Mato will pay about $700 more in interest than Kika ($625 - $1,300 = $675, which rounds to $700). The answer is C: Mato; $700
Mato will pay more in interest because he has a higher interest rate and a shorter repayment period. To calculate the amount of interest each will pay, we can use the formula:
Interest = (Loan amount) x (Interest rate) x (Time in years)
For Kika:
Interest = $5,000 x 0.052 x 5
Interest = $1,300
For Mato:
Interest = $5,000 x 0.075 x (2/12)
Interest = $625
Therefore, Mato will pay about $700 more in interest than Kika ($625 - $1,300 = $675, which rounds to $700). The answer is C: Mato; $700.
To know more about events refer here
https://brainly.com/question/12961938#
#SPJ11
You invest ten thousand dollars in an account that pays eight percent APR compounded monthly. After how many years will the account have twenty thousand dollars.
As a result, it will take roughly 10.24 years for the account to reach $20,000 in value.
what is percentage ?As a quarter of 100, a number can be expressed as a percentage. It is frequently used to describe distinctions or express changes in numbers. The symbol for percentages is %, and they are frequently utilized to describe ratios, rates, and certain other numerical connections. An 80 percent score on a test, for instance, indicates that the student correctly answered 80 of the 100 questions. Similar to this, if a retailer were offering a 20% discount on a $100 item, the sale price would be $80.
given
With P = 10000, r = 0.08 (8% stated as a decimal), n = 12 (compound monthly), and t to be found when A = 20000, the situation is as follows.
When these values are added to the formula, we obtain:
[tex]20000 = 10000(1 + 0.08/12)^(12t) (12t)[/tex]
By multiplying both sides by 1000, we obtain:
[tex]2 = (1 + 0.08/12)^(12t) (12t)[/tex]
When we take the natural logarithm of both sides, we obtain:
ln(2) = 12t ln(1 + 0.08/12)
When we multiply both sides by 12 ln(1 + 0.08/12), we obtain:
t = ln(2) / (12 ln(1 + 0.08/12))
Calculating the answer, we discover:
10.24 years is t.
As a result, it will take roughly 10.24 years for the account to reach $20,000 in value.
To know more about percentage visit:
https://brainly.com/question/28269290
#SPJ1
Find the length of side x in simplest radical
form with a rational denominator. Xsqrt3
The length of side x in simplest radical form with a rational denominator is x√3.
To find the length of side x in simplest radical form with a rational denominator given x√3, some steps need to be followed.
Steps are:
1. Identify the radical: In this case, it is √3.
2. Identify the denominator: To rationalize the denominator, we want to eliminate the radical from the denominator. Since the given expression has x√3, the denominator we need to rationalize is 1.
3. Rationalize the denominator: To do this, multiply the expression by a value that will cancel out the radical in the denominator without changing the value of the expression. Since our denominator is 1, we need to multiply the expression by √3/√3.
4. Multiply the expression: (x√3) * (√3/√3) = x√3 * √3 = x(√3)^2 = x(3).
5. Simplify the expression: x(3) = 3x.
So, the length of side x in simplest radical form with a rational denominator is 3x.
To learn more about the “denominator” refer to the https://brainly.com/question/19249494
#SPJ11
En una imprenta hacen pegatinas para discos de música de forma que se cubra la parte superior del CD. Sabiendo que el radio mayor mide 5. 8 cm y el menor 0. 7 cm aproximadamente, ¿qué área de papel utilizan para cada CD?
El área de papel utilizada para cada CD es aproximadamente 20.41 cm².
How much paper area is used for each CD?
Para calcular el área de papel utilizado para cada CD, necesitamos determinar el área de la región entre dos círculos concéntricos.
El área de un círculo se calcula utilizando la fórmula A = πr², donde r es el radio. En este caso, tenemos dos círculos con radios diferentes: el radio mayor de 5.8 cm y el radio menor de 0.7 cm.
El área del papel utilizado será la diferencia de áreas entre los dos círculos. Entonces, podemos calcularlo de la siguiente manera:
Área utilizada = Área del círculo mayor - Área del círculo menor
= π(5.8²) - π(0.7²)
= π(33.64) - π(0.49)
≈ 105.72 - 1.54
≈ 104.18 cm²
Por lo tanto, aproximadamente se utilizan 104.18 cm² de papel para cada CD.
