2x - 3y\), \(y(0) = \frac{1}{3}\)[/tex]

Step 1: Rewrite the equation in the standard form for a first-order linear differential equation:

[tex]\(\frac{dy}{dx} + 3y = 2x\)[/tex]

Step 2: Solve the linear differential equation by integrating factor method. Multiply both sides of the equation by the integrating factor [tex]\(I(x) = e^{\int 3dx} = e^{3x}\):[/tex]

[tex]\( e^{3x} \frac{dy}{dx} + 3e^{3x} y = 2xe^{3x} \)[/tex]

Step 3: Integrate both sides of the equation with respect to x to obtain the general solution:

[tex]\( e^{3x} y = \int 2xe^{3x}dx \)[/tex]

[tex]\( e^{3x} y = \frac{2x}{3}e^{3x} - \frac{2}{9}e^{3x} + C \)[/tex]

Step 4: Apply the initial condition [tex]\(y(0) = \frac{1}{3}\)[/tex] to find the value of the constant c:

[tex]\( e^{3(0)} \left(\frac{1}{3}\right) = \frac{2(0)}{3}e^{3(0)} - \frac{2}{9}e^{3(0)} + C \)[/tex]

[tex]\( \frac{1}{3} = -\frac{2}{9} + C \)[/tex]

[tex]\( C = \frac{1}{3} + \frac{2}{9} = \frac{5}{9} \)[/tex]

Step 5:

Substitute the value of C back into the general solution to obtain the particular solution:

[tex]\( e^{3x} y = \frac{2x}{3}e^{3x} - \frac{2}{9}e^{3x} + \frac{5}{9} \)[/tex]

[tex]\( y = \frac{2x}{3} - \frac{1}{9}e^{-3x} + \frac{1}{3} \)[/tex]

These are the solutions to the given initial value problems.

Learn more about differential equation: https://brainly.com/question/28099315

#SPJ11

Find a div m and a mod m when a=−155,m=94. a div m= a modm=

Answers

When dividing -155 by 94, the quotient (div m) is -1 and the remainder (mod m) is 33.

To find the quotient and remainder when dividing a number, a, by another number, m, we can use the division algorithm.

a = -155 and m = 94, let's find the div m and mod m.

1. Div m:
To find the div m, we divide a by m and discard the remainder. So, -155 ÷ 94 = -1.65 (approximately). Since we discard the remainder, the div m is -1.

2. Mod m:
To find the mod m, we divide a by m and keep only the remainder. So, -155 ÷ 94 = -1.65 (approximately). The remainder is the decimal part of the quotient when dividing without discarding the remainder. In this case, the decimal part is -0.65. To convert this to a positive value, we add 1, resulting in 0.35. Finally, we multiply this decimal by m to get the mod m: 0.35 × 94 = 32.9 (approximately). Rounding this to the nearest whole number, the mod m is 33.

Therefore, a div m is -1 and a mod m is 33.

To know more about division algorithm, refer to the link below:

https://brainly.com/question/11535974#

#SPJ11

What is the equation of a vertical ellipse with a center at point (8,-4) , a major axis that is 12 units long, and a minor axis that is 6 units long?

Answers

The equation of the vertical ellipse with a center at point (8, -4), a major axis of 12 units, and a minor axis of 6 units is ((x - 8)^2 / 36) + ((y + 4)^2 / 144) = 1.

To find the equation of a vertical ellipse, we need to determine the values of the center and the lengths of the major and minor axes. The center of the ellipse is given as (8, -4), the major axis has a length of 12 units, and the minor axis has a length of 6 units.

The general equation of a vertical ellipse with center (h, k), a length of 2a along the major axis, and a length of 2b along the minor axis is:

((x - h)^2 / a^2) + ((y - k)^2 / b^2) = 1

Plugging in the given values, we have:

((x - 8)^2 / 6^2) + ((y + 4)^2 / 12^2) = 1

Simplifying further, we get the equation of the vertical ellipse:

((x - 8)^2 / 36) + ((y + 4)^2 / 144) = 1

Learn more about vertical ellipse here :-

https://brainly.com/question/12043717

#SPJ11

Michelle made equal deposits at the beginning of every 3 months into an RRSP. At the end of 8 years, the fund had an accumulated value of $50,000. If the RRSP was earning 3.50% compounded monthly, what was the size of the quarterly deposits?

