Little Boy, the first atomic bomb, had a target cylinder of uranium, which is hit by the uranium projectile, was 7.0 inches long and 4.0 inches in diameter. While assembling the bomb, a worker found out that there was an excess charge of 8.95 microCoulombs on the target cylinder. (Ok, I made up that last sentence but the first one was true) (20, 4 each) a. Using Gauss's Law, determine the equation of the electric field of this Uranium metal cylinder of charge. b. Using Gauss's Law, determine the electric field inside this cylinder of charge. c. Poof! The Scarlet Witch can now travel through time and turned the Uranium cylinder is now turned into coffee mug ceramic material evenly distributing charge inside the sphere. Derive an equation for the electric field inside this cylinder of charge. cylinder d. Poof again! Agnes can also travel through time and turns the cylinder back into Uranium. What is the electric field 18 cm from the face of the cylinder produced by the initial charge?

Answers

Answer 1

Electric field 18 cm from the face of the initial uranium cylinder:

Using the equation from part (a), E = (k * Q) / r, we can calculate the electric field 18 cm (0.18 m) from the face of the cylinder.

E = (8.99 × 10^9 N m^2/C^2 * 8.95 × 10^-6 C) / 0.18 m.

Using Gauss's Law, the equation for the electric field of the Uranium metal cylinder with excess charge can be determined by considering a Gaussian surface in the form of a cylinder surrounding the charged cylinder. The electric field equation depends on the charge density and the radius of the cylinder.

Applying Gauss's Law to the original Uranium cylinder, the electric field inside the cylinder is found to be zero since the charge is distributed on the outer surface of the cylinder.

When the Uranium cylinder is transformed into a coffee mug ceramic material, the distribution of charge changes. Assuming the charge is evenly distributed inside the sphere, the electric field equation inside the cylinder of charge can be derived using Gauss's Law and the charge enclosed by a Gaussian surface in the shape of a cylinder.

If the Uranium cylinder is turned back into Uranium, the electric field 18 cm from the face of the cylinder produced by the initial charge can be calculated using the equation for the electric field of a uniformly charged cylindrical shell. The equation involves the charge, radius, and distance from the center of the cylinder.

In conclusion, the electric field equations can be determined using Gauss's Law for different scenarios: a charged Uranium cylinder, a ceramic cylinder with charge uniformly distributed inside, and the original Uranium cylinder. The electric field inside the Uranium cylinder is found to be zero, while the electric field 18 cm from the face of the cylinder can be calculated using the appropriate formula for a uniformly charged cylindrical shell.

To Learn More About The Gauss's Law Click Below:

brainly.com/question/15168926

#SPJ11


Related Questions

(14.1) A horizontal power line carries a current of 4560 A from south to north. Earth's magnetic field (85.2 µT) is directed toward the north and is inclined downward at 57.0° to the horizontal. Find the (a) magnitude and (b) direction of the magnetic force on 95.0 m of the line due to Earth's field.

Answers

(a) The magnitude of the magnetic force on the power line due to Earth's field is 3.61 × 10^3 N.

(b) The direction of the magnetic force on the power line is upward at an angle of 33.0° from the horizontal.

To calculate the magnitude of the magnetic force, we can use the equation F = BILsinθ, where F is the force, B is the magnetic field strength, I is the current, L is the length of the power line, and θ is the angle between the magnetic field and the current.

Given:

B = 85.2 µT = 85.2 × 10^-6 T

I = 4560 A

L = 95.0 m

θ = 57.0°

Converting the magnetic field strength to Tesla, we have B = 8.52 × 10^-5 T.

Plugging these values into the equation, we get:

F = (8.52 × 10^-5 T) × (4560 A) × (95.0 m) × sin(57.0°)

  = 3.61 × 10^3 N

So, the magnitude of the magnetic force on the power line is 3.61 × 10^3 N.

To determine the direction of the force, we subtract the angle of inclination from 90° to find the angle between the force and the horizontal:

90° - 57.0° = 33.0°

Therefore, the direction of the magnetic force on the power line is upward at an angle of 33.0° from the horizontal.

To learn more about magnetic click here brainly.com/question/13026686

#SPJ11

can
i please get the answer to this
Question 9 (1 point) Destructive interference Resonant Frequency O Constructive interference Doppler shift Resonance Standing waves

Answers

Destructive and constructive interference, resonant frequency, Doppler shift, resonance, and standing waves are all phenomena related to wave behavior.

Destructive interference occurs when two waves meet and their amplitudes cancel each other out, resulting in a reduced or zero amplitude. This can occur when two waves are out of phase, causing their crests to align with the troughs of the other wave.

Resonant frequency refers to the natural frequency at which an object or system vibrates with maximum amplitude. When an external force is applied at the resonant frequency, the object or system exhibits resonance, leading to increased amplitudes.

Constructive interference happens when two waves meet and their amplitudes add up, resulting in an increased amplitude. This occurs when the crests of both waves align with each other, creating a larger combined amplitude.

Doppler shift is the change in frequency or wavelength of a wave observed by an observer moving relative to the source of the wave. It is commonly experienced as the change in pitch of a sound as a moving vehicle approaches or recedes.

Resonance occurs when an object is forced to vibrate at its natural frequency, resulting in large amplitude oscillations. This phenomenon can be observed in musical instruments or structures.

Standing waves are formed when two waves of the same frequency and amplitude traveling in opposite directions interfere with each other, resulting in nodes (points of no displacement) and antinodes (points of maximum displacement) along the wave.

To know more about frequency, click here:

brainly.com/question/29739263

#SPJ11

If a = 0.1 m, b = 0.5 m, Q = -6 nC, and q = 1.3 nC, what is the
magnitude of the electric field at point P? Give your answer in
whole number.

Answers

The magnitude of the electric-field at point P is approximately 510 N/C.

To calculate the electric field at point P, we can use Coulomb's law:

E = k * |Q| / r^2

Where:

E is the electric field,

k is Coulomb's constant (k ≈ 8.99 × 10^9 N m^2/C^2),

|Q| is the magnitude of the charge,

and r is the distance between the point charge and the point where the field is being measured.

In this case, we have two charges, Q and q, located at points A and B, respectively. The field at point P is due to the contributions from both charges. Thus, we can calculate the electric field at P by summing the contributions from each charge:

E = k * |Q| / rA^2 + k * |q| / rB^2

Given the values of a, b, Q, and q, we can substitute them into the formula and calculate the magnitude of the electric field at point P, which is approximately 510 N/C.

To learn more about electric-field , click here : https://brainly.com/question/3405913

#SPJ11

Calculate the radius for the circular orbit of a synchronous (24hrs) Earth setellite, where Re=6.38 X106 m and g= 9.8 m/s2 write only the value without SI units and Please round your answer to two decimal places Answer:

Answers

To calculate the radius for the circular orbit of a synchronous Earth satellite, we need to equate the gravitational force and the centripetal force acting on the satellite.

