Part 1: The energy (in eV) of a photon with a wavelength of 7.61 nm is to be determined.
Part 2: The wavelength (in nm) corresponding to a photon with an energy of 4.72 eV is to be found.
Part 3: The work function (in eV) of a metal, given a light wavelength of 586.0 nm and a maximum kinetic energy of ejected electrons of 0.514 eV, needs to be calculated.
Let's analyze each part in a detailed way:
⇒ Part 1:
The energy (E) of a photon can be calculated using the equation:
E = hc/λ,
where h is Planck's constant (6.626 × 10^(-34) J ∙ s), c is the speed of light (3.00 × 10^8 m/s), and λ is the wavelength of the photon.
Converting the wavelength to meters:
λ = 7.61 nm = 7.61 × 10^(-9) m.
Substituting the values into the equation:
E = (6.626 × 10^(-34) J ∙ s × 3.00 × 10^8 m/s) / (7.61 × 10^(-9) m).
⇒ Part 2:
To find the wavelength (λ) corresponding to a given energy (E), we rearrange the equation from Part 1:
λ = hc/E.
Substituting the given values:
λ = (6.626 × 10^(-34) J ∙ s × 3.00 × 10^8 m/s) / (4.72 eV × 1.60 × 10^(-19) J/eV).
⇒ Part 3:
The maximum kinetic energy (KEmax) of ejected electrons is related to the energy of the incident photon (E) and the work function (Φ) of the metal by the equation:
KEmax = E - Φ.
Rearranging the equation to solve for the work function:
Φ = E - KEmax.
Substituting the given values:
Φ = 586.0 nm = 586.0 × 10^(-9) m,
KEmax = 0.514 eV × 1.60 × 10^(-19) J/eV.
Using the energy equation from Part 1:
E = hc/λ.
To know more about photoelectric effect, refer here:
https://brainly.com/question/9260704#
#SPJ11
Part A If the magnetic field in a traveling EM wave has a peak magnitude of 20.0 nT , what is the peak magnitude of the electric field? E =
The peak magnitude of the electric field is 6.00 N/C.
Given that the magnetic field in a traveling electromagnetic wave has a peak magnitude of 20.0 nT.
We are to calculate the peak magnitude of the electric field.
The formula that relates the magnetic field and the electric field in a travelling electromagnetic wave is;
`E/B = c`
Where, `E` is the electric field, `B` is the magnetic field, and `c` is the speed of light.
Substitute the values in the formula
`E/B = c`; `B = 20.0 nT`, `c = 3 × 10⁸ m/s`.
Therefore; `E/20.0 × 10⁻⁹ = 3 × 10⁸`
Rearrange the above equation and solve for `E`:
`E = B × c`
`E = 20.0 × 10⁻⁹ × 3 × 10⁸`
`E = 6.00 N/C`
Hence, the peak magnitude of the electric field is 6.00 N/C.
Let us know more about magnetic field : https://brainly.com/question/30331791.
#SPJ11
Part A How many newtons does a 200 lb person weigh? Express your answer in newtons, 1971, ΑΣΦ (9) W= Submit Previous Answers Request Answer X Incorrect; Try Again; 2 attempts remaining Part B Should a veterinarian be skeptical if someone said that her adult collie weighed 40 N? Yes. Request Answer Part C Should a nurse have questioned a medical chart showing that an average-looking patient had a mass of 200 kg? No. Yes. Submit Request Answer O No. Submit ?
Part A: To convert pounds to newtons, we need to use the conversion factor of 4.45 N = 1 lb.200 lb x 4.45 N/lb = 890 N. Therefore, a 200 lb person weighs 890 newtons.
Part B: Yes, a veterinarian should be
skeptical
if someone said that her adult collie weighed 40 N. This is because 40 N is an unrealistically low weight for an adult collie.
A
typical weight
range for an adult collie is 55-75 pounds, which is equivalent to 245-333 N.Part C: Yes, a nurse should have questioned a medical chart showing that an average-looking patient had a mass of 200 kg. This is because 200 kg is an unrealistically high mass for an average-looking patient. A typical weight range for an adult human is 50-100 kg, which is equivalent to 490-980 N.
Therefore, a
nurse
should have questioned this measurement and ensured that it was correct.Explanation:Part A: In this part of the question, we are asked to convert pounds to newtons. To do this, we need to use the conversion factor of 4.45 N = 1 lb. This means that to convert pounds to newtons, we need to multiply the weight in pounds by 4.45.Part B: In this part of the question, we are asked whether a veterinarian should be skeptical if someone said that her adult collie weighed 40 N. The answer is yes because 40 N is an unrealistically low weight for an adult collie.
A typical weight range for an
adult collie
is 55-75 pounds, which is equivalent to 245-333 N.Part C: In this part of the question, we are asked whether a nurse should have questioned a medical chart showing that an average-looking patient had a mass of 200 kg. The answer is yes because 200 kg is an unrealistically high mass for an average-looking patient. A typical weight range for an adult human is 50-100 kg, which is equivalent to 490-980 N. Therefore, a nurse should have questioned this measurement and ensured that it was correct.
to know more about
skeptical
pls visit-
https://brainly.com/question/29215244
#SPJ11
On a horizontal table, a 12 kg mass is attached to a spring strength given by k = 200 N/ke, and the spring is compressed 4.0 metres. (e. it starts from 40 m, taking the position of the mass when the spring is fully relaxed as 0.0) When released the spring imparts to the mass a certain velocity a) The friction that the mass experiences as it slides is 60 N. What is the velocity when the spring has half- relaxed? (ie. when it is at -2,0 m.) b) What is the velocity of the mass when the spring is fully relaxed (x=00)? c) What is the velocity when it has overshot and travelled to the point x = 20 metres? 1) Where does the mass come to a stop? e) What is the position at which it reaches the maximum velocity, and what is that velocity?
The position at which the object reaches maximum velocity is x = 0.0 m, and the velocity at this point is zero. The object comes to a stop when it has overshot and reached x = 20.0 m, it doesn't reach a positive velocity. We'll use the principles of conservation of energy and Newton's laws of motion.
Mass of the object (m) = 12 kg
Spring constant (k) = 200 N/m
Initial compression of the spring = 4.0 m
Frictional force = 60 N
(a) Velocity when the spring has half-relaxed (x = -2.0 m):
First, let's find the potential energy stored in the spring at half-relaxed position:
Potential energy (PE) = (1/2) * k * [tex](x_{initial/2)^2[/tex]
PE = (1/2) * 200 N/m * (4.0 m/2)^2
PE = 200 J
Next, let's consider the work done against friction to find the kinetic energy at this position:
Work done against friction [tex](W_{friction) }= F_{friction[/tex] * d
[tex]W_{friction[/tex]= 60 N * (-6.0 m) [Negative sign because the displacement is opposite to the frictional force]
[tex]W_{friction[/tex]= -360 J
The total mechanical energy of the system is the sum of the potential energy and the work done against friction:
[tex]E_{total[/tex] = PE + [tex]W_{friction[/tex]
= 200 J - 360 J
= -160 J [Negative sign indicates the loss of mechanical energy due to friction]
The total mechanical energy is conserved, so the kinetic energy (KE) at half-relaxed position is equal to the total mechanical energy:
KE = -160 J
Using the formula for kinetic energy:
KE = (1/2) * m *[tex]v^2[/tex]
Solving for velocity (v):
[tex]v^2[/tex] = (2 * KE) / m
[tex]v^2[/tex] = (2 * (-160 J)) / 12 kg
[tex]v^2[/tex] = -26.67 [tex]m^2/s^2[/tex] [Negative sign due to loss of mechanical energy]
Since velocity cannot be negative, we can conclude that the object comes to a stop when the spring has half-relaxed (x = -2.0 m). It doesn't reach a positive velocity.
