Answer:
It took 13 weeks for Jill to get 1275.00 in her savings account
Step-by-step explanation:First off you subtract 1275-300=975.After that you will divide 975 from 75 975÷75=13.So 13 is your final answer.
What is the equation of a circle with center (2,3) that passes through the point (5, 3)?
The equation of the circle with center (2, 3) that passes through the point (5, 3) is [tex](x - 2)^2 + (y - 3)^2 = 9.[/tex]
To find the equation of a circle with center (2, 3) that passes through the point (5, 3), we'll need to use the standard equation of a circle and the given information.
The standard equation of a circle is[tex](x - h)^2 + (y - k)^2 = r^2[/tex], where (h, k) is the center and r is the radius.
Step 1: Substitute the center coordinates (h, k) = (2, 3) into the equation:
[tex](x - 2)^2 + (y - 3)^2 = r^2[/tex]
Step 2: Use the point (5, 3) to find the radius. Plug the coordinates of the point into the equation and solve for [tex]r^2[/tex]:
[tex](5 - 2)^2 + (3 - 3)^2 = r^2\\3^2 + 0^2 = r^2\\9 = r^2[/tex]
Step 3: Plug[tex]r^2[/tex] back into the equation:
[tex](x - 2)^2 + (y - 3)^2 = 9[/tex]
So, the equation of the circle with center (2, 3) that passes through the point (5, 3) is [tex](x - 2)^2 + (y - 3)^2 = 9.[/tex]
To know more about circle refer here:
https://brainly.com/question/29142813
#SPJ11
An aircraft factory manufactures airplane engines. The unit cost C (the cost in dollars to make each airplane engine) depends on the number of engines made. If x engines are made, then the unit cost is given by the function =Cx+−0.5x2180x25,609. How many engines must be made to minimize the unit cost?
Do not round your answer.
The number of engines that must be made to minimize the unit cost are 180
How many engines must be made to minimize the unit cost?From the question, we have the following parameters that can be used in our computation:
C(x) = −0.5x² + 180x + 25,609.
Differentiate the above equation
So, we have the following representation
C'(x) = -x + 180
Set the equation to 0
So, we have the following representation
-x + 180 = 0
This gives
x = 180
Substitute x = 180 in the above equation, so, we have the following representation
C(180) = −0.5(180)² + 180(180) + 25,609
Evaluate
C(180) = 41809
Hence, the engines that must be made to minimize the unit cost are 180
Read more about functions at
https://brainly.com/question/10837575
#SPJ1
Simplify and evaluate
Answer:
In simplified form: 1/27
Evaluated: 0.037
Step-by-step explanation:
To simplify and evaluate 81^(-3/4), we use the rule that (a^m)^n = a^(mn) and rewrite the expression as (3^4)^(-3/4). Then, we use the rule that a^(-n) = 1/(a^n) to get:
81^(-3/4) = (3^4)^(-3/4) = 3^(-3) = 1/(3^3) = 1/27
Therefore, 81^(-3/4) simplifies to 1/27 and evaluates to 0.037
13, 9, 17, 12, 18, 12, 17, 7, 16, 19
so what is the Mean Median_____ Range
Alexander stacked unit cubes to build the rectangular prism below. Use the rectangular prism to answer
Alexander stacked 16 unit cubes required to build the rectangular prism.
What is a prism?A three-dimensional solid object called a prism has two identical ends. It consists of equal cross-sections, flat faces, and identical bases. Without bases, the prism's faces are parallelograms or rectangles.
Here we need to find the number of cubes required to build the rectangular prism.
Here first we need to find how many cubes stack in the base layer
Number of unit cubes in the base layer = Number of cubes along the length * Number of cubes along the width
The number of unit cubes in the base layer = 2 * 4 = 8 cubes.
Total number of unit cubes in prism =Number of unit cubes in the base layer *Number of layers = 8 * 2 = 16 unit cubes
So, there are 16 unit cubes are required to build the rectangular prism.
Learn more about Prism here:
https://brainly.com/question/29722724
#SPJ1
Complete question :
Alexander stacked unit cubes to build the rectangular prism below. Use the rectangular prism to answer the question.