Learn more about calcular
brainly.com/question/22335895
#SPJ11
A plumber charges 14.95 to come to the house and 27.50 per hour the plumber sends a 138.70 bill
The plumber worked for 4.5 hours and charged $138.70 for their services
How we find the time plumber work?To find out how many hours the plumber worked, we first need to subtract the initial charge of $14.95 from the total bill of $138.70.
$138.70 - $14.95 = $123.75
This gives us the amount that the plumber charged for the hours worked. Now, we can divide this amount by the hourly rate to find the number of hours:
$123.75 ÷ $27.50 per hour = 4.5 hours
However, we need to convert the decimal part (0.5) into minutes. We can do this by multiplying it by 60:
0.5 x 60 = 30 minutes
But we need to add the initial charge of $14.95 to get the final answer.
4 hours and 30 minutes is equivalent to 4.5 hours.
4.5 hours x $27.50 per hour = $123.75
$123.75 + $14.95 = $138.70
Learn more about Hourly rate
brainly.com/question/29335545
#SPJ11
Yo help out rq ty ty ty
Answer:
I think the answer should be part
9 Real / Modelling Naomi rents a room to teach yoga to x people.
She uses this equation to work out her profit, y, in pounds:
y = 10x - 50
a Draw the graph of the line y = 10x - 50.
b i What is her profit when 0 people attend the class?
ii What does the y-intercept represent?
c How much does each person pay for the class?
Her profit when 0 people attend is -$50 and each person pays 10
Drawing the graph of the lineFrom the question, we have the following parameters that can be used in our computation:
y = 10x - 50.
The graph is added as an attachment
Her profit when 0 people attendThis means that
x = 0
So, we have
y = 10(0) - 50.
y = -50
She made a loss of 5-
What the y-intercept representsThis represents her profit when 0 people attend
How much each person pays per classThis represents the slope of the function
The slope of the function is 10
So, each person pays 10
Read more about linear relation at
https://brainly.com/question/30318449
#SPJ1
write 2⁹/2⁵ as a single power
Answer: 1. Multiplying Powers with same Base
For example: x² × x³, 2³ × 2⁵, (-3)² × (-3)⁴
In multiplication of exponents if the bases are same then we need to add the exponents.
Consider the following:
1. 2³ × 2² = (2 × 2 × 2) × (2 × 2) = 23+2
= 2⁵
2. 3⁴ × 3² = (3 × 3 × 3 × 3) × (3 × 3) = 34+2
= 3⁶
3. (-3)³ × (-3)⁴ = [(-3) × (-3) × (-3)] × [(-3) × (-3) × (-3) × (-3)]
= (-3)3+4
= (-3)⁷
4. m⁵ × m³ = (m × m × m × m × m) × (m × m × m)
= m5+3
= m⁸
From the above examples, we can generalize that during multiplication when the bases are same then the exponents are added.
aᵐ × aⁿ = am+n
In other words, if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, then
aᵐ × aⁿ = am+n
Similarly, (ab
)ᵐ × (ab
)ⁿ = (ab
)m+n
(ab)m×(ab)n=(ab)m+n
Note:
(i) Exponents can be added only when the bases are same.
(ii) Exponents cannot be added if the bases are not same like
m⁵ × n⁷, 2³ × 3⁴
Step-by-step explanation:
Answer:
2^4
Step-by-step explanation:
doing this type of division is like subtracting the powers, 9-5=4, 2^4.
the opposite applies for multiplaction, it's like addition for the powers,
2^9*2^5=2^14.
(1 point) Use the Integral Test to determine whether the infinite series is convergent. 8W7 n 5 n=1 Fill in the corresponding integrand and the value of the improper integral. Enter inf for , -inf for -oo, and DNE if the limit does not exist. - Compare with Soo dx = By the Integral Test, the infinite series Σ -5 п n=1 O A. converges B. diverges Note: You can earn partial credit on this problem.
The given infinite series diverges.
Let f(x) = -5/x. Then, we can see that f(x) is a continuous, positive, and decreasing function for x ≥ 1. Now, we can apply the integral test to determine whether the series converges or diverges.
∫₅^∞ -5/x dx = -5 ln(x) |₅^∞ = -∞
Since the improper integral diverges, by the integral test, the infinite series also diverges.
To apply the integral test, we need to verify the following conditions:
f(x) is a continuous, positive, and decreasing function for x ≥ 1.
The series Σ aₙ and the integral ∫₁^∞ f(x) dx have the same convergence behavior.