The centripetal force is provided by the gravitational force:

F_gravity = F_centripetal

The gravitational force is given by:

F_gravity = (G * m * M) / r²

Where:

G is the gravitational constant (approximately 6.67430 × 10^(-11) m³/(kg·s²)),

m is the mass of the satellite (assuming it to be small and negligible compared to Earth),

M is the mass of the Earth,

r is the radius of the orbit.

The centripetal force is given by:

F_centripetal = (m * v²) / r

Where:

m is the mass of the satellite,

v is the velocity of the satellite in the orbit,

r is the radius of the orbit.

Since we are considering a synchronous Earth satellite, the satellite orbits the Earth once every 24 hours. This means the period of revolution (T) is 24 hours.

The velocity of the satellite can be calculated using the formula:

v = (2 * π * r) / T

We can substitute this velocity expression into the centripetal force equation:

F_centripetal = (m * (2 * π * r / T)²) / r

Now, equating the gravitational force and the centripetal force:

(G * m * M) / r² = (m * (2 * π * r / T)²) / r

To find the radius of the orbit, we need to solve this equation. However, you didn't provide the mass of the satellite (m). If you provide the mass of the satellite, I can assist you in solving the equation to find the radius.

To know more about centripetal force click this link -

brainly.com/question/14021112

#SPJ11

In the figure, the rod moves to the right with a speed of 1.8 m/s and has a resistance of 2.6 N .(Figure 1) The rail separation is l = 27.0 cm . The magnetic field is 0.33 T, and the resistance of the U-shaped conductor is 25.5 12 at a given instant. Figure 1 of 1 dA B (outward) v dt Part A Calculate the induced emf. Express your answer to two significant figures and include the appropriate units. I MÅ ? moving along rails in a uniform magnetic field Units Submit Request Answer Part B Calculate the current in the U-shaped conductor. Express your answer to two significant figures and include the appropriate units. 01 MÅ ? I = Value Units Part C Calculate the external force needed to keep the rod's velocity constant at that instant. Express your answer to two significant figures and include the appropriate units. MÅ 0! ? F = Value Units Submit Request Answer

Answers

According to the given information, the external force needed to keep the rod's velocity constant is 0.0005 N.

According to the given information.

Given:

Speed of rod, v = 1.8 m/s

Resistance, R = 2.6 N

Distance between the rails, l = 27.0 cm = 0.27 m

Magnetic field, B = 0.33 T

Resistance of the U-shaped conductor, R' = 25.5 ΩPart A

The induced emf can be calculated by using the formula given below: emf = Bvl

where, B = Magnetic field

v = Velocity of ro

dl = Distance between the rails

Substituting the given values, emf = (0.33 T)(1.8 m/s)(0.27 m)

emf = 0.16146 V ≈ 0.16 V

Therefore, the induced emf is 0.16 V.

Part BThe current in the U-shaped conductor can be calculated by using the formula given below: I = emf/R'

where, emf = Induced emf

R' = Resistance of the U-shaped conductor

Substituting the given values, I = (0.16 V)/(25.5 Ω)I = 0.00627 A ≈ 0.006 A

Therefore, the current in the U-shaped conductor is 0.006

A.

Part CThe external force needed to keep the rod's velocity constant can be calculated by using the formula given below: F = BIl where, B = Magnetic field

I = Current

l = Length of the conductor

Substituting the given values,

F = (0.33 T)(0.006 A)(0.27 m)F = 0.0005346 N ≈ 0.0005 N

Therefore, the external force needed to keep the rod's velocity constant is 0.0005 N.

To know more about external force visit:

https://brainly.com/question/31702115

#SPJ11

A solid rod of unknown material is 1.7 min length, is heated from to 5°C to 118°C, which caused the rod to expand by 0.205 cm. L1 T L2 T2>T T2 AL What is the coefficient of linear expansion of the rod? a= °C-1
Previous question

Answers

The coefficient of

linear expansion

of the rod is approximately 1.31 x 10^-5 °C^-1.

The coefficient of linear expansion (α) can be calculated using the formula:α = ΔL / (L * ΔT)

Where:

ΔL = Change in

length

= L2 - L1 = 0.205 cm = 0.00205 m (converted to meters)

L = Initial length = 1.7 m

ΔT = Change in temperature = T2 - T1 = 118°C - 5°C = 113°C (converted to

Kelvin

)

Substituting the given values:α = (0.00205 m) / (1.7 m * 113 K)

α ≈ 1.31 x 10^-5 °C^-1

Therefore, the

coefficient

of linear expansion of the rod is approximately 1.31 x 10^-5 °C^-1.

To know more about

linear expansion

click here.

brainly.com/question/32547144

#SPJ11

Using a lens of focal length 6.00 centimeters as an eyepiece and a lens of focal length 3.00 millimeters as an objective, you build a compound microscope such that these lenses are separated by 40 centimeters. What number below is closest to the total magnification?

Answers

The closest number to the total magnification is 133.33.

The total magnification of a compound microscope can be determined by multiplying the magnification of the eyepiece by the magnification of the objective lens.

In this case, the focal length of the eyepiece lens is 6.00 centimeters, the focal length of the objective lens is 3.00 millimeters, and the separation between the lenses is 40 centimeters.

By calculating the magnification for each lens and multiplying them together, we can determine the total magnification.

The magnification of a lens can be calculated using the formula:

Magnification = - (focal length of lens) / (focal length of eyepiece)

For the eyepiece lens with a focal length of 6.00 centimeters, the magnification is:

Magnification_eyepiece = -6.00 cm / (focal length of eyepiece) = -6.00 cm / (6.00 cm) = -1

For the objective lens with a focal length of 3.00 millimeters (converted to centimeters), the magnification is:

Magnification_objective = -40.00 cm / (focal length of objective) = -40.00 cm / (0.30 cm) = -133.33

To determine the total magnification, we multiply the magnification of the eyepiece and the objective lens:

Total Magnification = Magnification_eyepiece x Magnification_objective = (-1) x (-133.33) = 133.33

Therefore, the closest number to the total magnification is 133.33.

Learn more about magnification from the given link:

https://brainly.com/question/21370207

#SPJ11

Calculate how much tensile stress will occur when the single crystal of silver (Ag) in the fcc crystal structure is subjected to tensile stress in the [1-10] direction to cause the slip to occur in the slip system in the [0-11] direction of the plane (1-1-1)

Answers

The problem concerns the determination of the tensile stress to cause slip to occur in a particular crystal of silver. The crystal structure of silver is FCC, which means face-centered cubic.

The direction of tensile stress is in the [1-10] direction, and the slip occurs in the slip system of the [0-11] direction of the plane (1-1-1). Calculating the tensile stress requires several steps. To determine the tensile stress to cause a slip, it's important to know the strength of the bonding between the silver atoms in the crystal. The bond strength determines the stress required to initiate a slip. As per the given information, it is an FCC structure, which means there are 12 atoms per unit cell, and the atoms' atomic radius is given as 0.144 nm. Next, determine the type of slip system for the crystal. As given, the slip occurs in the slip system of the [0-11] direction of the plane (1-1-1).Now, the tensile stress can be determined using the following equation:τ = Gb / 2πsqrt(3)Where,τ is the applied tensile stress,G is the shear modulus for the metal,b is the Burgers vector for the slip plane and slip directionThe Shear modulus for silver is given as 27.6 GPa and Burgers vector is 2.56 Å or 0.256 nm for the [0-11] direction of the plane (1-1-1).Using the formula,τ = Gb / 2πsqrt(3) = (27.6 GPa x 0.256 nm) / 2πsqrt(3) = 132.96 MPaThe tensile stress to cause slip in the [1-10] direction to the [0-11] direction of the plane (1-1-1) is 132.96 MPa.