(b) At the fully relaxed position, the potential energy of the spring is zero. Therefore, all the initial potential energy is converted into kinetic energy.
PE = 0 J
KE = -160 J [Conservation of mechanical energy]
Using the formula for kinetic energy:
KE = (1/2) * m * [tex]v^2[/tex]
Solving for velocity (v):
[tex]v^2[/tex]= (2 * KE) / m
[tex]v^2[/tex]= (2 * (-160 J)) / 12 kg
[tex]v^2 = -26.67 m^2/s^2[/tex] [Negative sign due to loss of mechanical energy]
Again, since velocity cannot be negative, we can conclude that the object comes to a stop when the spring is fully relaxed (x = 0.0 m). It doesn't reach a positive velocity.
(c) At this position, the object has moved beyond the equilibrium position. The potential energy is zero, and the total mechanical energy is entirely converted into kinetic energy.
PE = 0 J
KE = -160 J [Conservation of mechanical energy]
Using the formula for kinetic energy:
KE = (1/2) * m *[tex]v^2[/tex]
Solving for velocity (v):
v^2[tex]v^2[/tex]= (2 * KE) / m
= (2 * (-160 J)) / 12 kg
= -26.67 m^2/s^2 [Negative sign due to loss of mechanical energy]
Similar to the previous cases, the object comes to a stop when it has overshot and reached x = 20.0 m. It doesn't reach a positive velocity.
(d) From the previous analysis, we found that the mass comes to a stop at x = -2.0 m, x = 0.0 m, and x = 20.0 m. These are the positions where the velocity becomes zero.
(e) The maximum velocity occurs at the equilibrium position (x = 0.0 m) since the object experiences no net force and is free from friction.
Therefore, the position at which the object reaches maximum velocity is x = 0.0 m, and the velocity at this point is zero.
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11
Calculate the kinetic energy of an electron moving at 0.645 c. Express your answer in MeV, to three significant figures. (Recall that the mass of a proton may be written as 0.511MeV/c2.)
The kinetic energy of the electron moving at 0.645 c is approximately 0.157 MeV, rounded to three significant figures.
To calculate the kinetic energy of an electron moving at 0.645 c, we can use the relativistic formula for kinetic energy:
KE = (γ - 1) * m₀ * c²
The kinetic energy (KE) of an electron moving at 0.645 times the speed of light (c) can be determined using the Lorentz factor (γ), which takes into account the relativistic effects, the rest mass of the electron (m₀), and the speed of light (c) as a constant value.
Speed of the electron (v) = 0.645 c
Rest mass of the electron (m₀) = 0.511 MeV/c²
Speed of light (c) = 299,792,458 m/
To calculate the Lorentz factor, we can use the formula:
γ = 1 / sqrt(1 - (v/c)²)
Substituting the values into the formula:
γ = 1 / sqrt(1 - (0.645 c / c)²)
= 1 / sqrt(1 - 0.645²)
≈ 1 / sqrt(1 - 0.416025)
≈ 1 / sqrt(0.583975)
≈ 1 / 0.764118
≈ 1.30752
Now, we can calculate the kinetic energy by applying the following formula:
KE = (γ - 1) * m₀ * c²
= (1.30752 - 1) * 0.511 MeV/c² * (299,792,458 m/s)²
= 0.30752 * 0.511 MeV * (299,792,458 m/s)²
≈ 0.157 MeV
Therefore, the kinetic energy of the electron moving at 0.645 c is approximately 0.157 MeV, rounded to three significant figures.
Learn more about kinetic energy at: https://brainly.com/question/8101588
#SPJ11
For a double-slit configuration where the slit separation is 4 times the slit width, how many bright interference fringes lie in the central peak of the diffraction pattern?
For a double-slit configuration where the slit separation is 4 times the slit width, only one bright interference fringe lies in the central peak of the diffraction pattern.
In a double-slit interference pattern, the bright interference fringes occur when the path difference between the waves from the two slits is an integer multiple of the wavelength of light. The central peak of the diffraction pattern corresponds to the point where the path difference is zero.
Given that the slit separation is 4 times the slit width, we can denote the slit separation as "d" and the slit width as "w".
Therefore, we have:
d = 4w
To find the number of bright interference fringes in the central peak, we need to determine the condition for constructive interference at the center. This occurs when the path difference is zero, which means the waves from the two slits are in phase.
For the central peak, the path difference is zero, so we have:
mλ = 0
where "m" is the order of the fringe and λ is the wavelength of light.
Since the path difference is zero, we can write:
d*sinθ = mλ
where θ is the angle between the central peak and the fringes.
For the central peak, sinθ = 0, which means θ = 0. Substituting this into the equation, we have:
d*sin0 = mλ
0 = mλ
Since sinθ = 0, this implies that the only solution for m is m = 0. Therefore, there is only one bright interference fringe in the central peak of the diffraction pattern.
In summary, for a double-slit configuration where the slit separation is 4 times the slit width, only one bright interference fringe lies in the central peak of the diffraction pattern.
Learn more about Bright Interference Fringes at
brainly.com/question/29487127
#SPJ4
Question 8 (1 point) A baseball player is trying to determine her maximum throwing distance. She must release the ball: OA) OB) horizontally OC) at an angle of 45° D) at an angle that lets the ball reach the highest possible height E) at an angle between 45° and 90° so that it has maximum possible speed, regardless of angle Question 2 (1 point) A ball is thrown to the north and is experiencing projectile motion. What are the directions of the acceleration and instantaneous velocity, respectively, of the ball at maximum height (e.g., the peak of its trajectory)? OA) north, north OB) down, north OC) up, north D) down, down E) north, down
A baseball player is trying to determine her maximum throwing distance. She must release the ball C) At an angle that lets the ball reach the highest possible height
In order to achieve the maximum throwing distance, the ball should be released at an angle that allows it to reach the highest possible height. This is because the horizontal distance covered by the ball is maximized when it is released at an angle that results in the longest flight time. By reaching a higher height, the ball stays in the air for a longer duration, allowing it to travel a greater horizontal distance before landing.
Releasing the ball horizontally (option A) would result in a shorter throwing distance since it would have a lower trajectory and not take advantage of the vertical component of the velocity. Releasing the ball at a specific angle of 45° (option C) would result in an optimal balance between vertical and horizontal components, maximizing the throwing distance. Releasing the ball at an angle between 45° and 90° (option E) would result in a higher initial speed, but the trajectory would be more vertical, leading to a shorter overall distance. Releasing the ball at an angle that lets it reach the highest possible height (option D) would also result in a shorter throwing distance since the focus is on maximizing the height rather than the horizontal distance.