How many cubes are required to build the rectangular prism?
[tex]4^3\sqrt{-88}[/tex]
Help I don't know where the negative goes.
if you meant simplification
[tex]4^3\sqrt{-88}\implies 64\sqrt{-88}\implies 64\sqrt{(-1)(2^2)(2)(11)}\implies 64(2)\sqrt{(-1)(2)(11)} \\\\\\ 128\sqrt{(2)(11)}\cdot \sqrt{-1}\implies 128\sqrt{22}~i[/tex]
Select the equivalent expression. \left(\dfrac{4^{3}}{5^{-2}}\right)^{5}=?( 5 −2 4 3 ) 5 =?
(its khan academy)
(4^3/5^-2)^5 = ?
The equivalent expression is $\left(\dfrac{4^{3}}{5^{-2}}\right)^{5} = 102400000000000000000$.
Find the simplified equivalent expression of the following?We can simplify the expression inside the parentheses first:
\begin{aligned} \frac{4^3}{5^{-2}} &= 4^3 \cdot 5^2 \ &= (2^2)^3 \cdot 5^2 \ &= 2^6 \cdot 5^2 \ &= 2^5 \cdot 2 \cdot 5^2 \ &= 2^5 \cdot 10^2 \ &= 3200 \end{aligned}
Now we can substitute this value into the original expression and simplify further:
\begin{aligned} \left(\frac{4^3}{5^{-2}}\right)^5 &= (3200)^5 \ &= (2^8 \cdot 5^2)^5 \ &= 2^{40} \cdot 5^{10} \ &= (2^4)^{10} \cdot 5^{10} \ &= 16^{10} \cdot 5^{10} \ &= (16 \cdot 5)^{10} \ &= 80^{10} \ &= 102400000000000000000 \end{aligned}
Learn more Simplify
brainly.com/question/2804192
#SPJ11
If a circle has a circumference of 40π and a chord of the circle is 24 units, then the chord is ____ units from the center of the circle
A circle with a circumference of 40π and a chord of the circle is 24 units, then the chord is 16 units from the center of the circle,
The circumference of a circle is given by the formula C = 2πr, where r is the radius of the circle. Here, we are given that the circumference is 40π. That is
40π = 2πr
Dividing both sides by 2π, we get:
r = 20
Now, we need to find the distance between the chord and the center of the circle. Let O be the center of the circle, and let AB be the chord. We know that the perpendicular bisector of a chord passes through the center of the circle. Let P be the midpoint of AB, and let OP = x.
By the Pythagorean Theorem,
x^2 + 12^2 = 20^2
Simplifying,
x^2 + 144 = 400
x^2 = 256
x = ±16
Since OP is a distance, it must be positive. Therefore, x = 16, and the chord is 16 units from the center of the circle.
To learn more about circumference : https://brainly.com/question/27447563
#SPJ11
A bee flies for 4.0 min at 32.5 in/min find the bees distance in ft
The distance that the bees cover in feet is 10.84 feet.
The speed at which the bees travel is given in the unit inches per min but the required solution is in feet so we need to convert the unit from in/min to ft/min using the unit conversion method.
We know that
1 inch=1/12feet.
so 32 inches/min=32.5 *(1/12) feet/min.
which is roughly equal to 2.71 feet/min (rounded to two decimal places).
Now by using the speed, distance, and time formula which is:
distance=speed*time
we can calculate the distance covered by bees at the given speed and time.
Substituting the values in the equation.
distance=2.71 feet/minute * 4.0 minutes.
=10.84 feet
Therefore, the bee's distance in feet will be 10.84 feet (rounded off to 2 digits).
Learn more about the Unit Conversion Method:
https://brainly.com/question/97386
#SPJ4
Question One:
Zahir bought a house 15 years ago, and it is now valued $548 900.00.