Answers

The size of the quarterly deposits is approximately $590.36.

To find the size of the quarterly deposits, we can use the formula for the future value of an ordinary annuity:

FV = P * ((1 + r)^n - 1) / r

Where:

FV = future value (accumulated value)

P = periodic payment (deposit)

r = periodic interest rate

n = total number of periods

In this case, the future value is $50,000, the periodic interest rate is 3.50% compounded monthly (which means the periodic rate is 3.50% / 12 = 0.2917%), and the total number of periods is 8 years * 4 quarters = 32 periods.

Plugging these values into the formula:

$50,000 = P * ((1 + 0.2917)^32 - 1) / 0.2917

To solve for P, we can rearrange the formula:

P = ($50,000 * 0.2917) / ((1 + 0.2917)^32 - 1)

Using a calculator or spreadsheet, we can calculate the value of P:

P ≈ $590.36

Know more about annuity here:

https://brainly.com/question/32931568

#SPJ11

4) If f (x)=4x+1 and g(x) = x²+5
a) Find (f-g) (-2)
b) Find g¹ (f(x))

Answers

If g¹ (f(x)) = 16x² + 8x + 6and g(x) = x²+5 then (f - g) (-2) = 4(-2) - (-2)² - 4= -8 - 4 - 4= -16 and  g¹ (f(x)) = 16x² + 8x + 6.

Given that f(x) = 4x + 1 and g(x) = x² + 5

a) Find (f-g) (-2)(f - g) (x) = f(x) - g(x)

Substitute the values of f(x) and g(x)f(x) = 4x + 1g(x) = x² + 5(f - g) (x) = 4x + 1 - (x² + 5) = 4x - x² - 4

On substituting x = -2, we get

(f - g) (-2) = 4(-2) - (-2)² - 4= -8 - 4 - 4= -16

b) Find g¹ (f(x))f(x) = 4x + 1g(x) = x² + 5

Let y = f(x) => y = 4x + 1

On substituting the value of y in g(x), we get

g(x) = (4x + 1)² + 5= 16x² + 8x + 1 + 5= 16x² + 8x + 6

Therefore, g¹ (f(x)) = 16x² + 8x + 6

Learn more about g¹ (f(x)) at https://brainly.com/question/32930384

#SPJ11

What is the equivalent ratio?

Answers

Equivalent ratios are those that can be simplified or reduced to the same value. In other words, two ratios are considered equivalent if one can be expressed as a multiple of the other. Some examples of equivalent ratios are 1:2 and 4:8, 3:5 and 12:20, 9:4 and 18:8, etc.

If f(c)=3x-5 and g(x)=x+3 find (f-g)(c)

Answers

The solution of the function, (f - g)(x) is 2x - 8.

How to solve function?

A function relates input and output. Therefore, let's solve the composite function as follows;

A composite function is generally a function that is written inside another function.

Therefore,

f(x) = 3x - 5

g(x) = x + 3

(f - g)(x)

Therefore,

(f - g)(x) = f(x) - g(x)

Therefore,

f(x) - g(x) = 3x - 5 - (x + 3)