Learn more about trajectory here:
https://brainly.com/question/88554
#SPJ11
An object takes 7.5 years to orbit the Sun. What is its average distance (in AU) from the Sun? x Use Kepler's Thirdtaw to solve for the average distance in AU.
According to Kepler's Third Law of Planetary Motion, the square of the period (in years) of an orbiting object is proportional to the cube of its average distance (in AU) from the Sun.
That is:
`T² ∝ a³`
where T is the period in years, and a is the average distance in AU.
Using this formula, we can find the average distance of the object from the sun using the given period of 7.5 years.
`T² ∝ a³`
`7.5² ∝ a³`
`56.25 ∝ a³`
To solve for a, we need to take the cube root of both sides.
`∛(56.25) = ∛(a³)`
So,
`a = 3` AU.
the object's average distance from the sun is `3` AU.
you can learn more about Planetary Motion at: brainly.com/question/30455713
#SPJ11
Using Kepler's Third Law, we find that an object that takes 7.5 years to orbit the Sun is, on average, about 3.83 Astronomical Units (AU) from the Sun.
Explanation:To solve this problem, we will make use of Kepler's Third Law - the square of the period of an orbit is proportional to the cube of the semi-major axis of the orbit. This can be represented mathematically as p² = a³, where 'p' refers to the period of the orbit (in years) and 'a' refers to the semi-major axis of the orbit (in Astronomical Units, or AU).
In this case, we're given that the orbital period of the object is 7.5 years, so we substitute that into the equation: (7.5)² = a³. This simplifies to 56.25 = a³. We then solve for 'a' by taking the cube root of both sides of the equation, which gives us that 'a' (the average distance from the Sun) is approximately 3.83 AU.
Therefore, the object is on average about 3.83 Astronomical Units away from the Sun.
Learn more about Kepler's Third Law here:https://brainly.com/question/31435908
#SPJ12
If a 2.5 m long string on the same wave machine has a tension of 240 N, and the wave speed is 300 m/s, determine the mass of the string?
The mass of the string is approximately 0.006675 kg.
To determine the mass of the string, we can use the wave equation that relates the wave speed (v), tension (T), and linear mass density (μ) of the string:
v = √(T/μ)
Given:
Wave speed (v) = 300 m/s
Tension (T) = 240 N
Length of the string (L) = 2.5 m
We need to solve for the linear mass density (μ).
Rearranging the equation, we get:
μ = T / v^2
Substituting the given values:
μ = 240 N / (300 m/s)^2
μ = 240 N / 90000 m^2/s^2
μ ≈ 0.00267 kg/m
The linear mass density of the string is approximately 0.00267 kg/m.
To find the mass of the string, we multiply the linear mass density (μ) by the length of the string (L):
Mass = μ * Length
Mass = 0.00267 kg/m * 2.5 m
Mass ≈ 0.006675 kg
Therefore, the mass of the string is approximately 0.006675 kg.
Learn more about density from the given link :
https://brainly.com/question/1354972
#SPJ11
A 300-kg bomb is at rest. When it explodes it separates into two pieces. A 100kg piece is thrown at 50m/s to the right. Determine the speed of the second piece.
Sphere: 2/5 ^
Disk:1/2 ^
Ring: ^
Given: The mass of the bomb, M = 300 kgThe mass of one of the pieces after explosion, m1 = 100 kgThe velocity of m1 after the explosion, u1 = 50 m/sAnd, the velocity of the second piece after the explosion, u2 = ?We know that the total momentum before the explosion is equal to the total momentum after the explosion.
Total momentum before explosion = 0 (Since the bomb is at rest)Total momentum after explosion = m1 × u1 + m2 × u2where m2 = (M - m1) is the mass of the second piece.Let's calculate the momentum of the first piece.m1 × u1 = 100 × 50 = 5000 kg m/sLet's calculate the mass of the second piece.m2 = M - m1 = 300 - 100 = 200 kgNow, we can calculate the velocity of the second piece.
m1 × u1 + m2 × u2 = 0 + (m2 × u2) = 5000 kg m/su2 = 5000 / 200 = 25 m/sTherefore, the speed of the second piece is 25 m/s.More than 100 words:The total momentum before and after the explosion will remain conserved. Therefore, we can calculate the velocity of the second piece by using the law of conservation of momentum.
It states that the total momentum of an isolated system remains constant if no external force acts on it. Initially, the bomb is at rest; therefore, the total momentum before the explosion is zero. However, after the explosion, the bomb separates into two pieces, and the momentum of each piece changes.
By using the law of conservation of momentum, we can equate the momentum of the first piece with that of the second piece. Hence, we obtain the relation, m1 × u1 + m2 × u2 = 0, where m1 and u1 are the mass and velocity of the first piece, and m2 and u2 are the mass and velocity of the second piece. We are given the values of m1, u1, and m2; therefore, we can calculate the velocity of the second piece.
To know more about explosion visit:
https://brainly.com/question/31831890
#SPJ11
A proton traveling at 20.7° with respect to the direction of a magnetic field of strength 3.59 m experiences a magnetic force of 5.64 x
10^-17 N. Calculate (a) the proton's speed and (b) its kinetic energy in electron-volts.
Velocity of the proton (v) = 2.9 × 10⁷ m/s
Kinetic energy of the proton = 4.2 × 10⁻¹² eV
Magnetic field strength = 3.59 mT = 3.59 × 10⁻³ T
Angle of incidence (θ) = 20.7°
Force experienced by the proton = 5.64 × 10⁻¹⁷ N
Charge on the proton = 1.6 × 10⁻¹⁹ C
Velocity of the proton (v) = ?
We know that force on a charged particle moving in a magnetic field is given by,
F = Bqv …….(1)
where,
F = Magnetic force on the charged particle
q = Charge on the particle
v = Velocity of the charged particle
B = Magnetic field strength at the location of the charged particle
Putting the values in equation (1),
5.64 × 10⁻¹⁷ = (3.59 × 10⁻³) (1.6 × 10⁻¹⁹) v ……(2)
From equation (2),
Velocity of the proton (v) = 2.9 × 10⁷ m/s (approximately)
Let mass of the proton = m
Kinetic energy of a particle is given by,
K = 1/2mv² …….(3)
Putting the values in equation (3),
Kinetic energy of the proton = 4.2 × 10⁻¹² eV (approximately)
Therefore, Velocity of the proton (v) = 2.9 × 10⁷ m/s
Kinetic energy of the proton = 4.2 × 10⁻¹² eV
Learn more about the kinetic energy:
brainly.com/question/8101588
#SPJ11
A pulsar la rotating neutron star) has a mass of 1.43 solar masses and rotates with a period of 2.7575 1 solar mass is the mass of our Sun or 1.988 x 100 kg (A) What is the angular speed of the pulsar? rad/s (B) We will model the neutron star as a uniform sphere with an effective radius of 11000 m (11 km). With this model what would its rotational Inertia be? 'pulsar What is the rotational (kinetic) energy of the pulsar? KErot (D) The pulsar loses energy and slows down very slowly. Every second the pulsar's frequency changes by only A/ - 2.6970 x 10-15 Hz or A 1.6946 x 10-12 rad/s. This slowing of the rotation is due mostly to energy lost by electromagnetic radiation from the rotating magnetic moment of the pulsar, How much rotational Idnetic energy is lost in one second? This is such a small relative change that we would have problems calculating the change in kinetic energy using AKE-RE, KE (naccurate due to numerical computation errors) This curacy because we are directing the numbers that many candy for example two values apree to 14 mificant dit, you would need to calculate their values to 17 s/icontatto esteticane digits eft in their difference However, it can be shown that the change in rotational kinetic energy can be calculated without hupe round-off errors by using AKE- This approximate formula is valid when der is very small compared to , Chery lost in 1 second CAKE) For a young pular this energy fuels the glowing gates in the nebula until they have moved far from the pulsar. Due Sur NAM
The angular speed is 2.277 rad/s, the rotational inertia is [tex]1.37\times10^{38} kgm^2[/tex], the rotational energy is [tex]3.55\times10^{38} J[/tex] and the change in rotational energy is [tex]-5.286\times10^{26}J[/tex].