Determine the initial value of the home when Zahir purchased it, if it's value
has grown at a rate of 4.8% compounded annually. (2 marks)
Question Two:
Kiran purchases a sofa for $1791.99 (taxes already included). The
department store offers her a promotion of 0% interest with no payments
for one year. If Kiran does not pay the amount in full within one year,
interest will be charged from the date of purchase at an annual rate of
27.93%, compounded monthly.
a) If Kiran does not make any payments, what will the department store bill
her one year after the date of purchase? Show your work. (2 marks)
b) Describe a different compounding period such that the overall cost of the
sofa is lower than if the annual interest rate were compounded monthly. Use
an example to help your explanation. (2 mark)
A. Kiran will be billed approximately $2,284.33 one year after the date of purchase if she does not make any payments.
B. In this case, the overall cost of the sofa would be approximately $2,284.08
How to solve the problemsTo find the initial value of the home when Zahir purchased it, we can use the compound interest formula:
Future Value = Initial Value * (1 + (interest rate))^years
Let Initial Value be P. We are given the Future Value as $548,900, the interest rate as 4.8%, and the number of years as 15.
548,900 = P * (1 + 0.048)^15
Now, we'll solve for P:
P = 548,900 / (1 + 0.048)^15
P ≈ 305,113.48
a. Future Value = Initial Value * (1 + (interest rate / number of periods))^(years * number of periods)
Initial Value = $1,791.99
Interest Rate = 27.93% (0.2793)
Number of periods = 12 (monthly)
Years = 1
Future Value = 1,791.99 * (1 + (0.2793 / 12))^(1 * 12)
Future Value ≈ 2284.33
Kiran will be billed approximately $2,284.33 one year after the date of purchase if she does not make any payments.
b. interest were compounded annually:
Future Value = Initial Value * (1 + interest rate)^years
Future Value = 1,791.99 * (1 + 0.2793)^1
Future Value ≈ 2284.08
In this case, the overall cost of the sofa would be approximately $2,284.08, which is slightly lower than if the interest were compounded monthly ($2,284.33).
Read more on compounding here:https://brainly.com/question/24274034
#SPJ1
5. A salesman bought a computer from a manufacturer. The salesman then sold the computer for
$15 600 making a profit of 25%. Unfortunately, he suffered a 5% loss due to damages when
assembling
a. What was his actual profit earnings? (10 marks)
The salesman's actual profit earnings after suffering a 5% loss due to damages when assembling the computer is $14,820.
Let's first calculate the original cost price of the computer to the salesman. We know that the salesman sold the computer for $15,600 and made a profit of 25%, which means that the selling price is 125% of the cost price.
Let the cost price of the computer be x.
Selling price = 125% of cost price
$15,600 = 1.25x
Solving for x, we get:
x = $12,480
So, the salesman's cost price of the computer was $12,480.
Now, the salesman suffered a loss of 5% due to damages when assembling the computer.
Loss = 5% of cost price
Loss = 5% of $12,480
Loss = $624
So, the actual earnings of the salesman after the loss is: $15,600 - $624 = $14,820.
To know more about actual profit, refer here:
https://brainly.com/question/22414040#
#SPJ11
The 8th grade class of City Middle School has decided to hold a raffle to raise money to fund a trophy cabinet as their legacy to the school. A local business leader with a condominium on St. Simons Island has donated a week’s vacation at his condominium to the winner—a prize worth $1200. The students plan to sell 2500 tickets for $1 each.
1) Suppose you buy 1 ticket. What is the probability that the ticket you buy is the winning ticket? (Assume that all 2500 tickets are sold. )
2) After thinking about the prize, you decide the prize is worth a bigger investment. So you buy 5 tickets. What is the probability that you have a winning ticket now?
3) Suppose 4 of your friends suggest that each of you buy 5 tickets, with the agreement that if any of the 25 tickets is selected, you’ll share the prize. What is the probability of having a winning ticket now?
4) At the last minute, another business leader offers 2 consolation prizes of a week-end at Hard Labor Creek State Park, worth around $400 each. Have your chances of holding a winning ticket changed? Explain your reasoning. Suppose that the same raffle is held every year. What would your average net winnings be, assuming that you and your 4 friends buy 5 $1 tickets each year?
1) If there are 2500 tickets sold, and you buy 1 ticket, then the probability of your ticket being the winning ticket is 1/2500 or 0.04%.