f(x) - g(x) = 3x - 5 - x - 3

f(x) - g(x) = 2x - 8

learn more on function here: https://brainly.com/question/25882894

#SPJ1

Other Questions
What type of Therapeutic approach would you use if you were apsychotherspist? Why do feel the most comfortable with thisapproach?(AT LEAST 200 WORDS) A shident has test scores of 67%,75%, and 86% in a government class. What miast she score on the last exam to eam a B (80\% or better) in the course? Wo better Mr. Reginald, a senior medical laboratory technician was enjoying a bowl of kokonte with goat groundnut soup after a hard days work, when he was rudely interrupted by a female anopheles mosquito which was also enjoying his sweet rich A+ blood from his left leg. Perceiving the pain processed by the somatosensory cortex, he studied the mosquitos position and quickly laid hands on it resulting into its death.a. How was the pain perceived by Mr. Reginald b. Describe how he voluntarily killed the mosquito. c. State the parts of the brain that are responsible for the following (1 mark each)i. Emotionsii. Sports and skillsiii. Mathematicsiv. Auditionv. Vision1.Mr. Reginald, a senior medical laboratorytechnician was enjoying a bowl of kokontewith goat groundnut soup after a hard daywork, when he was rudely interrupted by afemale anopheles mosquito which was alsoenjoying his sweet rich A+ blood from hisleft leg. Perceiving the pain processed by thesomatosensory cortex, he studied themosquito's position and quickly laid handson it resulting into its death.a. How was the pain perceived by Mr.Reginald b. Describe how he voluntarily killed themosquito. c. State the parts of the brain that areresponsible for the following (1 markeach)i. Emotionsin. Sports and skillsin. Mathematicsiv. Auditionv. Vision Determine the equation of the ellipse with foci... 100points Find the general solution of the following differential equation. y" - 4y + 7y=0 NOTE: Use c, and ce as arbitrary constants. y(t) = We have 3000 m2 paper available, and we wish to build a box (width = w, depth = d, height = h), the volume of the box is V. Requirements: Width dimension to be double the depth dimension We would like the box to have the maximum volume All w, d, and h values are greater than zero. Please show how do you set-up this problem and solve it using Excel's Solver function What advice would you give the parent of a toddler regarding their child's language development it you subscribed to the behavioural theory of language acquisition? How would this differ if you were a firm supporter of Chomsky's nativist approach? Finally, what advice would you give if you adhered to the interactionist theory of language acquisition?What advice would you give the parent of a toddler regarding their child's language development if you subscribed to the behavioural theory of language acquisition? How would this differ if you were a tim supporter of Chomsky's nativist approach? Finally, what advice would you give if you adhered to the interactionist theory of language acquisition Two sketter of mass 50 kg and 58 kg collide head on at 5 m/s and 6 m/s. As a result both of them bounce back. If the collision is an elastic collision and the sketter with mass 58 kg bounces back with 2 m/s what is the kinetic energy of the other sketter? Roundup your answer to an integer Question 1) 2 charges are placed on the x-axis: a charge of +12.6nC at the origin and a charge of -31.3nC placed at x=24cm. What is the electric field vector on the y-axis at y=31cm? Clara jumps from a bridge, followed closely by jim. how long did jim wait after clara jumped? (20 pts) Derive an expression for the expansion coefficient, a, and the isothermal compressibility, KT of a perfect gas as a function of T and P, respectively. A4 kg object is moving along at 7 m/s. If the object then accelerates for 9. seconds at a rate of 12 m/s2, what is the object's new velocity in m/s? You read that the concordance rate of schizophrenia is 50% for monozygotic twins and 20% for dizygotic twins. How do you interpret this finding? A. Schizophrenia is likely mostly determined by genetic factors. B. Schizophrenia is likely mostly determined by environment. C. Schizophrenia is likely determined only due to genetic factors. D. Schizophrenia is likely determined by both genetic and environmental factors. Being rowdy, non-compliant, and sometimes disrespectful, highschooler Popoy always frequented the principals office because of school violations. This is the reason why his teachers were surprised to know that he finished college and is currently holding a decent job. Which of the following accurately describes this the most?A. Adolescents are in constant emotional turmoilB. Adolescents do not know how to express their feelings adequately causing their outbursts to go out of proportionC. Adolescents are not always in a period of storm and stressD. Adolescents have emotional highs and lows, but they also improve in emotional behavior as they grow