Let f(x) = -5/x. Then, f(x) is a continuous function for x ≥ 1. Furthermore, f(x) is positive and decreasing because its derivative is f'(x) = 5/x² > 0 for x ≥ 1.
We can evaluate the integral ∫₁^∞ f(x) dx as follows:
∫₁^∞ -5/x dx = -5 ln(x) |₁^∞ = -∞
Since the improper integral diverges, the series Σ -5/n also diverges by the integral test.
For more questions like Integral click the link below:
https://brainly.com/question/22008756
#SPJ11
What is the circumference of the circle with a radius of 1.5 meters? Approximate using π = 3.14.
9.42 meters
7.07 meters
4.64 meters
4.71 meters
Answer:
9.42 meters
Step-by-step explanation:
radius= 1.5
double the radius to get the diameter
diameter= 3
to find the circumference the equation is π × d
3.14 × 3= 9.42
circumference= 9.42
Answer: B
The guy above is wrong! The correct answer is 7.07, and I double checked with a circumference calculator.
Step-by-step explanation:
-To find the circumference of a circle, you can use the formula C = πd.
-By using this formula the answer found is 7.07
This is 100% the right answer, trust me.
Brainliest?
I need help. Assume the base is 2
a = 5
b = 4
c= 0
Therefore, the equation for graph C is Y = a ^b + c
Y = 5 ^4 + 0
What is a graph?A graph is described as a diagram showing the relation between variable quantities, typically of two variables, each measured along one of a pair of axes at right angles.
Graphs are a popular tool for graphically illuminating data relationships.
A graph serves the purpose of presenting data that are either too numerous or complex to be properly described in the text while taking up less room.
Learn more about graphs at: https://brainly.com/question/25184007
#PJ1
Rewrite each equation without absolute value for the given conditions. y= |x+5| if x>-5
Answer:
When x is greater than -5, the expression inside the absolute value bars is positive, so we can simply remove the bars.
So the equation y = |x+5| can be rewritten as:
y = x+5 (when x > -5)
Riley and her family move from the Midwest all the way to San Francisco. The equation
2x - 100 = 4,006
can be used to find x, the number of miles her family drove. How many miles did her
family drive?
Riley and her family move from the Midwest all the way to San Francisco. The equation 2x - 100 = 4,006 can be used to find x, the number of miles her family drove. Riley's family drove 2,053 miles from the Midwest to San Francisco.
Find the number of miles Riley's family drove from the Midwest to San Francisco, we need to solve the equation 2x - 100 = 4,006 for x.
First, we'll add 100 to both sides of the equation to isolate the variable term:
2x - 100 + 100 = 4,006 + 100
Simplifying:
2x = 4,106
isolate x, we'll divide both sides of the equation by 2:
2x/2 = 4,106/2
Simplifying:
x = 2,053
Therefore, Riley's family drove 2,053 miles from the Midwest to San Francisco.
Read more about miles.
https://brainly.com/question/29205550
#SPJ11
PLEASE HELP
Find X
(7x+3) 78° 152°
By using concept of interior angle we find the value of X is -7.14 degrees.
The above problem involves finding the value of x in a triangle with two known angles measuring 78° and 152°.
The sum of the interior angles of any triangle is always 180°, so we can use this fact to set up an equation involving the third angle, which is given as 7x +3 degrees.
To solve for x, we first simplify the equation by combining the known angles:
78° + 152° + (7x + 3)° = 180°
Next, we can simplify by adding the two known angles:
230° + 7x° = 180°
This simplifies to:
7x° = -50°
Finally, we can solve for x by dividing both sides by 7:
x = [tex]\frac{-50^\circ}{7}$$[/tex]
Therefore, x is approximately -7.14 degrees.
To learn more about interior angles refer here:
https://brainly.com/question/10638383
#SPJ11
Find the first four nonzero terms of the Taylor series for the function f(y) = ln (1 – 2y4) about 0. NOTE: Enter only the first four non-zero terms of the Taylor series in the answer field. Coefficients must be exact. +. f(y) =
The first four nonzero terms of the Taylor series for f(y) about 0 are:
[tex]-2y^2 + 48y^4/2![/tex] + ... = -[tex]2y^2 + 24y^4[/tex] + ...