Learn more about face-centered cubic here:

https://brainly.com/question/15634707?

#SPJ11

a)
An object of mass 2 kg is launched at an angle of 30o above the ground with an initial speed of 40 m/s. Neglecting air resistance , calculate:
i.
the kinetic energy of the object when it is launched from the the ground.
ii.
the maximum height attained by the object .
iii.
the speed of the object when it is 12 m above the ground.

Answers

i. The kinetic energy of the object when it is launched from the ground is 1600 J.

ii. The maximum height attained by the object is 44.2 m.

iii. The speed of the object when it is 12 m above the ground is 34.9 m/s.

The potential energy of an object with mass m is given by the formula mgh where g is acceleration due to gravity and h is the height above the reference level. When an object is launched, it has kinetic energy. The kinetic energy of an object with mass m moving at a velocity v is given by the formula KE= 1/2mv².

i. Initially, the object has no potential energy as it is launched from the ground. Therefore, the kinetic energy of the object when it is launched from the ground is 1600 J (KE=1/2mv²).

ii. The maximum height attained by the object can be determined using the formula h= (v²sin²θ)/2g.

iii. When the object is at a height of 12 m, the potential energy is mgh. Therefore, the total energy at that point is KE + PE = mgh + 1/2mv².

By using energy conservation, the speed of the object can be calculated when it is 12 m above the ground using the formula v= √(vo²+2gh).

Learn more about acceleration:

https://brainly.com/question/28221047

#SPJ11

Answer:

i. The kinetic energy of the object when it is launched from the ground is 1600 J.

ii. The maximum height attained by the object is 44.2 m.

iii. The speed of the object when it is 12 m above the ground is 34.9 m/s.

Explanation:

The potential energy of an object with mass m is given by the formula mgh where g is acceleration due to gravity and h is the height above the reference level. When an object is launched, it has kinetic energy. The kinetic energy of an object with mass m moving at a velocity v is given by the formula KE= 1/2mv².

i. Initially, the object has no potential energy as it is launched from the ground. Therefore, the kinetic energy of the object when it is launched from the ground is 1600 J (KE=1/2mv²).

ii. The maximum height attained by the object can be determined using the formula h= (v²sin²θ)/2g.

iii. When the object is at a height of 12 m, the potential energy is mgh. Therefore, the total energy at that point is KE + PE = mgh + 1/2mv².

By using energy conservation, the speed of the object can be calculated when it is 12 m above the ground using the formula v= √(vo²+2gh).

Learn more about acceleration:

https://brainly.com/question/33261300

#SPJ11

Which graphs could represent the Velocity versus Time for CONSTANT ACCELERATION MOTION

Answers

Therefore, the velocity versus time graph is a straight line, and the slope of the graph indicates the acceleration of the object.

The graphs that could represent the velocity versus time for constant acceleration motion are linear functions where the slope of the graph indicates the constant acceleration. These graphs are called "straight-line motion" graphs.

In other words, velocity is a function of time when acceleration is constant. This can be seen in the following formulas:

- v = at + v₀
- Δx = 1/2at² + v₀t + x₀

Where:
v = velocity
a = acceleration
t = time
v₀ = initial velocity
x₀ = initial position

In constant acceleration motion, the velocity of an object changes at a constant rate. As a result, the velocity versus time graph is a straight line. If the acceleration is negative, the slope of the line is negative.

On the other hand, if the acceleration is positive, the slope of the line is positive. Furthermore, the slope of the graph indicates the acceleration of the object.

This graph is a straight line, as opposed to a curve, because the acceleration of the object is constant. This means that the change in velocity is the same for each equal time interval.

If the velocity versus time graph is curved, then the acceleration is not constant. For example, if the acceleration is decreasing, the graph will be concave down.

The velocity versus time graph can also be used to determine the displacement of an object. The area under the graph represents the displacement of the object during that time interval.

The graphs that could represent the velocity versus time for constant acceleration motion are linear functions where the slope of the graph indicates the constant acceleration. Therefore, the velocity versus time graph is a straight line, and the slope of the graph indicates the acceleration of the object.

To know more about displacement visit

brainly.com/question/11934397

#SPJ11

3. Resistors in series have the same ___________________ but
split the __________________.
4. Resistors in parallel have the same _________________ but
split the ___________________.

Answers

In series resistors have the same current flowing through them but split the voltage.

In parallel resistors have the same voltage across them but split the current.

When resistors are connected in series, they are arranged one after another along the same current path. In this configuration, the current flowing through each resistor is the same. However, the voltage across the resistors is divided among them. The total voltage across the series combination of resistors is equal to the sum of the individual voltage drops across each resistor.

On the other hand, when resistors are connected in parallel, they are connected across the same voltage source with their ends joined together. In this configuration, the voltage across each resistor is the same. However, the current flowing through the resistors is divided among them. The total current flowing into the parallel combination of resistors is equal to the sum of the individual currents through each resistor.

Therefore, in series, resistors have the same current but split the voltage, while in parallel, resistors have the same voltage but split the current.

To learn more about Parallel resistors :
brainly.com/question/32505661

#SPJ11

A home run is hit in such a way that the baseball just clears a wall 16.0 m high, located 116 m from home plate. The ball is hit at an angle of 37.0° to the horizontal, and air resistance is negligible. (Assume that the ball is hit at a height of 1.0 m above the ground.) (a) Find the initial speed of the ball.

Answers

The initial speed of the ball is 36.7 m/s.

* Height of the wall: 16.0 m

* Distance to the wall: 116 m

* Angle of the ball: 37.0°

* Initial height of the ball: 1.0 m

We need to find the initial speed of the ball.

To do this, we can use the following equations:

y = v_y t + 0.5 a t^2

where:

* y is the height of the ball

* v_y is the vertical velocity of the ball

* t is the time it takes the ball to reach the wall

* a is the acceleration due to gravity (9.8 m/s^2)

x = v_x t

where:

* x is the distance the ball travels

* v_x is the horizontal velocity of the ball

We can solve for v_y and v_x using the above equations. Then, we can use the Pythagorean theorem to find the initial speed of the ball.