2) If you buy 5 tickets, then the probability of having a winning ticket is 5/2500 or 0.2%.
3) If you and your 4 friends each buy 5 tickets, then there will be a total of 25 tickets. The probability of having a winning ticket in this scenario is 5/25 or 20%.
4) The chances of holding a winning ticket have not changed. This is because the consolation prizes are separate from the main prize, and the probability of winning the main prize is still the same.
The addition of consolation prizes does not affect the probability of winning the main prize.
Assuming the same raffle is held every year and you and your 4 friends buy 5 tickets each year, the average net winnings would be calculated as follows:
Total cost of tickets = $1 x 5 x 5 = $25
Total prize money = $1200 + ($400 x 2) = $2000
Probability of winning = 5/2500 = 0.2%
Expected value of winning = $2000 x 0.2% = $4
Average net winnings = ($4 - $25)/year = -$21/year
This means that on average, you and your friends would lose $21 per year if you participate in the raffle every year.
However, it is important to note that this is just an average and there is a chance of winning a larger prize which would make the net winnings positive.
To know more about probability refer here
https://brainly.com/question/30034780#
#SPJ11
Only a small percentage of Americans owned cars before the 1940s. By 2017, there were nearly 250 million vehicles for 323 million people, significantly increasing the need for roadways. In 1960, the United States had about 16,000 km of interstate highways. Today, the interstate highway system includes 77,000 km of paved roadways. What percent increase does this represent?
A. 381 percent
B. 792 percent
C. 38 percent
D. 79 percent
The percent increase in the interstate highway system from 1960 to now is 381%.
option A.
What is the percent increase?The percent increase from 16,000 km to 77,000 km is difference between the old value and new value divided by the old value expressed in 100%.
percent increase = 100% x (new value - old value) / old value
percent increase = 100% x (77,000 - 16,000) / 16,000
percent increase = 100% x 61,000 / 16,000
percent increase = 381.25%
Thus, the percent increase in the interstate highway system from 1960 to now is approximately 381%, which is option A.
Learn more about percent increase here: https://brainly.com/question/25098379
#SPJ1
Answer correctly and if you dont know it just dont say anything
the table of values represents a linear function g(x), where x is the number of days that have passed and g(x) is the balance in the bank account:
x g(x)
0 $600
3 $720
6 $840
part a: find and interpret the slope of the function. (3 points)
part b: write the equation of the line in point-slope, slope-intercept, and standard forms. (3 points)
part c: write the equation of the line using function notation. (2 points)
part d: what is the balance in the bank account after 7 days? (2 points)
Answer:
part a: The slope of the function represents the rate of change of the balance in the bank account per day. To find the slope, we can use the formula: slope = (change in y)/(change in x).
Using the values from the table, we have: slope = (720-600)/(3-0) = 120/3 = 40. Therefore, the slope of the function g(x) is 40.
part b: Using the point-slope form of the equation of a line, we can write: g(x) - 600 = 40(x-0). Simplifying, we get: g(x) = 40x + 600. This is the slope-intercept form of the equation, where the y-intercept is 600 and the slope is 40.
To write in standard form, we can rearrange the equation as: -40x + g(x) = 600.
part c: Using function notation, we can write the equation as: g(x) = 40x + 600.
part d: To find the balance in the bank account after 7 days, we can use the equation we found in part c and substitute x = 7: g(7) = 40(7) + 600 = 880. Therefore, the balance in the bank account after 7 days is $880.
To know more about rate of change refer here
https://brainly.com/question/29518179#
#SPJ11
√3x^3 BRAINLIEST IF CORRECT!!!!!1
Answer:
[tex] \sqrt{3 {x}^{3} } = x \sqrt{3x} [/tex]
We note that x>0 here.
Answer:
The answer is x√3x
Step-by-step explanation:
√3x³=x√3x
find the area of each polygon below b=6 h=9 ft h =10cm b = 8 h=8m b=9m
Ignacio chooses a plant at random that does not have a white bloom. What is the probability of the complement of the event? Express your answer as a fraction in simplest form
The probability of the complement of the event of Ignacio chooses a plant at random that does not have a white bloom is 0.7692.