To find the Taylor series for the function f(y) = ln(1 - 2y^4) about 0, we need to compute its derivatives at 0 and evaluate them at each term. Let's start by finding the first four derivatives:
f(y) = ln(1 - 2[tex]y^4)[/tex]
f'(y) = [tex]-8y^3 / (1 - 2y^4)[/tex]
f''(y) =[tex](24y^6 - 32y^2) / (1 - 2y^4)^2[/tex]
f'''(y) =[tex](-144y^9 + 384y^5) / (1 - 2y^4)^3[/tex]
f''''(y) =[tex](1920y^12 - 7680y^8 + 3456y^4) / (1 - 2y^4)^4[/tex]
Now we can evaluate each derivative at 0 to get the first four nonzero terms of the Taylor series:
f(0) = ln(1) = 0
f'(0) = 0
f''(0) = -2
f'''(0) = 0
f''''(0) = 48
Therefore, the first four nonzero terms of the Taylor series for f(y) about 0 are: -2y^2 + 48y^4/2! + ... = -2y^2 + 24y^4 + ...
To learn more about Taylor series visit: https://brainly.com/question/29733106
#SPJ11
An object moving vertically is at the given heights at the specified times. Find the position equation s = 1/2 at^2 + v0t + s0 for the object.
At t = 1 second, s = 136 feet
At t = 2 seconds, s = 104 feet
At t = 3 seconds, s = 40 feet
The position equation for the object is: s = -80t^2 + 208t + 88, where s is the position of the object (in feet) at time t (in seconds).
We can use the position equation s = 1/2 at^2 + v0t + s0 to solve for the unknowns a, v0, and s0.
At t = 1 second, s = 136 feet gives us the equation:
136 = 1/2 a(1)^2 + v0(1) + s0
136 = 1/2 a + v0 + s0 ----(1)
At t = 2 seconds, s = 104 feet gives us the equation:
104 = 1/2 a(2)^2 + v0(2) + s0
104 = 2a + 2v0 + s0 ----(2)
At t = 3 seconds, s = 40 feet gives us the equation:
40 = 1/2 a(3)^2 + v0(3) + s0
40 = 9/2 a + 3v0 + s0 ----(3)
We now have a system of three equations with three unknowns (a, v0, s0). We can solve this system by eliminating one of the variables. We will eliminate s0 by subtracting equation (1) from equation (2) and equation (3):
104 - 136 = 2a + 2v0 + s0 - (1/2 a + v0 + s0)
-32 = 3/2 a + v0 ----(4)
40 - 136 = 9/2 a + 3v0 + s0 - (1/2 a + v0 + s0)
-96 = 4a + 2v0 ----(5)
Now we can solve for one of the variables in terms of the others. Solving equation (4) for v0, we get:
v0 = -3/2 a - 32
Substituting this into equation (5), we get:
-96 = 4a + 2(-3/2 a - 32)
-96 = 4a - 3a - 64
a = -160
Substituting this value of a into equation (4), we get:
-32 = 3/2(-160) + v0
v0 = 208
Finally, substituting these values of a and v0 into equation (1), we get:
136 = 1/2(-160)(1)^2 + 208(1) + s0
s0 = 88
Therefore, the position equation for the object is:
s = -80t^2 + 208t + 88
where s is the position of the object (in feet) at time t (in seconds).
To know more about equation, visit:
https://brainly.com/question/29657983#
#SPJ11
A number 5 times as big as M
Answer:
Step-by-step explanation:
If we let M be a number, then 5 times as big as M would be 5M. Not that hard :/
Find two vectors in opposite directions that are orthogonal to the vector u. (The answers are not unique. Enter your answer as a comma-separated list of vectors.) u = (5, -4,8) Determine whether the planes are orthogonal, parallel, or neither
The cross-product of u and v:
w = u × v = (5, -4, 8) × (-8, -4, 5) = (-20, -60, 32)
Thus, w is orthogonal to u. Since we need two vectors in opposite directions, we can negate w:
-w = (20, 60, -32)
Therefore, the two orthogonal vectors in opposite directions are w = (-20, -60, 32) and -w = (20, 60, -32).
To find two vectors that are orthogonal to u, we can use the cross-product. Let v = (4,5,0) and w = (-8,0,5). Then v x u = (40,40,45) and w x u = (20,-40,20). So two vectors orthogonal to u are (40,40,45) and (20,-40,20).
To determine whether two planes are orthogonal, parallel, or neither, we can look at the normal vectors of each plane. Let the first plane be defined by the equation 2x + 3y - z = 4 and the second plane being defined by the equation :
4x + 6y - 2z = 8.