Solving for v_y:

16 = v_y t + 0.5 * 9.8 * t^2

16 = v_y t + 4.9 t^2

0 = v_y t + 4.9 t^2 - 16

t (v_y + 4.9 t) = 16

t = 16 / (v_y + 4.9)

We can now solve for v_x:

116 = v_x t

116 = v_x * (16 / (v_y + 4.9))

v_x = (116 * (v_y + 4.9)) / 16

Now that we have v_y and v_x, we can use the Pythagorean theorem to find the initial speed of the ball:

v^2 = v_y^2 + v_x^2

v^2 = (v_y + 4.9)^2 + v_x^2

v = sqrt((v_y + 4.9)^2 + v_x^2)

Plugging in the known values, we get:

v = sqrt((4.9 + 4.9)^2 + (116 * (4.9 + 4.9)) / 16)^2)

v = 36.7 m/s

Therefore, the initial speed of the ball is 36.7 m/s.

Learn more about initial speed https://brainly.com/question/24493758

#SPJ11

An aluminum rod 1.60m long is held at its center. It is stroked with a rosin-coated cloth to set up a longitudinal vibration. The speed of sound in a thin rod of aluminum is 510 m/s. (c) What If? What would be the fundamental frequency if the rod were copper, in which the speed of sound is 3560 m/s?

Answers

By using the formula (Speed of sound) / (2 * Length of rod), we can calculate the fundamental frequency for different materials. In this case, the fundamental frequency for the aluminum rod is 318.75 Hz, and for a copper rod, it would be 1112.5 Hz.

The fundamental frequency of a vibrating rod depends on its length and the speed of sound in the material.

In this case, we are given that the aluminum rod is 1.60m long and the speed of sound in aluminum is 510 m/s. To find the fundamental frequency, we can use the formula:

Fundamental frequency = (Speed of sound) / (2 * Length of rod)

Substituting the given values, we get:

Fundamental frequency = 510 m/s / (2 * 1.60m)

Simplifying, we have:

Fundamental frequency = 318.75 Hz

Now, let's consider the "what if" scenario where the rod is made of copper. We are given that the speed of sound in copper is 3560 m/s. Using the same formula as before, we can calculate the new fundamental frequency:

Fundamental frequency = 3560 m/s / (2 * 1.60m)

Simplifying, we have:

Fundamental frequency = 1112.5 Hz

Therefore, if the rod were made of copper, the fundamental frequency would be 1112.5 Hz.

In summary, the fundamental frequency of a vibrating rod depends on its length and the speed of sound in the material.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

quick answer
please
QUESTION 21 What is the amount of magnification of a refracting telescope whose objective lens has a focal length of 1.0 m and whose eyepiece has a focal length of 25 mm? O a. x 40 b.x 24 OC.X32 Od x

Answers

The magnification of the refracting telescope is -40x, with an inverted image formation.

To calculate the magnification of a refracting telescope, we can use the following formula:

Magnification = - (focal length of the objective lens) / (focal length of the eyepiece)

Given:

Focal length of the objective lens = 1.0 m

Focal length of the eyepiece = 25 mm = 0.025 m

Substituting these values into the formula:

Magnification = - (1.0 m) / (0.025 m)

            = -40

The negative sign indicates that the image formed by the telescope is inverted. Therefore, the correct answer is:

a. x 40

Learn more about magnification

brainly.com/question/21370207

#SPJ11

The external force creates a pressure of 978 kPa (see figure). G B How much additional pressure occurs at point D?

Answers

To determine the additional pressure at point D, we need more information about the figure or the context of the problem.

Without specific details, it is not possible to calculate the exact additional pressure at point D.

The additional pressure at a specific point depends on various factors such as the depth, fluid density, and the shape of the container or vessel. Please provide more information or clarify the figure to proceed with a specific calculation.

Learn more about pressure here:-

brainly.com/question/30351725

#SPJ11

A block of mass 2.20 kg is placed against a horizontal spring of constant k=765 N/m and pushed so the spring compresses by 0.0400 m. (a) What is the elastic potential energy of the block-spring system (in J)? ] (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s ) after leaving the spring. m/s A 42-kg pole vaulter running at 11 m/s vaults over the bar. Her speed when she is above the bar is 1.5 m/s. Neglect air resistance, as well as any energy absorbed by the pole, and determine her altitude as she crosses the bar.

Answers

(a) To calculate the elastic potential energy of the block-spring system, we can use the formula:

Elastic potential energy (PE) = (1/2) * k * x^2

where k is the spring constant and x is the displacement of the spring.

Given that the mass of the block is 2.20 kg, the spring constant is 765 N/m, and the spring compresses by 0.0400 m, we can substitute these values into the formula to find the elastic potential energy:

PE = (1/2) * 765 N/m * (0.0400 m)^2

PE = 0.4872 J

Therefore, the elastic potential energy of the block-spring system is 0.4872 J.

(b) When the block is released and the surface is frictionless, the total mechanical energy of the system is conserved. This means that the sum of the kinetic energy (KE) and the potential energy (PE) remains constant.

Since the block starts from rest when leaving the spring, its initial potential energy is equal to the final kinetic energy:

PE = KE

Using the equation for elastic potential energy:

(1/2) * k * x^2 = (1/2) * m * v^2

where m is the mass of the block and v is its speed after leaving the spring.

Substituting the known values:

(1/2) * 765 N/m * (0.0400 m)^2 = (1/2) * 2.20 kg * v^2

Simplifying the equation:

0.4872 J = 1.10 kg * v^2

v^2 = 0.4434 m^2/s^2

Taking the square root:

v ≈ 0.666 m/s

Therefore, the block's speed after leaving the spring is approximately 0.666 m/s.

Regarding the second question about the pole vaulter, more information is needed to determine her altitude as she crosses the bar.

To know more about elastic potential energy click this link -

brainly.com/question/29311518

#SPJ11

The blade of a lawn mower is a 4.25 kg, 74.5 cm long metal (with a shape like a meter stick) with a hole at its midpoint. The blade is attached to the engine axle by a bolt through the
center hole. When started, the blade accelerates to the full speed at 375 pm in 5.25 seconds.
a. What is the angular acceleration of the blade?
b. How fast is blade edge moving 2.55 s after it starts?
c. How much torque does the engine exert on the blade?

Answers

For the data provided, (a) the angular acceleration of the blade is 1.1905 rad/s². (b) The blade's speed at 2.55 seconds is 3.0383 rad/s. (c) the engine exerts 0.1321 Nm of torque on the blade.

a.Given :

Mass, m = 4.25 kg

Length, l = 74.5 cm = 0.745 m

Full speed, ωf = 375 rev/min = (375/60) rad/sec = 6.25 rad/s

Time, t = 5.25 seconds

The moment of inertia of the blade about its center can be calculated as follows :

I = (m/12)(l²) + (m/4)(l/2)²

I = (4.25/12)(0.745²) + (4.25/4)(0.3725²)

I = 0.111 kg m²

The angular acceleration of the blade is given by the formula : α = ωf / t

α = 6.25 / 5.25

α = 1.1905 rad/s²

Therefore, the angular acceleration of the blade is 1.1905 rad/s².

b. Using the formula for angular velocity, we can find the blade's speed at any time :

t = 2.55 seconds

ωi = 0 (the blade starts from rest)

α = 1.1905 rad/s²

ωf = 6.25 rad/s

ωf = ωi + αt

6.25 = 0 + (1.1905)(2.55)

6.25 = 3.0383

The blade's speed at 2.55 seconds is 3.0383 rad/s.

c. Using the formula for torque, we can find the torque exerted by the engine on the blade.