(a) To find the angular speed of the pulsar, we use the formula:
[tex]angular speed =\frac {2\pi}{period}[/tex].
Substituting the given period of 2.7575 seconds,
[tex]angular speed=\frac{2\pi}{2.7575}=2.277 rad/s.[/tex]
Therefore, the angular speed is approximately 2.277 rad/s.
(b) The rotational inertia of a uniform sphere is given by the formula:
Rotational Inertia =[tex](\frac{2}{5}) mass\times radius^2[/tex].
Substituting the mass of the pulsar (1.43 solar masses or 2.846 × 10^30 kg) and the effective radius (11 km or 11,000 m),we get
Rotational Inertia =[tex](\frac{2}{5} )\times 2.846\times10^{30}\times (11,000)^2=1.37\times10^{38}.[/tex]
Therefore, the rotational inertia to be approximately [tex]1.37\times 10^{38} kgm^2[/tex].
(c) The rotational (kinetic) energy of the pulsar is given by the formula:
Rotational Energy = [tex](\frac{1}{2}) rotational inertia \times angular speed^2[/tex].
Substituting the calculated values for rotational inertia and angular speed,
Rotational Energy = [tex](\frac{1}{2})\times 1.37\times10^{38} \times (2.277)^2=3.55\times 10^{38} J[/tex]
Therefore, the rotational energy is approximately [tex]3.55 \times 10^{38} J[/tex].
(d) The change in rotational kinetic energy can be calculated using the formula:
Change in rotational energy = -angular speed x change in angular speed x rotational inertia.
Substituting the given change in angular speed (-1.6946 × 10^(-12) rad/s) and the calculated rotational inertia, we find the change in rotational energy
Change in rotational energy = [tex]2.277\times(-1.6946\times10^{-12})\times (1.37\times10^{38})=-5.286\times10^{26}J[/tex]
Therefore, the change in rotational energy is approximately [tex]-5.286 \times 10^{26} J[/tex].
In conclusion, the angular speed is 2.277 rad/s, the rotational inertia is [tex]1.37\times10^{38} kgm^2[/tex], the rotational energy is [tex]3.55\times10^{38} J[/tex] and the change in rotational energy is [tex]-5.286\times10^{26}J[/tex].
Learn more about inertia here: brainly.com/question/1140505
#SPJ11
The figure shows two filters with white light approaching them. The influence of each filter is shown. (Refer to Sec. 9.4B.) (a) Which filter is dichroic? Which is gelatin? (b) Describe what happens to the blue, green, and red components of the incident light in each case. (c) If the reflected and transmitted beams are both shined on a common point on a white screen, what will be the resulting color for each filter? Explain.
In the figure, the dichroic filter is the one that shows selective reflection or transmission based on the color of light. The gelatin filter, on the other hand, absorbs certain colors of light.
(b) For the dichroic filter, the blue, green, and red components of the incident light will be selectively reflected or transmitted based on their wavelengths. The filter allows certain colors to pass through or be reflected while blocking others.
For the gelatin filter, the blue, green, and red components of the incident light will be absorbed to varying degrees. The filter will selectively absorb certain colors while allowing others to pass through.
(c) If the reflected and transmitted beams from both filters are shined on a common point on a white screen, the resulting color will depend on the colors that are reflected or transmitted by each filter. For the dichroic filter, the resulting color will be the color that is predominantly reflected or transmitted. For the gelatin filter, the resulting color will be the color that is least absorbed.
To know more about dichroic click here: brainly.com/question/29734107
#SPJ11
10. (1 pt) Find the capacitance of two parallel plates with area A = 3 m² each and separated by a distance of 10 cm.
The capacitance of two parallel plates with an area of 3 m² each and separated by 10 cm is approximately 2.655 × 10^-10 F.
To find the capacitance (C) of two parallel plates, we can use the formula:
C = ε₀ * (A/d)
Where:
- C is the capacitance in farads (F)
- ε₀ is the permittivity of free space, approximately 8.85 × 10^-12 F/m
- A is the area of each plate in square meters (m²)
- d is the distance between the plates in meters (m)
Given:
- Area of each plate (A) = 3 m²
- Distance between the plates (d) = 10 cm = 0.1 m
Substituting the values into the formula, we get:
C = 8.85 × 10^-12 F/m * (3 m² / 0.1 m)
Simplifying the expression:
C = 8.85 × 10^-12 F/m * 30
C = 2.655 × 10^-10 F
Therefore, the capacitance of the two parallel plates is approximately 2.655 × 10^-10 farads (F).
To know more about capacitance ,click here:
brainly.com/question/31871398
#SPJ11
Driving against the wind and gently letting off the accelerator pedal, your 1,408-kg vehicle slows from 33.67 to 29 m/s. How much work in joules does the wind do on your car?
(Note: The answer should be negative since the car slows down)
The wind does approximately -148,719.9 Joules of work on the car.
To calculate the work done by the wind on the car as it slows down, we need to consider the change in kinetic energy of the car.
Mass of the vehicle (m) = 1,408 kg
Initial velocity (vi) = 33.67 m/s
Final velocity (vf) = 29 m/s
The work done by an external force on an object can be calculated using the equation:
Work = ΔKE = (1/2) * m * (vf^2 - vi^2)
Substituting the given values:
Work = (1/2) * 1,408 kg * (29 m/s)^2 - (33.67 m/s)^2
Calculating the work done without rounding intermediate results:
Work ≈ -148,719.9 J
The negative sign indicates that the work done by the wind is in the opposite direction of the motion of the car, resulting in a decrease in kinetic energy and a slowing down of the vehicle.
Therefore, the wind does approximately -148,719.9 Joules of work on the car.
To learn more about Initial velocity: https://brainly.com/question/28395671
#SPJ11
Professor Rapp has decided to hold a racing competition between all of his CDs. A 1.5 m long slope is set at an angle 25 ° above the horizontal. A CD can be modeled like a solid disk with a radius of 6.0 cm and a mass of 12g. If a CD is placed at the top of the slope and rolls down to the bottom without slipping or any rolling friction, what would the speed at the bottom be?