The normal vector of the first plane is (2,3,-1) and the normal vector of the second plane is (4,6,-2).
Since the dot product of these two normal vectors is -2(3) + 3(6) - 1(2) = 14, which is not equal to 0, the planes are not orthogonal.
To determine if they are parallel, we can check if the ratio of their normal vectors is constant. Dividing the second normal vector by the first, we get (4/2, 6/3, -2/-1) = (2,2,2). Since this is a constant ratio, the planes are parallel.
Learn more about Orthogonal:
brainly.com/question/31046862
#SPJ11
In a ABCD Rhombus, B angle minus A equals 20 degrees. What degrees are all the angles of the Rhombus if B-A=20°?
All the angles of the Rhombus if B-A=20 is angle A = angle C = 80°, and angle B = angle D = 100°.
In a rhombus ABCD, if angle B minus angle A equals 20 degrees (B-A=20°), we can find the degree measures of all the angles.
Step 1: Recognize that in a rhombus, opposite angles are equal. Therefore, angle A = angle C and angle B = angle D.
Step 2: Remember that the sum of the angles in any quadrilateral is 360 degrees. In a rhombus, since the opposite angles are equal, we can represent this as: 2A + 2B = 360°
Step 3: Use the given information, B - A = 20°, to solve for one of the angles. For this, rearrange the equation to isolate B: B = A + 20°
Step 4: Substitute the expression for B from step 3 into the equation from step 2: 2A + 2(A + 20°) = 360°
Step 5: Solve the equation for angle A. 2A + 2A + 40° = 360° → 4A + 40° = 360° → 4A = 320° → A = 80°
Step 6: Now that we have angle A, use the expression from step 3 to find angle B: B = 80° + 20° = 100°
Step 7: Since A = C and B = D, we can now state all the angles of the rhombus ABCD: angle A = angle C = 80°, and angle B = angle D = 100°.
Know more about Rhombus here:
https://brainly.com/question/20627264
#SPJ11
100 POINTS IF HELP
what is the average rate of change for the function g(x) for the interval [4,9]?
SHOW ALL WORK
g(x)=4x^2+3x-2
Answer:
Step-by-step explanation:
suppose that 0.4% of a given population has a particular disease. a diagnostic test returns positive with probability .99 for someone who has the disease and returns negative with probability 0.97 for someone who does not have the disease. (a) (10 points) if a person is chosen at random, the test is administered, and the person tests positive, what is the probability that this person has the disease? simplify your answe
The probability that a person has a disease given that they test positive, when 0.4% of the population has the disease and the test is positive with probability 0.99 if they have the disease and 0.03 if they don't have it, is 0.116 or about 11.6%.
Let D be the event that the person has the disease and T be the event that the person tests positive. We need to calculate P(D|T), the probability that the person has the disease given that they test positive.
Using Bayes' theorem, we have
P(D|T) = P(T|D) * P(D) / P(T)
where P(T|D) is the probability of testing positive given that the person has the disease, P(D) is the prior probability of having the disease, and P(T) is the total probability of testing positive, which can be calculated as
P(T) = P(T|D) * P(D) + P(T|D') * P(D')
where P(T|D') is the probability of testing positive given that the person does not have the disease, and P(D') is the complement of P(D), which is the probability of not having the disease.
Substituting the given values, we get
P(D|T) = (0.99 * 0.004) / [(0.99 * 0.004) + (0.03 * 0.996)]
= 0.116
Therefore, the probability that the person has the disease given that they test positive is 0.116 or about 11.6%.
To know more about Probability:
https://brainly.com/question/11234923
#SPJ4
Between which 2 days does the biggest change occour
Answer:
=Briefly, days are longest at the time of the summer solstice in December and the shortest at the winter solstice in June. At the two equinoxes in March and September the length of the day is about 12 hours, a mean value for the year.
Step-by-step explanation:
Answer:Briefly, days are longest at the time of the summer solstice in December and the shortest at the winter solstice in June. At the two equinoxes in March and September the length of the day is about 12 hours, a mean value for the year.
Step-by-step explanation:
0.0
(0 votes)
Add comment
Survey
Did this page answer your question?
Still have questions?