I = 0.111 kg m²

α = 1.1905 rad/s²

τ = Iα

τ = (0.111)(1.1905)

τ = 0.1321 Nm

Therefore, the engine exerts 0.1321 Nm of torque on the blade.

Thus, the corrcet answers are : (a) 1.1905 rad/s². (b) 3.0383 rad/s. (c) 0.1321 Nm

To learn more about torque :

https://brainly.com/question/17512177

#SPJ11

White light falls normally on a transmission grating that contains N = 3834 lines. The grating has a width w=0.0203 m. a) Which formula can be used to calculate the separation distance d between successive slits on the grating? b) Calculate d. c) Assume d = 3.53·10¯6 m; at what angle & in degrees will red light ( λ = 6.1.107 m) emerge in the first-order spectrum? d) Calculate the wavelength of this red light (λ = 6.1 · 10−7 m), in a material where the index of refraction is 1.38.

Answers

The formula used to calculate the separation distance d between successive slits on the grating is given as follows: `d = w/N`B) Calculation of d:Given values: w=0.0203 m; N = 3834 lines.Substituting the values in the formula, we get`d = w/N``= 0.0203 m/3834``= 5.297 × 10^−6 m.

that λ = 6.1 × 10^-7 m and the refractive index n = 1.38, we use the formula: `λ = λ₀/n`where λ₀ is the wavelength of light in vacuum, and n is the refractive index.Substituting the values in the formula, we get: `λ₀ = λn``= 6.1 × 10^-7 m × 1.38``= 8.4 × 10^-7 m`Therefore, the wavelength of the red light in the given material is 8.4 × 10^-7 m.

When a white light falls normally on a transmission grating that contains N = 3834 lines, the formula used to calculate the separation distance d between successive slits on the grating is given as follows: `d = w/N`. Therefore, using this formula, we calculated d to be 5.297 × 10^-6 m.Given that d = 3.53 × 10^-6 m, and λ = 6.1 × 10^-7 m, using the formula `d sin θ = mλ`, we calculated the angle at which red light will emerge in the first-order spectrum to be θ = 10.05° (approx).Finally, given that λ = 6.1 × 10^-7 m and the refractive index n = 1.38, we used the formula `λ = λ₀/n` to calculate the wavelength of the red light in the given material to be 8.4 × 10^-7 m.

To know more about distance visit:

https://brainly.com/question/13034462

#SPJ11

Roberto is observing a black hole using the VLA at 22 GHz. What is the wavelength of the radio emission he is studying? (Speed of light – 3 x 10' m/s) a. 1.36 nm b. 1.36 mm c. 1.36 cm d. 1.36 m Mega

Answers

The wavelength of the radio emission that Roberto is studying is 1.36 m (option d).

Radio emission refers to the radiation of energy as electromagnetic waves with wavelengths ranging from less than one millimeter to more than 100 kilometers. As a result, the radio emission is classified as a long-wave electromagnetic radiation.The VLA stands for Very Large Array, which is a radio telescope facility in the United States. It comprises 27 individual antennas arranged in a "Y" pattern in the New Mexico desert. It observes radio emission wavelengths ranging from 0.04 to 40 meters.

Now, let's use the formula to find the wavelength of the radio emission;

v = fλ,where, v is the speed of light, f is the frequency of the radio emission, and λ is the wavelength of the radio emission.

Given that Roberto is observing a black hole using the VLA at 22 GHz, the frequency of the radio emission (f) is 22 GHz. The speed of light is given as 3 x 10⁸ m/s.

Substituting the given values in the formula above gives:

v = fλ3 x 10⁸ = (22 x 10⁹)λ

Solving for λ gives;

λ = 3 x 10⁸ / 22 x 10⁹

λ = 0.0136 m

Convert 0.0136 m to Mega ; 0.0136 m = 13.6 x 10⁻³ m = 13.6 mm = 1.36 m

Therefore, the wavelength of the radio emission that Roberto is studying is 1.36 m.

Learn more about radio emission https://brainly.com/question/9106359

#SPJ11

What must the magnitude of an isolated positive point charge be for the electric potential at 13 cm from the charge be +152 V? Give your answer in coulombs to 3 significant figures in scientific notation ( x.xx Exx )

Answers

The magnitude of an isolated positive point charge for the electric potential at 13 cm from the charge to be +152 V is 2.31 × 10^-6 C.

We can use the formula V=kQ/r, where V is the electric potential, k is Coulomb's constant (k=8.99 × 10^9 N·m^2/C^2), Q is the magnitude of the point charge, and r is the distance between the point charge and the location where the electric potential is measured.

In this case, we are given that the electric potential V is +152 V and the distance r is 13 cm (0.13 m).

Therefore, we can rearrange the formula to solve for Q:

Q=Vr/k= (152 V) × (0.13 m) / (8.99 × 10^9 N·m^2/C^2)

≈ 2.31 × 10^-6 C.

Thus, the magnitude of the isolated positive point charge must be 2.31 × 10^-6 C for the electric potential at 13 cm from the charge to be +152 V.

Learn more about electric potential here:

https://brainly.com/question/31173598

#SPJ11

A 0.10 g glass bead is charged by the removal of 1.0 x 10^10 electrons. what electric field strength will cause the bead to hang suspended in the air?

Answers

Answer & Explanation:

To solve this problem, we need to set the gravitational force acting on the bead equal to the electric force acting on it. The bead will hang suspended in the air when these two forces are equal.

The gravitational force [tex]\( F_g \)[/tex] is given by:

[tex]$$ F_g = m \cdot g $$[/tex]

where [tex]\( m \)[/tex] is the mass of the bead and [tex]\( g \)[/tex] is the acceleration due to gravity.

The electric force [tex]\( F_e \)[/tex] is given by:

[tex]$$ F_e = q \cdot E $$[/tex]

where [tex]\( q \)[/tex] is the charge of the bead and [tex]\( E \)[/tex] is the electric field strength.

Setting these two equal gives:

[tex]$$ m \cdot g = q \cdot E $$[/tex]

Solving for [tex]\( E \)[/tex] gives:

[tex]$$ E = \frac{m \cdot g}{q} $$[/tex]

Given that the mass [tex]\( m \)[/tex] of the bead is 0.10 g (or 0.10/1000 kg), the acceleration due to gravity [tex]\( g \)[/tex] is approximately 9.8 m/s², and the charge [tex]\( q \)[/tex] is the charge of [tex]1.0 x 10^10[/tex] electrons (with the charge of one electron being approximately [tex]\( 1.6 \times 10^{-19} \) C)[/tex], we can substitute these values into the formula to find the electric field strength. Let's calculate that.

The electric field strength that will cause the bead to hang suspended in the air is approximately [tex]\(6.13 \times 10^5\)[/tex] N/C (Newtons per Coulomb).