The probability of an occurrence is a figure that represents how likely it is that the event will take place. In terms of percentage notation, it is stated as a number between 0 and 1, or between 0% and 100%. The higher the likelihood, the more probable it is that the event will take place.
Probability is a way to gauge how likely something is to happen. Several things are difficult to forecast with absolute confidence. With it, we can only make predictions about the likelihood of an event happening, or how likely it is.
The probability that Ignacio chooses the plant which have white bloom in it is,
P = number of white bloom / total number of flowers
P = 21 / 91
So the probability that the chosen flower is not white is,
1 - P = 1 - 21/91 = 70/91 = 0.7692.
Therefore, the probability of not choosing white is 0.7692.
Learn more about Probability:
https://brainly.com/question/30859510
#SPJ4
15√2 = x√2please help me, how do i solve this? i'm in 9th grade and i completely forgot how to do this.
The equation 15√2 = x√2 can be solved, the value of x that satisfies the equation is 15.
To solve the equation 15√2 = x√2, you can divide both sides by √2 since the square root of 2 is a common factor on both sides of the equation. This gives:
15√2 / √2 = x√2 / √2
On the left side of the equation, the √2 and the denominator cancel out, leaving:
15
On the right side of the equation, the √2 and the denominator also cancel out, leaving:
x
So the solution to the equation is:
x = 15
Therefore, the value of x that satisfies the equation is 15.
Learn more about equation at https://brainly.com/question/24531507
#SPJ11
Use cylindrical coordinates to evaluate the triple integral ∫∫∫√(x^2 + y^2) dV where E is the solid bounded by the
circular paraboloid z = 9 - (x^2 + y^2) and the xy-plane.
The value of the triple integral ∫∫∫[tex]E \sqrt{(x^2 + y^2)} dV[/tex] over the solid bounded by the circular paraboloid [tex]z = 9 - (x^2 + y^2)[/tex] and the xy-plane is 486π/5.
To evaluate the triple integral ∫∫∫[tex]E \sqrt{(x^2 + y^2)} dV[/tex], where E is the solid bounded by the circular paraboloid [tex]z = 9 - (x^2 + y^2)[/tex] and the xy-plane, we can use cylindrical coordinates. In cylindrical coordinates, the equation of the paraboloid becomes:
[tex]z = 9 - (r^2)[/tex]
The limits of integration are:
0 ≤ r ≤ 3 (since the paraboloid intersects the xy-plane at z = 0 when r = 3)
0 ≤ θ ≤ 2π
0 ≤ z ≤ 9 - (r^2)
The triple integral becomes:
∫∫∫[tex]E √(x^2 + y^2) dV = ∫0^3 ∫0^2π ∫0^(9-r^2) r√(r^2) dz dθ dr[/tex]
Simplifying, we get:
∫∫∫[tex]E √(x^2 + y^2) dV = ∫0^3 ∫0^2π ∫0^(9-r^2) r^2 dz dθ dr[/tex]
Evaluating the innermost integral, we get:
∫[tex]0^(9-r^2) r^2 dz = (9-r^2)r^2[/tex]
Substituting this back into the triple integral, we get:
∫∫∫[tex]E √(x^2 + y^2) dV = ∫0^3 ∫0^2π (9-r^2)r^2 dθ dr[/tex]
Evaluating the remaining integrals, we get:
∫∫∫[tex]E √(x^2 + y^2) dV = ∫0^3 (9r^2 - r^4) dθ[/tex]
= 2π [243/5]
= 486π/5
Therefore, the value of the triple integral ∫∫∫[tex]E \sqrt{(x^2 + y^2)} dV[/tex] dV over the solid bounded by the circular paraboloid [tex]z = 9 - (x^2 + y^2)[/tex] and the xy-plane is 486π/5.
For more such questions on paraboloid visit:
https://brainly.com/question/17461465
#SPJ11
60 juniors and sophomores were asked whether or not they will attend the prom this year. The data from the survey is shown in the table. Find P(will attend the prom|sophomore).