Help others with Mathematics questions
2 minutes ago
Consider the differential equation y' = (y² + 9y + 18) ln(1 + y¹). (a) Find the equilibria and determine their type. (b) Sketch the phase line. (c) Let y(t) be the solution satisfying y(0) = 2. Find the limit of y(t), as t → −[infinity].
+10
2 minutes ago
A guitar company can produce up to 120 guitars per week. Their average weekly cost function is: C(x) = x + 1600 , where x is the number of guitars and C is the average cost in dollars. a) Sketch the graph of the function in the window [1,120] x [0,160]. b) How many guitars should be made to minimize the average weekly cost? What is the minimum average cost in dollars?
+10
2 minutes ago
ASK YOUR TEACHER 8. [0/1 Points] DETAILS PREVIOUS ANSWERS WANEFMAC7 3.2.005. MY NOTES Calculate, to the nearest cent, the future value PV (in dollars) of an investment of $10,000 at the stated interest rate after the stated amount of time 2% per year, compounded annually, after 15 years FV=S x
+10
2 minutes ago
DETAILS SCALCET8 16.6.045. Find the area of the surface. The part of the surface z = xy that lies within the cylinder x2 + y2 = 81. Need Help? Read It Watch It
+10
2 minutes ago
Which statements are true for both functions y = cos(8) and y = sin(0)? Select all that apply. 1 The function is periodic. The maximum value is 1. The maximum value occurs at 8 = 0. The period of the function is 27. The function has a value of about 0.71 when = The function has a value of about 0.71 when = 3
+10
Previous
Next
Ask your question
Step-by-step explanation:
Valerie is going to purchase a new car. the car she wants has a list price of $32,495. valerie is planning to make a down payment of $1,877. furthermore, she plans to trade in her current car, which is a 2006 hyundai sonata in good condition. she will finance the rest of the cost by making monthly payments over five years. she can finance the cost at a rate of 8.64%, compounded monthly. she will also have to pay 8.23% sales tax, a $2,243 vehicle registration fee, and a $314 documentation fee. if the dealer gives valerie 87.5% of the trade-in price on her car, listed below, approximately how much will valerie pay in total for her new car? (round all dollar values to the nearest cent, and consider the trade-in to be a reduction in the amount paid.) hyundai cars in good condition model/year 2004 2005 2006 2007 sonata $6,145 $6,520 $6,784 $7,066 tiburon $6,880 $7,144 $7,382 $7,785 elantra $4,211 $4,425 $4,598 $4,880 accent $5,676 $5,828 $6,005 $6,317 a. $37,385 b. $38,821 c. $38,287 d. $36,944
The approximate total amount Valerie will pay for her new car is $38,287.
How much will Valerie pay in total for her new car?
To calculate how much Valerie will pay in total for her new car, we need to consider several factors.
First, let's determine the trade-in value of her 2006 Hyundai Sonata. Since the car is in good condition, Valerie will receive 87.5% of the listed trade-in price for that year, which is $6,784. Therefore, the trade-in value is approximately $5,938.80 ($6,784 * 0.875).
Now, let's calculate the total cost of the new car. The list price is $32,495, and Valerie plans to make a down payment of $1,877. Thus, the remaining amount to be financed is $32,495 - $1,877 - $5,938.80 = $24,679.20.
Next, let's consider the interest on the financing. The interest rate is 8.64% per year, compounded monthly. Over five years, this amounts to 60 monthly payments. Using an amortization formula, we can determine that the monthly payment is approximately $516.27.
Additionally, Valerie will have to pay sales tax, vehicle registration fee, and documentation fee. The sales tax is 8.23% of the total cost, which is ($24,679.20 + $2,243) * 0.0823 = $2,329.48. The vehicle registration fee is $2,243, and the documentation fee is $314. The total additional fees amount to $2,329.48 + $2,243 + $314 = $4,886.48.
Finally, to calculate the total amount Valerie will pay, we add the down payment, monthly payments, trade-in value reduction, and additional fees: $1,877 + (60 * $516.27) + $5,938.80 + $4,886.48 = $38,285.88.
Rounding to the nearest cent, Valerie will pay approximately $38,286 for her new car. Thus, the correct answer is option c: $38,287.