The law of conservation of momentum states that __________.
momentum is neither created nor destroyed
the momentum of any closed system does not change
the momentum of any system does not change
the momentum of any closed system with no net external force does not change

Answers

The law of conservation of momentum states that momentum is neither created nor destroyed in a closed system, meaning the total momentum remains constant.

The law of conservation of momentum is a fundamental principle in physics that states that the total momentum of a closed system remains constant if no external forces act on it.

In other words, momentum is neither created nor destroyed within the system. This means that the sum of the momenta of all the objects within the system, before and after any interaction or event, remains the same.

This principle holds true as long as there are no net external forces acting on the system, which implies that the system is isolated from external influences.

To learn more about momentum click here: brainly.com/question/30677308

#SPJ11

If the average frequency of ocean waves is about 20 per minute, what is the complementary frequencies needed to be paired with the following tones that would produce a beat frequency that is the same as the waves of the ocean.
a. A4 400 Hz b. E4 300 Hz c. C4 290 Hz

Answers

The complementary frequencies needed to produce a beat frequency equal to the waves of the ocean with tones A4, E4, and C4 are approximately 399.67 Hz, 299.67 Hz, and 289.67 Hz, respectively.

These frequencies create a perceptible beating effect when combined with the given tones.

To find the complementary frequencies that would produce a beat frequency equal to the waves of the ocean, we need to calculate the difference between the frequency of the tone and the average frequency of ocean waves (20 per minute). The beat frequency is the absolute value of this difference.

a. For the tone A4 with a frequency of 400 Hz:

Beat frequency = |400 Hz - 20 per minute|

= |400 Hz - (20/60) Hz|

= |400 Hz - 0.33 Hz|

≈ 399.67 Hz

The complementary frequency needed to produce a beat frequency equal to the ocean waves is approximately 399.67 Hz.

b. For the tone E4 with a frequency of 300 Hz:

Beat frequency = |300 Hz - 20 per minute|

= |300 Hz - (20/60) Hz|

= |300 Hz - 0.33 Hz|

≈ 299.67 Hz

The complementary frequency needed to produce a beat frequency equal to the ocean waves is approximately 299.67 Hz.

c. For the tone C4 with a frequency of 290 Hz:

Beat frequency = |290 Hz - 20 per minute|

= |290 Hz - (20/60) Hz|

= |290 Hz - 0.33 Hz|

≈ 289.67 Hz

The complementary frequency needed to produce a beat frequency equal to the ocean waves is approximately 289.67 Hz.

Therefore ,the complementary frequencies needed to be paired with the tones A4, E4, and C4 to produce a beat frequency equal to the waves of the ocean are approximately 399.67 Hz, 299.67 Hz, and 289.67 Hz, respectively.

Learn more about ocean waves from the given link:

https://brainly.com/question/31544786

#SPJ11

For a quantum particle of mass m in the ground state of a square well with length L and infinitely high walls, the uncertainty in position is \Delta x \approx L . (c) State how the result of part (b) compares with the actual ground-state energy.

Answers

The result of part (b), where the uncertainty in position is approximately equal to the length of the square well does not directly compare with the actual ground-state energy.

The uncertainty principle which states that there is a trade-off between the precision of measuring position and momentum, does not directly provide information about the energy levels of the system.

The actual ground-state energy can be calculated using the Schrödinger equation and depends on the specific properties of the system, such as the mass of the particle and the potential energy of the well.

To know more about position visit :

https://brainly.com/question/23709550

#SPJ11

A sample of n-moles of neon (a monatomic gas) is in a container at initial pressure, 3po, and initial volume, 11vo and undergoes the following thermodynamic cycle:

Answers

In the given thermodynamic cycle, the sample of neon gas undergoes a process that involves changes in pressure and volume. The initial conditions of the gas are specified as having an initial pressure of 3po and an initial volume of 11vo.


Unfortunately, the specific details of the thermodynamic cycle are not provided, so it's not possible to provide a more detailed answer without that information. However, it is worth noting that a thermodynamic cycle typically consists of a series of processes (e.g., isothermal, isobaric, adiabatic) that bring the system back to its initial state. It is important to have more information about the specific thermodynamic cycle being considered in order to provide a detailed answer.

The given information only specifies the initial pressure and volume of the neon gas sample, but it does not mention any subsequent processes or changes that occur during the cycle. A thermodynamic cycle is a sequence of processes that transform a system and bring it back to its initial state. These processes can be classified as isothermal, isobaric, adiabatic, or other types. Each process in the cycle is characterized by changes in pressure, volume, and/or temperature. Without the additional details, it is not possible to provide a more specific answer or calculation.

To know more about thermodynamic visit:

https://brainly.com/question/33422249

#SPJ11

The drawing shows a parallel plate capacitor that is moving with a speed of 34 m/s through a 4.3-T magnetic field. The velocity v is perpendicular to the magnetic field. The electric field within the capacitor has a value of 220 N/C, and each plate has an area of 9.3 × 10-4 m2. What is the magnitude of the magnetic force exerted on the positive plate of the capacitor?

Answers

The magnitude of the magnetic force exerted on the positive plate of the capacitor is 146.2q N.

In a parallel plate capacitor, the force acting on each plate is given as F = Eq where E is the electric field between the plates and q is the charge on the plate. In this case, the magnetic force on the positive plate will be perpendicular to both the velocity and magnetic fields. Therefore, the formula to calculate the magnetic force is given as F = Bqv where B is the magnetic field, q is the charge on the plate, and v is the velocity of the plate perpendicular to the magnetic field. Here, we need to find the magnetic force on the positive plate of the capacitor.The magnitude

of the magnetic force exerted on the positive plate of the capacitor. The formula to calculate the magnetic force is given as F = BqvWhere, B = 4.3 T, q is the charge on the plate = q is not given, and v = 34 m/s.The magnetic force on the positive plate of the capacitor will be perpendicular to both the velocity and magnetic fields. Therefore, the magnetic force exerted on the positive plate of the capacitor can be given as F = Bqv = (4.3 T)(q)(34 m/s) = 146.2q N

to know more about capacitors here:

brainly.com/question/31627158

#SPJ11

A 54.27 mg sample of 235U will have how many mg of 235 U remaining after 15,338,756.17 years have passed if the half-life of 235 U is 7.048x108 years?

Answers

The amount of 235U remaining after 15,338,756.17 years have passed will be 6.77 . Let N be the number of nuclei remaining after t years and N0 be the original number of nuclei before 15,338,756.17 years have passed.

Given mass of sample of 235U = 54.27 mg

Half life of 235U = 7.048x108 years

Time for which it is to be calculated = 15,338,756.17 years

Let N be the number of nuclei remaining after t years and N0 be the original number of nuclei before 15,338,756.17 years have passed.