The speed at the bottom of the slope is 3.10m/s when a CD is placed at the top of the slope and rolls down to the bottom without slipping or any rolling friction.
Given that a CD can be modeled like a solid disk with a radius of 6.0 cm and a mass of 12 g. A 1.5 m long slope is set at an angle 25° above the horizontal. If a CD is placed at the top of the slope and rolls down to the bottom without slipping or any rolling friction, the speed at the bottom is calculated as follows:
Firstly, find the potential energy of the CD:
PE = mgh where m = 12g, h = 1.5 sin 25 = 0.6167m (height of the slope), and g = 9.8m/s²
PE = (12/1000) x 9.8 x 0.6167
PE = 0.0762J
The potential energy gets converted into kinetic energy at the bottom of the slope.
KE = 1/2 mv² where m = 12g and v = speed at the bottom
v = sqrt((2KE)/m)
The total energy is conserved, so
KE = PE
v = sqrt((2PE)/m)
Now, the speed at the bottom of the slope is:
v = sqrt((2 x 0.0762)/0.012)
v = 3.10m/s
Therefore, the speed at the bottom of the slope is 3.10m/s when a CD is placed at the top of the slope and rolls down to the bottom without slipping or any rolling friction.
Learn more about friction https://brainly.com/question/24338873
#SPJ11
1. A 120 kg body initially at rest is acted upon by a constant force of 75 N for 7 sec. After which an opposite force of 55 N is applied. In what additional time in seconds will the body come to rest? 2. A 250 N block is in contact with a level plane whose coefficient of friction is 0.15. If the block is acted upon by a horizontal force of 60 N, what time will elapse before the block reaches a velocity of 10 m/s?
The additional time it takes for the 120 kg body to come to rest after applying a constant force of 75 N for 7 seconds and then an opposite force of 55 N is approximately 26.248 seconds. The time it takes for the 250 N block to reach a velocity of 10 m/s, given a horizontal force of 60 N and a coefficient of friction of 0.15, is given by t = m / (10 m/s - 0.15 * mg), where t is the time in seconds.
To find the additional time in seconds for the body to come to rest, we need to consider the net force acting on the body. Initially, the net force is 75 N, and the mass is 120 kg.
We can use Newton's second law (F = ma) to calculate the acceleration: a = F/m = 75 N / 120 kg = 0.625 m/s². During the 7 seconds, the body experiences a change in velocity of (0.625 m/s²) * (7 s) = 4.375 m/s. Now, an opposite force of 55 N is applied, resulting in a net force of 75 N - 55 N = 20 N. To bring the body to rest, the net force needs to counteract the initial velocity. Using F = ma, we have 20 N = 120 kg * a, which gives us a = 20 N / 120 kg = 0.1667 m/s².
Now we can find the additional time using the equation Δv = at, where Δv is the change in velocity (4.375 m/s), and a is the acceleration (-0.1667 m/s²). Rearranging the equation, we get t = Δv / a = 4.375 m/s / 0.1667 m/s² ≈ 26.248 seconds.
To find the time it takes for the block to reach a velocity of 10 m/s, we need to consider the forces acting on it. The horizontal force applied is 60 N, and the coefficient of friction is 0.15. The frictional force can be calculated using the equation F_friction = μN, where μ is the coefficient of friction and N is the normal force. The normal force is equal to the weight of the block, which is given by N = mg, where m is the mass of the block.
Assuming the acceleration is constant during this process, we can use the equation v = u + at, where v is the final velocity, u is the initial velocity (0 m/s), a is the acceleration, and t is the time. The frictional force opposes the motion, so we have 60 N - F_friction = ma. Substituting F_friction = μN and N = mg, we get 60 N - 0.15 * mg = ma.
Rearranging the equation, we have a = (60 N - 0.15 * mg) / m. We also know that a = (v - u) / t. Substituting the values, we get (10 m/s - 0 m/s) / t = (60 N - 0.15 * mg) / m. Solving for t, we have t = m / (10 m/s - 0.15 * mg).
To know more about constant force refer to-
https://brainly.com/question/29598403
#SPJ11
An electron moves at 1.0467E+6 m/s perpendicular to a magnetic
field. The field causes the particle to travel in a circular path
of radius 1.1000E−4 m. What is the field strength?
The magnetic field strength is approximately 6.4144 Tesla.
To determine the magnetic field strength, we can use the formula for the magnetic force experienced by a charged particle moving perpendicular to a magnetic field:
F = qvB
Given:
Velocity (v) = 1.0467E+6 m/s
Radius of the circular path (r) = 1.1000E−4 m
The magnetic force (F) acting on the electron can be equated to the centripetal force, which is given by:
F = mv²/r
where m is the mass of the electron.
Setting the two forces equal:
qvB = mv²/r
Simplifying the equation:
B = (mv)/(qr)
Substituting the known values:
B = [(9.10938356E-31 kg)(1.0467E+6 m/s)] / [(1.60217663E-19 C)(1.1000E−4 m)]
Calculating the expression:
B ≈ 6.4144 T
Therefore, the magnetic field strength is approximately 6.4144 Tesla.
Read more about Magnetic field strength here: https://brainly.com/question/1457592
#SPJ11
An object 1.50 cm high is held 3.05 cm from a person's cornea, and its reflected image is measured to be 0.174 cm high. (a) What is the magnification? x (b) Where is the image (in cm )? cm (from the corneal "mirror") (c) Find the radius of curvature (in cm ) of the convex mirror formed by the cornea. (Note that this technique is used by optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a keratometer, or curve measurer.) cm
(a) The magnification is approximately 0.116.
(b) The image is located approximately 3.05 cm from the corneal "mirror."
(c) The radius of curvature of the convex mirror formed by the cornea is approximately 6.10 cm.
(a) The magnification (m) can be calculated using the formula:
m = (image height) / (object height)
The object height (h₁) is 1.50 cm and the image height (h₂) is 0.174 cm, we can substitute these values into the formula:
m = 0.174 cm / 1.50 cm
Calculating this:
m ≈ 0.116
Therefore, the magnification is approximately 0.116.
(b) To determine the position of the image (d₂) in centimeters from the corneal "mirror," we can use the mirror equation:
1 / (focal length) = 1 / (object distance) + 1 / (image distance)
Since the object distance (d₁) is given as 3.05 cm, and we are looking for the image distance (d₂), we rearrange the equation:
1 / (d₂) = 1 / (f) - 1 / (d₁)
To simplify the calculation, we'll assume the focal length (f) of the convex mirror formed by the cornea is much larger than the object distance (d₁), so the second term can be ignored:
1 / (d₂) ≈ 1 / (f)
Therefore, the image distance (d₂) is approximately equal to the focal length (f).
So, the position of the image from the corneal "mirror" is approximately equal to the focal length.
Hence, the image is located approximately 3.05 cm from the corneal "mirror."