Categorize the following logical fallacy. My client is an integral part of this community. If he is sent to prison not only will this city suffer but also he will be most missed by his family. You surely cannot find it in your hearts to reach any other verdict than "not guilty." Circular reasoning Select an answer Post hoc False dilemma Ad hominem Straw man Correlation implies causation Appeal to ignorance Appeal to consequence Circular reasoning Appeal to authority Sam is a 64-year-old male experiencing painful swelling in his knees. He has been taking Naproxen (Naprosyn) on a daily basis for several years. Recently the swelling and pain have worsened, and higher doses of Naproxen have not provided adequate relief. Sam is a candidate for knee replacement surgery. Until that time, his physician has decided to administer an intra- articular injection of hydrocortisone into both knees. Hydrocortisone Hydrocortisone Properties: MW = 362.5 g/mol Log P = 1.63 Nonelectrolyte1. Hydrocortisone has a steroid structure. Explain how the chemical features of the drug play a role in determining the class of receptors (e.g., cell surface, intracellular) the drug is most likely to act upon?2. Hydrocortisone is an agonist. Describe, in general terms, its mechanism of action, that is, what cellular changes occur when it interacts with its receptor.3. Describe, in general terms, the mechanism of action of an antagonist at this receptor.4. The drug was administered to this patient as an injection into the knee. The patient was told that relief would not be experienced until much later that day. Based on the actions of the drug, explain why there is a delay in action. 5. Hydrocortisone is also used to treat adrenal insufficiency, asthma, shock, and skin rashes and causes immunosuppression. How can hydrocortisone produce so many seemingly disparate effects? 6. Hydrocortisone also comes in several topical preparations such as creams, ointments, and lotions to treat skin rashes. But these products are not useful in treating adrenal insufficiency, asthma, or shock. How does the product change the pharmacology of the drug? Select all of the statements that are true regarding SARS COV-2. A. Some patients exhibit 'long COVID' where they, for example, relapse, have moreintense than initial symptoms or develop new symptomsb. The viral spike protein binds to ACE2 receptors on cells only in the lungs c. Vaccination, social distancing and mask use (even if vaccinated) are stillrecommended as we have not yet reached herd immunityd. It is a DNA virus "a) Let the elevator have a mass of 1,675 kg and an upwardacceleration of 2.9 m/s2. Find Tb) The elevator of part (d) now moves with constant upwardvelocity of 10 m/s. Find T. Wayne, Erin, Alan and Kirk are all ex-police officers and have decided to start a private security business. Due to tax and ownership issues and the obvious benefits associated with having limited liability, their lawyer recommends that they should register a company for the business. They agree and instruct their lawyer to register a company to be called WEAK Security Pty Ltd. It is agreed that Wayne, Erin, Alan and Kirk will each be allotted 100 ordinary shares in WEAK Security Pty Ltd. After the company is registered, they decide to employ Rodger as a receptionist in the office. Rodger is given strict instructions that he is not to enter into contracts on behalf of the company.Wanda works in used car sales and a good friend of Rodger. Rodger tells Wanda about his new position at WEAK Security Pty Ltd . Wanda tells Rodger that she has been trying to sell a truck and it would be perfect for the security business. Wanda shows Rodger the truck and lets him drive it. Rodger agrees that the truck would be a great addition to the security business and thinks the price Wanda is asking is very reasonable. Rodger agrees to buy the truck on behalf of WEAK Security Pty Ltd.Can Wanda rely on any of the assumptions in section 129 of the Corporations Act in order to enforce the contract against WEAK Security Pty Ltd?Please use the PIRAC method to analyze the case. Is there any same type of case for referencing? Thankyou!! 2. Gases are very useful for converting heat into work, since they easily expand or contract with temperature.2.4 The work that can be done by the gas in this expansion is: Work = F x d = P A x d, on the other hand A x d = change in volume of the gas. That is, Work = P x V. Calculate the work done by the gas in the expansion.2.5 This work comes from a heat that the gas absorbs when it is in the boiling water; By conservation of energy Heat = Change in energy + Work.The internal energy, for air, is U = (5/2) n R T. Calculate the change in energy going from 300K to 373K and then the heat absorbed from the boiling water.2.6 Note that not all heat is converted to work. This is the general rule. Calculate the percentage of heat that becomes useful work in this process. Steam Workshop Downloader