Let the half-life of 235U be T1/2So, the number of nuclei remaining after a time t is given by the formula:

[tex]N = N0 (1/2)^(t/T1/2)[/tex]

If we divide both sides by N0 we get:

[tex]N/N0 = (1/2)^(t/T1/2)[/tex]

Now we need to find N, i.e. the number of nuclei remaining. So, multiply both sides by N0 we get:

[tex]N = N0 (1/2)^(t/T1/2)[/tex]

We know that the mass of a substance is directly proportional to the number of nuclei present, i.e.M α N

So, we can write:

[tex]M/M0 = N/N0[/tex]

Therefore:

N = N0 (M/M0)

Substituting the value of N in the equation:

[tex]N0 (M/M0) = N0 (1/2)^(t/T1/2)M/M0[/tex]

[tex]= (1/2)^(t/T1/2)M = M0 (1/2)^(t/T1/2)[/tex]

So, the amount of 235U remaining after 15,338,756.17 years have passed will be 6.77 mg (rounded off to two decimal places).

Therefore, the amount of 235U remaining after 15,338,756.17 years have passed will be 6.77 mg.

To know more about nuclei, visit:

https://brainly.com/question/32368659

#SPJ11

A long, straight wire carries a 13.0 A current. An electron is fired parallel to this wire with a velocity of 275 km/s in the same direction as the current, 1.80 cm from the wire. Part A Find the magnitude of the electron's initial acceleration. Express your answer to three significant figures and include the appropriate units. μА ? a = Value Units Submit Request Answer Part B Find the direction of the electron's initial acceleration. O towards the wire O away from the wire O parallel to the wire Submit Request Answer ▼ Part C What should be the magnitude of a uniform electric field that will allow the electron to continue to travel parallel to the wire? Express your answer to three significant figures and include the appropriate units. μA ? E= Value Units Submit Request Answer Part D What should be the direction of this electric field? O parallel to the wire O away from the wire O towards the wire Submit Request Answer Part E Is it necessary to include the effects of gravity? O yes O no Submit Request Answer Part F Justify your answer. Express your answer using one significant figure. 15| ΑΣΦ wwwww mg Fel Submit Request Answer ?

Answers

A) The magnitude of the electron's initial acceleration is 0.μA ; B) O towards the wire; C) E= 0.μA; D) O towards the wire; E) It is not necessary to include effects of gravity ; F) electron is moving too fast and is too light for gravitational force to have significant effect on its motion

Part A) The magnetic force exerted on the electron is given by F=ILBsin(θ),where I is the current, L is the length of the wire segment, B is the magnetic field due to the current, and θ is the angle between the direction of the current and the direction of the velocity. To find the initial acceleration of the electron, we use the equation F=ma, where F is the force on the electron and a is its acceleration.

The initial velocity of the electron v = 275 km/s = 2.75 × 10⁵ m/s. The distance of the electron from the wire r = 1.80 cm

= 0.018 m.

The electron is moving parallel to the wire, so θ = 0°.

Using the formula to calculate the magnetic force on the electron: F = ILBsin(θ) = (13.0 A)(0.018 m)(4π × 10⁻⁷ T m/A)(sin 0°)

= 0.

The force on the electron is zero because its velocity is parallel to the wire, which means it is perpendicular to the magnetic field produced by the current. Therefore, the initial acceleration of the electron is also zero. The magnitude of the electron's initial acceleration is 0.μA.

Part B) The initial acceleration of the electron is zero, so the direction of its initial acceleration is none. Therefore, the answer is O towards the wire.

Part C) For the electron to continue to travel parallel to the wire, the electric field applied should be such that it cancels out the magnetic force experienced by the electron. The magnetic force is given by F=ILBsin(θ).The direction of the magnetic force on the electron is perpendicular to the plane defined by the velocity and the wire, according to the right-hand rule. So, the electric field must also be perpendicular to the plane defined by the velocity and the wire. To find the magnitude of the electric field needed, we use the equation F=qE, where F is the force on the electron, q is its charge, and E is the electric field.

We have F=ILB sin(θ) = 0 (as calculated above).

q = -1.602 × 10⁻¹⁹ C (charge on an electron).

Therefore, the magnitude of the electric field needed is E=|F|/q

= 0/-1.602 × 10⁻¹⁹ C

= 0 V/m.

The magnitude of the uniform electric field should be zero. E= 0.μA.

Part D) To determine the direction of the magnetic force on the electron, we use the right-hand rule. If we extend our right hand and point the thumb in the direction of the electron's velocity, and the fingers in the direction of the magnetic field due to the current, then the palm points in the direction of the magnetic force experienced by the electron. In this case, the palm of our hand points down, so the direction of the magnetic force is down. Therefore, the direction of the electric field that cancels out the magnetic force must be up. Therefore, the direction of the electric field is O towards the wire.

Part E) It is not necessary to include the effects of gravity. The electron is moving too fast and is too light for the gravitational force to have a significant effect on its motion.

Part F) Justification: The electron is moving too fast and is too light for the gravitational force to have a significant effect on its motion. Therefore, the effects of gravity can be ignored.

To know more about acceleration, refer

https://brainly.com/question/460763

#SPJ11

Consider a system of 2.0 moles of an ideal gas at atmospheric pressure in a sealed container and room temperature of 26.5°C. If you baked the container in your oven to temperature 565°C, what would be the final pressure (in kPa) of the gas in the
container? Round your answer to 1 decimal place.

Answers

The final pressure of the gas in the container will be 100.6 kPa.

According to the ideal gas law, PV=nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin. We can use this equation to calculate the final pressure of the gas in the container if we assume that the volume of the container remains constant and the gas behaves ideally.

At room temperature (26.5°C or 299.65 K) and atmospheric pressure (101.325 kPa), we have:

P1 = 101.325 kPaT1 = 299.65 KP1V1/n1R = P2V2/n2RT2

Therefore, P2 = (P1V1T2) / (V2T1) = (101.325 kPa x 2 moles x 838.15 K) / (2 moles x 299.65 K) = 283.9 kPa.

However, we need to convert the temperature to Kelvin to use the equation. 565°C is equal to 838.15 K.

Therefore, the final pressure of the gas in the container will be 100.6 kPa (rounded to 1 decimal place).

Learn more about pressure:

https://brainly.com/question/31519216

#SPJ11

Question 12 What is the resulting voltage if 3.93 A of current flow pass through a 1,500 resistor? Round to the nearest whole number. Do not label your answer. Question 1 When two pieces of aluminum foil are brought close to each other, there is no interaction between them. When a charged piece of tape is brought close to a piece of aluminum foil, the objects are attracted to each other. Which of the following statements are true? The tape has a charge imbalance, but it is unknown whether there are more positive or negative charges. The aluminum foil has been charged by induction. The aluminum foil has an overall neutral charge. The tape has been charged by conduction. The tape must have more electrons than protons. Overall, the tape has the same number of protons as electrons.

Answers

Question 12: The resulting voltage can be calculated using Ohm's Law, which states that voltage (V) is equal to current (I) multiplied by resistance (R). In this case, the current is 3.93 A and the resistance is 1,500 Ω. Therefore, the resulting voltage would be V = 3.93 A * 1,500 Ω = 5,895 V. Rounded to the nearest whole number, the resulting voltage is 5,895 V.

Question 1: The correct statements are:

The tape has a charge imbalance, but it is unknown whether there are more positive or negative charges.

The aluminum foil has been charged by induction.

The tape has been charged by conduction.