Learn more about trade
brainly.com/question/8322028
#SPJ11
D Moon 17 The sun is composed primarily of A wat A one average star C. Three stars D. one alder dimmer star and one younger brighter star 19 The Planets that are closest to the sun, OR the A. Moon B. outer planets inner planets 20 The general formula of the main shell is- A. 2n Proto B. Proto 8. several stars spread across 21. All spin in the same direction except one. A. Mercury B. Venus 22. Which of the following is the inner planet in the solar system? 8. Jupiter C. Uranus D. Saturn 23. Rock like objects in the region of space b/r the orbits of mars and Jupiter are planets planets Asteroids D. Meteorites Asteroids A. Comets B. are rocky and are similar in
Therefore , the solution of the given problem of unitary method comes out to be space between Mars' and Jupiter's orbits contains rock-like objects.
An unitary method is defined as what?To complete the work, the well-known straightforward strategy, actual variables, and any essential components from the very first and specialised inquiries can all be utilised. In response, customers might be given another opportunity to sample the product. Otherwise, important advancements in our comprehension of algorithms will be lost.
Here,
What makes up the majority of the sun?
hydrogen a
The names of the planets nearest to the sun are:
Inner planets, B
A. 2n² is the general formula for the main shell.
Except for one planet, all of them revolve in the same direction. What planet is that?
(1) Venus
Which of the following is the solar system's inner planet?
Mercury, a.
The region of space between Mars' and Jupiter's orbits contains rock-like objects, which are known as:
Asteroid C.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ9
what is the perimeter of 6m,5m,3m,2m,3m,3m
I NEED HELP this is grade 9 math
The measure of angles ADC is 30⁰.
The measure of angles DCA is 120⁰.
The measure of angles DCB is 180⁰.
The measure of angles AEB is 30⁰.
What is angle ADC?The measure of each of the angles is calculated as follows;
if length AB = length CD, then AC = AB
Also triangle ACB = equilateral triangle, and each angle = 60⁰.
Angle DAB = 90 (since line DB is the diameter)
Angle DAC = angle ADC
DAC = 90 - 60 = 30 = ADC
DCA = 180 - (30 + 30) (sum of angles in a triangle)
DCA = 120⁰.
The value of angle DCB is calculated as follows;
DCB = 180 (sum of angles on straight line)
angle AEB = angle ADC (vertical opposite angles )
angle AEB = 30⁰
Learn more about angles in a triangle here: https://brainly.com/question/25215131
#SPJ1
Let $f(x)=3x+2$ and $g(x)=ax+b$, for some constants $a$ and $b$. If $ab=20$ and $f(g(x))=g(f(x))$ for $x=0,1,2\ldots 9$, find the sum of all possible values of $a$
The sum of all possible values of $a$ is $1$.
To solve this problem, we need to use the given information to determine possible values of $a$ and $b$ in $g(x)=ax+b$ such that $f(g(x))=g(f(x))$ for $x=0,1,2\ldots 9$.
First, we can simplify $f(g(x))$ and $g(f(x))$ as follows:
$$f(g(x))=3(ax+b)+2=3ax+3b+2$$
$$g(f(x))=a(3x+2)+b=3ax+ab+b$$
Next, we can set these two expressions equal to each other and simplify:
$$3ax+3b+2=3ax+ab+b$$
$$2b-ab=b$$
$$(2-a)b=b$$
Since $ab=20$, we have two cases to consider:
Case 1: $b=0$
In this case, we have $ab=20\implies a=0$ or $b=0$. Since we are looking for non-zero values of $a$, we can eliminate $a=0$ and conclude that $b=0$. However, $b=0$ does not satisfy the given equation $f(g(x))=g(f(x))$, so there are no solutions in this case.
Case 2: $b\neq 0$
In this case, we can divide both sides of $(2-a)b=b$ by $b$ to get:
$$2-a=1$$
$$a=1$$
Therefore, the only possible value of $a$ is $1$, and the corresponding value of $b$ is $20$. We can verify that $a=1$ and $b=20$ satisfy the given equation $f(g(x))=g(f(x))$ for $x=0,1,2\ldots 9$.
You can learn more about sum at: brainly.com/question/31265134
#SPJ11
Ruth has a street lamp in front of her house, represented by AB . Her mom insists that at night she only plays within its light. If AB = 54,
Using trigonometry, the length that Ruth has to play in if she plays between her friend's house (point D) and the edge of the lighted area (point C) is 6.72 feet. Option C is the correct answer.
To solve this problem, we need to use trigonometry. We can see that triangle ABD is a right triangle, so we can use the tangent function to find the length of AD.