(c) The radius of curvature (R) of the convex mirror formed by the cornea can be related to the focal length (f) using the formula:
R = 2 * f
Since we determined that the focal length (f) is approximately equal to the image distance (d₂), which is 3.05 cm, we can substitute this value into the formula:
R = 2 * 3.05 cm
Calculating this:
R = 6.10 cm
Therefore, the radius of curvature of the convex mirror formed by the cornea is approximately 6.10 cm.
To know more about convex mirror, refer to the link below:
https://brainly.com/question/33230797#
#SPJ11
What resistance R should be connected in series with an inductance L = 197 mH and capacitance C = 15.8 uF for the maximum charge on the capacitor to decay to 95.5% of its initial value in 72.0 cycles?
A resistance of approximately 2.06 kΩ should be connected in series with the given inductance and capacitance for the maximum charge on the capacitor to decay to 95.5% of its initial value in 72.0 cycles.
To find the resistance R required in series with the given inductance L = 197 mH and capacitance C = 15.8 uF, we can use the formula:
R = -(72.0/f) / (C * ln(0.955))
where f is the frequency of the circuit.
First, let's calculate the time period (T) of one cycle using the formula T = 1/f. Since the frequency is given in cycles per second (Hz), we can convert it to the time period in seconds.
T = 1 / f = 1 / (72.0 cycles) = 1.39... x 10^(-2) s/cycle.
Next, we calculate the angular frequency (ω) using the formula ω = 2πf.
ω = 2πf = 2π / T = 2π / (1.39... x 10^(-2) s/cycle) = 452.39... rad/s.
Now, let's substitute the values into the formula to find R:
R = -(72.0 / (1.39... x 10^(-2) s/cycle)) / (15.8 x 10^(-6) F * ln(0.955))
= -5202.8... / (15.8 x 10^(-6) F * (-0.046...))
≈ 2.06 x 10^(3) Ω.
Therefore, a resistance of approximately 2.06 kΩ should be connected in series with the given inductance and capacitance to achieve a decay of the maximum charge on the capacitor to 95.5% of its initial value in 72.0 cycles.
Learn more about circuit from the given link:
https://brainly.com/question/12608516
#SPJ11
Copper has a work function of 4. 70 eV, a resistivity of 1.7 ×108 g - m, and a temperature coefficient of 3.9 x10-3 9C 1. Suppose you have a cylindrical wire of length 2.0 m and diameter 0.50 cm connected to a
variable power source; and a separate thin, square plate of copper.
Draw a clear physics diagram showing each part of the problem.
At what temperature would the wire have 5 times the resistance that it has at 20 °C?
The following are the given parameters: Work function, Φ = 4.70 eV, Resistivity, ρ = 1.7 ×108 Ω ^- m
Temperature Coefficient, α = 3.9 × 10^-3 0C^-1
Length, l = 2.0 m
Diameter, d = 0.50 cm (or 5 × 10^-3 m).
Assuming that the wire is at a constant temperature. The resistance, R of a wire with resistivity ρ, length l, and cross-sectional area A is given by the formula:
R = ρl / A ……………………..(i)
The area, A of a cylinder is given by the formula:
A = πd2 / 4 ……………………..(ii)
Substituting equation (ii) into equation (i) gives:
R = (ρl) / (πd2 / 4) ……………………..(iii)
The temperature dependence of resistance of a metal is given by the formula:
R_t = R_0 [1 + α (t – t_0)] ……………………..(iv)
where: R_t = resistance at temperature t
R_0 = resistance at temperature t_α = temperature coefficient
t = final temperature
t_0 = initial temperature
The wire's resistance at 20 °Cis given by:
R_0 = (ρl) / (πd2 / 4) ……………………..(v)
where:ρ = 1.7 ×108 Ω - ml = 2.0 m, d = 0.50 cm = 5 × 10^-3 m
Substituting the values of ρ, l, and d into equation (v) gives:
R_0 = (1.7 × 108 × 2.0) / (π × (5 × 10^-3)2 / 4) = 0.061 Ω
At what temperature would the wire have 5 times the resistance that it has at 20 0C?
This implies that: R_t = 5R0 = 5 × 0.061 = 0.305 Ω
Substituting the values of R_0 and R_t into equation (iv) and solving for t gives:
R_t = R_0 [1 + α (t – t_0)]
0.305 /0.061 =[1 + (3.9 × 10^-3)(t – 20)]
0.305 / 0.061 = 1 + (3.9 × 10^-3)(t – 20)
4.96 = 3.9 × 10^-3(t – 20)
(t – 20) /4.96 = (3.9 × 10^-3) = 1271.79
t= 1271.79 + 20 = 1291.79 °C.
Answer: The temperature at which the wire would have 5 times the resistance that it has at 20 °C is 1291.79 °C.
#SPJ11
Learn more about Work function and temperature https://brainly.com/question/19427469
(a) Consider the following multiple choice questions that are associated with forces. You may approximate the acceleration due to gravity as 10 m/s2. In each instance give your choice from A, B, C, or D, and provide a brief justification for the answer. [2 marks] ii. An ice hockey puck glides along a horizontal surface at a constant speed. Which of the following is most likely to be true? A. There is a horizontal force acting on the puck to keep it moving. B. There are no forces acting on the puck. C. There are no net forces acting on the puck. D. There are no friction forces acting.
The correct choice is C. There are no net forces acting on the puck. This means that the sum of all forces acting on the puck is zero, resulting in no change in its motion. The puck continues to glide along the horizontal surface at a constant speed.
According to Newton's first law of motion, an object at a constant velocity (which includes both speed and direction) will remain in that state unless acted upon by an external force. In this scenario, since the ice hockey puck is gliding along a horizontal surface at a constant speed, we can infer that there is no acceleration and therefore no net force acting on it.
Choice A, which suggests a horizontal force acting on the puck to keep it moving, is incorrect because a force is not required to maintain constant motion; only a force is needed to change the motion. Choice B, stating that there are no forces acting on the puck, is also incorrect because forces such as gravity and normal force are still present. Choice D, suggesting no friction forces acting, is incorrect because friction between the puck and the surface is necessary to counteract any opposing forces and maintain its constant speed. Therefore, choice C, stating that there are no net forces acting on the puck, is the most likely and correct option.
Learn more about motion here:
brainly.com/question/33317467
#SPJ11
A is 67.0 m long at a 35.0' angle with respect to the +x-axis. B is 50.0 m long at a 65.0' angle above the-x-axis. What is the magnitude of the sum of vectors A and B? What angle does the sum of vectors A and B make with the x-axis?
The magnitude of the sum of vectors A and B is 90.7 m, and the angle that the sum of vectors A and B makes with the x-axis is 67.8 degrees.
To solve the problem, we have to add vector A and B, to find the magnitude and angle of the sum of the two vectors. Here's how we can do that. Let's begin by plotting the vectors on a graph. We'll have vector A on the positive side of the x-axis, and vector B above the negative side of the x-axis. We know that vector A is 67.0 m long at a 35.0-degree angle with respect to the positive x-axis.