Overall, the tape has the same number of protons as electrons.

When two pieces of aluminum foil are brought close to each other, there is no interaction because they have neutral charges. However, when a charged piece of tape is brought close to the aluminum foil, it induces a separation of charges in the aluminum foil, resulting in an attraction between them. This is known as charging by induction. The tape itself becomes charged through conduction, which involves the transfer of charge between objects in direct contact. The exact nature of the charge on the tape (whether positive or negative) is unknown based on the information given. Therefore, it is correct to say that the tape has a charge imbalance, and the overall number of protons and electrons in the tape remains the same.

To know more about resulting voltage click this link -

brainly.com/question/32416686

#SPJ11

Other Questions
Put yourself in the position of someone who is establishing an organization from the ground up. What type of leader would you want to be? How would you create that image or perception? Do you create a mission statement for the firm, a code of conduct? What process would you use to do so? Would you create an ethics and/or compliance program and how would you then integrate the mission statement and program throughout your organization? What do you anticipate might be your successes and challenges? A Honda Civic travels in a straight line along a road. Its distancex from a stop sign is given as a function of timet by the equation x(t) = t2- t3,where =1.60 m/s2 and = 0.0450 m/s3. Calculate the averagevelocity of the car for the following time intervals.(a) t = 0 to t = 1.60 s(b) t = 0 to t = 2.60 s(c) t = 1.60 s to t= 2.60 s An asset was issued 14 months ago. The asset promised just one cash flow of $3000, to be paid to the owner exactly 6 years from the date that the asset was issued. If the required rate of return on this asset is 6%, then what is its present value? Round your answer to the nearest dollar. What is 1,0000 2,0000 Myriad Genetics 1) patented "life" materials, or genetic materials (the BRCA1 and BRCA2 genes) 2) assisted in Dr. Ananda Chakrabarty's work on the pseudomonas "superbug" 3) legally controlled the right to test for certain genes 4) a. and b. 5) b. and c. 6) a. and c. 7) a., b., and c. What is the pressure inside a 310 L container holding 103.9 kg of argon gas at 21.0 C ? X Incorrect; Try Again; 4 attempts remaining In 1-2 pages, explain the difference between burglary and larceny. Provide and example of each. Are these types of cases easy to solve? What is the success rate of solving these types of cases in your jurisdiction? Oftentimes, employees would get to hear wonderful advice from the management of organizations. One such advice is that employees must leave all personal issues upon entering the premises in the workplace. Often times too, and more so if the managers or executives are familiar with Organizational Behavior (maybe because they took Organizational Behavior during university), the concept of Organizational Citizenship behavior are conjured to implore employees to leave out personal problems out of the workplace.By applying the Interactionist Perspective, illustrate the fallacy of the above statement that one can simply leave personal problems out of the workplace. 5 marksBy using the Two Factor Theory (also known as Herzberg's motivation-hygiene theory) suggest a better way how business organizations can overcome the unavoidable and negative impact of personal problems spilling over in the workplace. Which of the following is true of Milgrams famous study on obedience? choose best answerThe "learner," who had a heart condition, ended up dying from the effect of the electric shocksMost participants backed out of the experiment early on, since they didnt feel comfortable delivering electric shocksNearly two-thirds of participants continued to deliver electric shocks even after the "learner" screamed and fell silentAll participants continued to deliver electric shocks after the "learner" screamed, and most seemed to enjoy delivering the shocks need help to understand Question 3 Thesestinated dernasd fitnction and the estimnted sapply function for rice in Venertula are the following Q=502PQ=10+2Pwhere P is in dollass per kg and Q is in miltsons of kg. (i) Calculate the equilibeium price and quantity. (ii) The government impoess a price oriling at the peice of $5. What is the effect of the price ceiling? Identify the price and quantity exchangod in the maricet. (ii)) Instend of the price ceiling, the goverament chooses to provide a nubsidy to the producers of $5 per kg. (a) What are the price that consumers pay, the price that producers receive and the quantity exchanged in the market? (b) Calculate the subsidy incidence on consumers? (c) How much does the government spend in the-subsidy? (d) Compare the two policies. Question 4 The income elasticity of demand for iPad Pro in Baltimore is 0.5. Calculite what in the eltect on the quantity demanded of an increase in income of 20%. How were Pericles and Alexander the Great different with theirleadership styles? 5 to 8 sentences pleaseOne issue debated at a UN conference was the question of whether housing is a universal right (a position supported by most less-developed countries) or just a need (supported by the United States and several other more-developed countries). What is your position on this issue? Defend your choice. 9. Explain what is meant by the statement "Metabotropic receptors act via second messengers."10. Explain why it is the receptor and not the neurotransmitter that determines whether the postsynaptic membrane produces an EPSP or an IPSP.11. A kangaroo is able to increase greatly its rate of movement on a flat surface without appreciable cost of transport. Yet, when it is forced to jump uphill, its oxygen consumption spikes tremendously. Why is this?12. How do motor units regulate the force of muscle contraction?13. Why doesn't a muscle continue to contract once the calcium is released?14. Why don't postsynaptic membranes continue to depolarize after a neurotransmitter binds to their receptors? The rate of decomposition of H2O2 is 610-4 M/min. What is the rate of production of oxygen assuming H2O2 decomposes into H20 and Oz? (Hint: write a balanced equation for this process first) a. -1.2x10-3 M/min O b. 6x10-4 M/min O c. 3x10-4 M/min Od 3x10-4 M/min O e 1.2x10-3 M/min f. -6*10-4 M/min Clear my choice For your Course Project, you will be exploring concepts associated with managed care. The purpose of your Course Project is to demonstrate your understanding, comprehension, and mastery of these concepts. Throughout this semester you will be acquiring knowledge on managed care topics, trends, as well as terminology. You will apply this new knowledge to your Course Project.Choose five concepts covered in the course from different weeks. Create an in depth power point presentation for the five concepts you choose. Your presentation should be instructive to the viewer to clarify, explain and describe the concepts chosen. Be creative and include some visuals to make your presentation appealing and readable.A title slide with your name, course, and labeled Final Course ProjectAll credits in APA Style. You must credit the sources of your information within the slide and at the end in a separate slide for citations in APA format.A minimum of five concepts examinedThere should be at least seven slides: a title, five concepts, and a citation slide.These below are the concept of which needed for this project.1)Utilization and quality management in managed care2)Claims process3)State and federal oversight of managed care4)Function of board of directors in managed care organizations5)Medicare, how it is paid Suppose you take a weekend trip to a city 3 (d) miles away. Develop a model that determines your gasoline costs for such a trip. What assumptions or approximations are necessary to treat this model as a deterministic model? Are these assumptions or approximations acceptable to you? Consider a $ 1,000 4-year bond with an annual coupon of 3 % and a market yield of 5 % . Calculate the duration of the bond 3.14 4 3.82 3.20 If m equals zero, the AD curve is: a. horizontal. b. relatively steep. C. relatively flat. d. e. vertical. Not enough information is given. HELPPP ME BRAIN IS FRYINGGGG Steam Workshop Downloader