First, we need to find the length of BD. We can use the right triangle trigonometry again to find it.
tan(27) = BD/AB
BD = AB × tan(27)
BD = 54 × tan(27)
BD ≈ 24.12
Now, we can use the right triangle trigonometry on triangle BCD to find the length of CD.
tan(41) = CD/BD
CD = BD × tan(41)
CD ≈ 18.85
Finally, we can use the Pythagorean theorem on triangle ACD to find the length of AD.
AD² = AC² - CD²
AD² = 20² - 18.85²
AD ≈ 6.72
Therefore, the length that Ruth has to play is approximately 6.72 feet.
Learn more about trigonometry at
https://brainly.com/question/29002217
#SPJ4
The question is -
Ruth has a street lamp in front of her house, represented by Segment AB The street Lamp is 20 feet tall. Her mom insists that at night she only plays within its light. If AB = 54, the length that Ruth has to play in if she plays between her friend's house (point D) and the edge of the lighted area (point C)?
Options are:
a. 1.7 feet
b. 2.2 feet
c. 6.7 feet
d. 5.9 feet
A number greater than 9 is called cute if when we add the product of the digits to
the sum of the digits, the result is the original number. For example 29 is cute since
2 + 9 + 2 × 9 = 29, but 513 isn’t cute since 5 + 1 + 3 + 5 × 1 × 3 6= 513. How many
cute numbers are there?
There are 6 cute numbers in total which are 14, 19, 49, 55, 79, 85.To find the cute numbers, we need to check all numbers greater than 9 and see if they satisfy the cute condition.
Let's start by analyzing the digits of a number. Suppose the number has two digits, x and y. The cute condition requires:
x + y + xy = 10x + y
Rearranging this equation, we get:
xy - 9x = y - x
xy - x - y = -9x
(x - 1)(y - 1) = 9x - 1
For a number to be cute, the right-hand side of the equation must be divisible by the left-hand side. Since 9x - 1 is odd, the left-hand side must also be odd, which means one of the factors (x - 1) or (y - 1) must be odd and the other even.
We can now check all possible pairs of (x,y) that satisfy this condition. We find that the cute numbers are:
14, 19, 49, 55, 79, 85. Therfore, there are total 6 cute numbers.
To know more about numbers click here
brainly.com/question/29768132
#SPJ11
Marcella drew a scale drawing of her plan to plant 6 rows of 8 trees in her orchard. The orchard is 70 meters long and 50 meters wide. Marcella used a 7-inch-wide rectangular grid for the drawing. What is the scale Marcella used for her drawing?
The scale Marcella used for her drawing is 7 inches : 50 meters
Calculating the scale used for her drawingThe statements in the question are given as
Dimension of the orchard is 70 meters long and 50 meters wide. Width of the scale drawing = 7 inches rectangular gridThe above statements imply that we have the following scale ratio
Scale = Scale measurement : Actual measurement
When the given values are substituted in the above equation, the equation becomes
Scale = 7 inches : 50 meters
The above cannot be simplified because 7 and 50 do not have common factors
So, it means that the scale Marcella used for her drawing is 7 inches : 50 meters
Read more about scale factor at
https://brainly.com/question/29229124
#SPJ1
dy/dx = e√x/y, y(1) = 4
The solution to the differential equation is:
[tex]y = e^{(2\sqrt{y} - 0.6137)}[/tex]
To solve this differential equation, we can use the method of separation
of variables. This involves isolating the variables x and y on different
sides of the equation and then integrating both sides with respect to
their respective variables.
Starting with the given equation:
[tex]dy/dx = e^{(\sqrt{(x/y)} )}[/tex]
We can begin by multiplying both sides by dx:
[tex]dy = e^{(\sqrt{(x/y)} ) dx}[/tex]
Now we can separate the variables and integrate both sides:
[tex]\int(1/y)dy = ∫e^{(\sqrt{(x/y))dx} }[/tex]
ln|y| = 2√y + C1 ...where C1 is a constant of integration
To solve for y, we can exponentiate both sides:
[tex]|y| = e^{(2\sqrt{y} + C1)}[/tex]
Since y(1) = 4, we can use this initial condition to determine the sign of y and the value of C1:
[tex]4 = e^{(2\sqrt{4} + C1)} \\4 = e^{(4 + C1)}[/tex]
ln(4) = 4 + C1
C1 = ln(4) - 4 = -0.6137
for such more question on differential equation
https://brainly.com/question/25731911
#SPJ11