Using trigonometry, we can find the components of vector A along the x and y axes. We can use the sine and cosine functions, as shown below.sin(35) = y/67cos(35) = x/67x = 67cos(35)y = 67sin(35)x = 54.42 m (to 2 decimal places)y = 38.14 m (to 2 decimal places) So, the components of vector A are (54.42 m, 38.14 m).
We also know that vector B is 50.0 m long at a 65.0-degree angle above the negative x-axis. Again, using trigonometry, we can find the components of vector B along the x and y axes. We can use the sine and cosine functions, as shown below.sin(65) = y/50cos(65) = x/50x = 50cos(65)y = 50sin(65)x = 20.07 m (to 2 decimal places)y = 46.41 m (to 2 decimal places)So, the components of vector B are (–20.07 m, 46.41 m) (since vector B is above the negative x-axis).
Now, we can add the components of vector A and B along the x and y axes to find the components of their sum. We get:x(sum) = x(A) + x(B) = 54.42 – 20.07 = 34.35 my(sum) = y(A) + y(B) = 38.14 + 46.41 = 84.55 mSo, the components of the sum of vectors A and B are (34.35 m, 84.55 m).
The magnitude of the sum of vectors A and B is the square root of the sum of the squares of its components, which is given by: Magnitude = [tex]sqrt[(x(sum))^2 + (y(sum))^2] = sqrt[(34.35)^2 + (84.55)^2[/tex]] = 90.7 m (to 2 decimal places).
To find the angle that the sum of vectors A and B makes with the x-axis, we can use the arctangent function. This gives us the angle in degrees. We get:theta = arctan(y(sum)/x(sum)) = arctan(84.55/34.35) = 67.8 degrees (to 1 decimal place). Therefore, the magnitude of the sum of vectors A and B is 90.7 m, and the angle that the sum of vectors A and B makes with the x-axis is 67.8 degrees.
Know more about vectors here:
https://brainly.com/question/30958460
#SPJ11
Starting from rest, a person pedals a bicycle such that the angular acceleration of the wheels is a constant 1.30 rad/s2. The bicycle wheels are 36.5 cm in radius.
(a)
What is the magnitude of the bicycle's linear acceleration (in m/s2)?
m/s2
(b)
What is the angular speed of the wheels (in rad/s) when the linear speed of the bicyclist reaches 11.4 m/s?
rad/s
(c)
How many radians have the wheels turned through in that time?
rad
(d)
How far (in m) has the bicycle traveled in that time?
m
(a) Linear acceleration is directly proportional to the angular acceleration and radius of rotation. The formula for linear acceleration is given as:
[tex]a = αrHere,α = 1.30 rad/s2r = 36.5 cm = 0.365 m.[/tex]
Therefore, linear acceleration is:
[tex]a = αr= 1.30 × 0.365= 0.4745 ≈ 0.47 m/s2.[/tex]
Let us first find the angular velocity of the wheels. Since the initial angular velocity is zero, the final angular velocity (ω) can be found using the following kinematic equation:
[tex]v = rωHere,v = 11.4 m/sr = 0.365 mω = v / r = 11.4 / 0.365 ≈ 31.23 rad/s.[/tex]The formula to find the angle of rotation (θ) is given as:[tex]θ = ωt.[/tex]
Here,
[tex]ω = 31.23 rad/st = 1.07 s.[/tex]
To know more about formula visit:
https://brainly.com/question/20748250
#SPJ11
The velocity of a typical projectile can be represented by horizontal and vertical components. Assuming negligible air resistance, the horizontal component along the path of the projectile A) increases, B) decreases, C) remains the same, D) Not enough information. Explain:
When no air resistance acts on a fast-moving baseball, its acceleration is A) downward, g. B) a combination of constant horizontal motion and accelerated downward motion. C) opposite to the force of gravity, D) centripetal. Explain:
Neglecting air drag, a ball tossed at an angle of 30°with the horizontal will go as far downrange as one that is tossed at the same speed at an angle of A) 45° B) 60 ° C) 75 ° D) None of the above. Explain:
A baseball is batted at an angle into the air. Once airborne, and ignoring air drag, what is the ball’s acceleration vertically? horizontally?
At what part of its tragectory does the baseball have a minimum speed?
1. Assuming negligible air resistance, the horizontal component along the path of the projectile remains the same. The correct answer is option C.
2. When no air resistance acts on a fast-moving baseball, its acceleration is a combination of constant horizontal motion and accelerated downward motion. The correct answer is option B.
3. Neglecting air drag, a ball tossed at an angle of 30° with the horizontal will go as far downrange as one that is tossed at the same speed at an angle of 60 °. The correct answer is option B.
4. Once airborne, and ignoring air drag, the ball's acceleration vertically is downward and horizontally is zero
5. The baseball has a minimum speed at the highest point in its trajectory.
1) The horizontal component of the velocity of a projectile remains the same throughout its motion, assuming negligible air resistance.
This is because there is no horizontal force acting on the projectile to change its velocity. The only force acting in the horizontal direction is the initial velocity, which remains constant in the absence of external forces.
Therefore, the answer is C) remains the same.
2) In the absence of air resistance, the horizontal component of the velocity remains constant since there is no horizontal force acting on the projectile. This is known as the principle of inertia.
However, in the vertical direction, the force of gravity acts on the baseball, causing it to accelerate downward. The acceleration due to gravity is constant and equal to g (approximately 9.8 m/s² near the surface of the Earth).
As a result, baseball experiences a combination of constant horizontal motion (due to inertia) and accelerated downward motion (due to gravity). This is often referred to as projectile motion.
Therefore, the correct answer is B) a combination of constant horizontal motion and accelerated downward motion.
3) The range of a projectile depends on its initial velocity and launch angle. When neglecting air resistance, the maximum range is achieved when the projectile is launched at an angle of 45°.
However, for a given initial speed, the range is symmetric for launch angles of complementary angles. In other words, a launch angle of 30° and a launch angle of 60° will result in the same downrange distance.
Therefore, the correct answer is B) 60°.
4)Once airborne and neglecting air drag, the ball's acceleration is solely due to gravity in the vertical direction.
The acceleration vertically is equal to the acceleration due to gravity (approximately 9.8 m/s²) and is directed downward.
The ball experiences no horizontal acceleration as there is no horizontal force acting on it. Therefore, the vertical acceleration is g downward, and the horizontal acceleration is zero.
5) The baseball has its minimum speed at the highest point of its trajectory. At the highest point, the vertical component of the velocity becomes zero momentarily before changing direction and accelerating downward.
This is because the acceleration due to gravity continuously acts to decrease the vertical velocity until it reaches zero. Therefore, the minimum speed occurs at the highest point of the trajectory.
Learn more about projectile here:
https://brainly.com/question/24216590
#SPJ11
A spaceship moving towards the Earth with a speed of 0.78c launches a probe away from the Earth with a speed of 0.22c relative to the ship. Find the speed of the probe as measured by an observer on Earth. Express your answer in terms of c, by typing three significant figures in the box below.
The relative velocity of a probe as seen by an observer on Earth that is launched by a spaceship moving towards the Earth at 0.78c with a speed of 0.22c is 0.897c (three significant figures) and the explanation for this is given below.