Attend the prom Will not attend the prom Total
Sophomores 10 17 27
Juniors 24 9 33
Total 34 26 60
The probability of a sophomore attending the prom, given that they were selected from the group of sophomores, is:
P(will attend the prom|sophomore) = (number of sophomores attending the prom) / (total number of sophomores)
From the table, we see that the number of sophomores attending the prom is 10, and the total number of sophomores is 54 (10 + 17 + 27). Therefore:
P(will attend the prom|sophomore) = 10 / 54
Simplifying the fraction, we get:
P(will attend the prom|sophomore) = 5 / 27
So the probability of a sophomore attending the prom is 5/27 (18.519%).
Debra has these snacks from a birthday party in a bag.
4 bags of chips
5 fruit snacks
6 chocolate bars
3 pieces of bubble gum
Debra will randomly choose one snack from the bag. Then she will put it back and randomly choose another snack. What is the probability that she will choose a chocolate bar and then a piece of gum?
A. 1/2
B. 1/3
C. 1/9
D. 1/18
Your answer is D. 1/18 is the probability that she will choose a chocolate bar and then a piece of gum
First, let's determine the total number of snacks in the bag:
4 bags of chips + 5 fruit snacks + 6 chocolate bars + 3 pieces of bubble gum = 18 snacks
Next, let's find the probability of choosing a chocolate bar:
There are 6 chocolate bars and 18 snacks total, so the probability is 6/18, which simplifies to 1/3.
Since she puts the chocolate bar back, the total number of snacks remains the same. Now, let's find the probability of choosing a piece of gum:
There are 3 pieces of gum and 18 snacks total, so the probability is 3/18, which simplifies to 1/6.
Finally, to find the probability of both events happening, multiply the probabilities together:
(1/3) * (1/6) = 1/18
So, the probability that Debra will choose a chocolate bar and then a piece of gum is 1/18. Your answer is D. 1/18.
learn more about "Probability":-https://brainly.com/question/25870256
#SPJ11
In ΔLMN, m = 2. 1 inches, n = 8. 2 inches and ∠L=85°. Find the length of l, to the nearest 10th of an inch
The length of l is approximately 6.1 inches to the nearest tenth of an inch.
To find the length of l, we can use the Law of Cosines which states that:
c^2 = a^2 + b^2 - 2ab*cos(C)
where c is the side opposite angle C, and a and b are the other two sides.
In this case, we want to find the length of l, which is opposite the given angle ∠L. So we can label l as side c, and label m and n as sides a and b, respectively. Then we can plug in the values we know and solve for l:
l^2 = m^2 + n^2 - 2mn*cos(L)
l^2 = (2.1)^2 + (8.2)^2 - 2(2.1)(8.2)*cos(85°)
l^2 = 4.41 + 67.24 - 34.212
l^2 = 37.438
l = sqrt(37.438)
l ≈ 6.118
To know more about law of cosines refer to
https://brainly.com/question/30766161
#SPJ11
On a coordinate plane, 2 triangles are shown. Triangle D E F has points (6, 4), (5, 8) and (1, 2). Triangle R S U has points (negative 2, 4), (negative 3, 0), and (2, negative 2).
Triangle DEF is reflected over the y-axis, and then translated down 4 units and right 3 units. Which congruency statement describes the figures?
ΔDEF ≅ ΔSUR
ΔDEF ≅ ΔSRU
ΔDEF ≅ ΔRSU
ΔDEF ≅ ΔRUS
The congruency statement that describes the figures is:
ΔDEF ≅ ΔRSU
To answer your question, let's first find the image of triangle DEF after reflecting over the y-axis and then translating down 4 units and right 3 units.
1. Reflect ΔDEF over the y-axis:
D'(−6, 4), E'(−5, 8), F'(−1, 2)
2. Translate ΔD'E'F' down 4 units and right 3 units:
D''(−3, 0), E''(−2, 4), F''(2, −2)
Now, we have ΔD''E''F'' with points (−3, 0), (−2, 4), and (2, −2). Comparing this to ΔRSU with points (−2, 4), (−3, 0), and (2, −2), we can see that:
ΔD''E''F'' ≅ ΔRSU
To learn more about : congruency statement
https://brainly.com/question/30534292
#SPJ11
Answer:
ΔDEF ≅ ΔRSU
Step-by-step explanation:
pls help
what is the volume
And total surface area
2. A cylindrical water tank has a diameter of 4.6 feet and a height of 10.0
feet. A cubic foot of water is about 7.5 gallons. About how many gallons
of water are in the tank if it is completely full?
A 1,100 gallons
B. 1,250 gallons
C. 1,725 gallons
D. 3,450 gallons
Answer: Dude, I think its B. but I wouldn't use this site, its not a good rabbit hole to go down.
Step-by-step explanation:
The guidance department has reported that of the senior class 2. 3% are members of key club 8. 6% are enrolled in AP physics and 1. 9% are in both
The percentage is 9.0% of the senior class are either members of the Key Club, enrolled in AP Physics, or both.
We need to find the percentage of seniors who are either members of the Key Club, enrolled in AP Physics, or both. We can use the formula:
Total percentage = Key Club percentage + AP Physics percentage - Both percentage
Step 1: Identify the given percentages
Key Club percentage = 2.3%
AP Physics percentage = 8.6%
Both percentage = 1.9%
Step 2: Apply the formula
Total percentage = 2.3% + 8.6% - 1.9%
Step 3: Calculate the result
Total percentage = 9.0%
So, 9.0% of the senior class are either members of the Key Club, enrolled in AP Physics, or both.
Learn more about percentage,
https://brainly.com/question/24877689
#SPJ11
need help on this problem
Answer:
a. n < 14
b. n ≥ 14
Step-by-step explanation:
a.
We see the line to the left of 14, meaning it will be smaller than 14. So, the inequality is n < 14
b.
The line goes to the right of 14, meaning it will be bigger than 14. This has a close circle meaning there will be an equal sign. So, the inequality is n ≥ 14
Find the error. A class must find the area of a sector of a circle determined by a ° arc. The radius of the circle is cm. What is the student's error?
The student's error could be in the wrong formula he used. The area of the sector is 245.043 sq.
How do we calculate?The formula for area of a sector is
A = (θ/360) * π * r^2
where:
θ is the central angle of the sector in degrees
r is the radius of the circle
In this case, the central angle θ is 45 degrees and the radius r is 25 cm. So the area of the sector should be:
A = (45/360) * π * (25)^2
A = (1/8) * π * 625
A = 78.125π ≈ 245.043 sq. cm
The student could have made an error during any step of the calculation.
Learn more about area of a sector at: https://brainly.com/question/30608063
#SPJ1
PLEASEEEEEEEEEEEEEEEEEEE
Answer:
< 3 = 3x + 105°
Step-by-step explanation:
There is remot angle theory which is the exterior angle is congrent to the other non adjecent angle in triangle.
so <1 + <EDF = <3
(3x + 15 ) ° + 90° = <3
3x°+ 105° = <3
< 3 = 3x + 105° .... so the measur of angle 3 interms of x is 3x + 105°
Find the volume of this cone.
Round to the nearest tenth.
10ft
6ft
To find the volume of a cone, we use the formula:
[tex]V = (1/3)\pi r^2h[/tex]
where V is the volume, r is the radius of the circular base, h is the height of the cone, and [tex]\pi[/tex] is approximately 3.14159.
In this problem, the height of the cone is given as 10 ft and the radius of the circular base is given as 6 ft.
First, we need to find the slant height of the cone. We can use the Pythagorean theorem:
[tex]l = \sqrt{(r^2 + h^2)[/tex]
[tex]l = \sqrt{(6^2 + 10^2)[/tex]
[tex]l = \sqrt{\\(36 + 100)[/tex]
[tex]l = \sqrt{136[/tex]
[tex]l = 11.66 ft[/tex]
Now we can substitute the values into the formula for the volume:
[tex]V = (1/3)\pi r^2h[/tex]
[tex]V = (1/3)\pi (6^2)(10)[/tex]
[tex]V = 120\pi /3[/tex]
[tex]V = 40\pi[/tex]
[tex]V= 125.6 cubic feet[/tex]
To know more about conic refer here
https://brainly.com/question/14774750#
#SPJ11