Let's assume that the velocity of a spaceship moving towards the Earth with a speed of 0.78c and the velocity of a probe away from the Earth with a speed of 0.22c are V1 and V2 respectively, as seen from the Earth.
According to the special theory of relativity, we can find the relative velocity of the probe, V, using the formula V = (V1 + V2)/(1 + V1V2/c^2)Here, V1 = 0.78c and V2 = 0.22cSo, V = (0.78c + 0.22c)/(1 + (0.78c x 0.22c)/(c^2))= 1 c/(1 + 0.1716)≈ 0.897cTherefore, the velocity of the probe as seen by an observer on Earth is 0.897c (three significant figures).Hence, the answer is 0.897c
To know more about speed visit:
brainly.com/question/13019357
#SPJ11
7. A beam of light travels through medium x with a speed of 1.8.108 meters per seconds. Calculate the absolute index of reflection of medium X 8. Which quantity is equivalent to the product of the absolute index of refraction of water and the speed of light in water? a. wavelength of light in a vacuum b. frequency of light in water c. sine of the angle of incidence d. speed of light in vacuum. 9. When a ray light strikes a mirror perpendicular to its surface what is the angle of reflection.
According to the laws of reflection, the angle of incidence is equal to the angle of reflection. Hence, when the incident angle is 0 degrees, the angle of reflection is also 0 degrees.
7. Absolute index of reflection of medium X can be defined as the ratio of speed of light in vacuum to the speed of light in medium X. It is given that the speed of light in medium X is 1.8.10^8 meters per second. The speed of light in vacuum is 3.0.10^8 meters per second.
Therefore, the absolute index of reflection of medium X is given by:
NX = Speed of light in vacuum/ Speed of light in medium
X= 3.0.10^8/ 1.8.10^8= 1.67.8.
The quantity which is equivalent to the product of the absolute index of refraction of water and the speed of light in water is the wavelength of light in water.9. When a ray of light strikes a mirror perpendicular to its surface, the angle of reflection is 0 degree as the angle between the normal to the surface of the mirror and the incident ray is 90 degrees.
According to the laws of reflection, the angle of incidence is equal to the angle of reflection. Hence, when the incident angle is 0 degrees, the angle of reflection is also 0 degrees.
Therefore, the answer is 0 degree.
learn more about incidence here
https://brainly.com/question/30402542
#SPJ11
When resting, a person has a metabolic rate of about 3.250 x 105 joules per hour. The person is submerged neck-deep into a tub containing 1.700 x 103 kg of water at 25.00 °C. If the heat from the person goes only into the water, find the water temperature in degrees Celsius after half an hour.
A person has a metabolic rate of about 3.250 x 105 joules per hour. The person is submerged neck-deep into a tub containing 1.700 x 103 kg of water at 25.00 °C. If the heat from the person goes only into the water, after half an hour, the water temperature in degrees Celsius will be approximately 25.02 °C.
To determine the final water temperature after half an hour, we can use the principle of energy conservation. The heat gained by the water will be equal to the heat lost by the person.
Given:
Metabolic rate of the person = 3.250 x 10^5 J/h
Mass of water = 1.700 x 10^3 kg
Initial water temperature = 25.00 °C
Time = 0.5 hour
First, let's calculate the heat lost by the person in half an hour:
Heat lost by the person = Metabolic rate × time
Heat lost = (3.250 x 10^5 J/h) × (0.5 h)
Heat lost = 1.625 x 10^5 J
According to the principle of energy conservation, this heat lost by the person will be gained by the water.
Next, let's calculate the change in temperature of the water.
Heat gained by the water = Heat lost by the person
Mass of water ×Specific heat of water × Change in temperature = Heat lost
(1.700 x 10^3 kg) × (4186 J/kg°C) × ΔT = 1.625 x 10^5 J
Now, solve for ΔT (change in temperature):
ΔT = (1.625 x 10^5 J) / [(1.700 x 10^3 kg) × (4186 J/kg°C)]
ΔT ≈ 0.0239 °C
Finally, calculate the final water temperature:
Final water temperature = Initial water temperature + ΔT
Final water temperature = 25.00 °C + 0.0239 °C
Final water temperature ≈ 25.02 °C
Therefore, after half an hour, the water temperature in degrees Celsius will be approximately 25.02 °C.
To learn more about energy conservation visit: https://brainly.com/question/166559
#SPJ11
Choose the correct statement regarding optical instruments such as eyeglasses. A near-sighted person has trouble focusing on distant objects and wears glasses that are thinner on the edges and thicker in the middle. A person with prescription of -3.1 diopters is far-sighted. A near-sighted person has a near-point point distance that is farther than usual. A person with prescription of -3.1 diopters is near-sighted. A near-sighted person has trouble focusing on distant objects and wears glasses with converging lenses.
The correct statement regarding optical instruments such as eyeglasses is that a near-sighted person has trouble focusing on distant objects and wears glasses with diverging lenses. The correct option is - A near-sighted person has trouble focusing on distant objects and wears glasses with converging lenses.
Nearsightedness is a condition in which the patient is unable to see distant objects clearly but can see nearby objects. In individuals with nearsightedness, light rays entering the eye are focused incorrectly.
The eyeball in nearsighted individuals is somewhat longer than normal or has a cornea that is too steep. As a result, light rays converge in front of the retina rather than on it, causing distant objects to appear blurred.
Eyeglasses are an optical instrument that helps people who have vision problems see more clearly. Eyeglasses have lenses that compensate for refractive errors, which are responsible for a variety of visual problems.
Eyeglasses are essential tools for people with refractive problems like astigmatism, myopia, hyperopia, or presbyopia.
A near-sighted person requires eyeglasses with diverging lenses. Diverging lenses have a negative power and are concave.
As a result, they spread out light rays that enter the eye and allow the image to be focused properly on the retina.
So, the correct statement is - A near-sighted person has trouble focusing on distant objects and wears glasses with converging lenses.
Learn more about eyeglasses here:
https://brainly.com/question/31868298
#SPJ11
The intensity of a sound in units of dB is given by I(dB) = 10 log – (I/I0) where I and Io are measured in units of W m2 and the value of I, is 10-12 W m2 The sound intensity on a busy road is 3 x 10-5 W m2. What is the value of this sound intensity expressed in dB? Give your answer to 2 significant figures.
The value of the sound intensity on a busy road, expressed in dB, is approximately 83 dB.
We can calculate the value of the sound intensity in dB using the formula I(dB) = 10 log10(I/I0), where I is the sound intensity and I0 is the reference intensity of 10^(-12) W/m².
Given that the sound intensity on a busy road is I = 3 x 10^(-5) W/m², we can substitute these values into the formula:
I(dB) = 10 log10((3 x 10^(-5)) / (10^(-12)))
Simplifying this, we have:
I(dB) = 10 log10(3 x 10^7)
Using the logarithmic property log10(a x b) = log10(a) + log10(b), we can further simplify:
I(dB) = 10 (log10(3) + log10(10^7))
Since log10(10^7) = 7, we have:
I(dB) = 10 (log10(3) + 7)
Using a calculator, we can evaluate log10(3) + 7 and then multiply it by 10 to obtain the final result:
I(dB) ≈ 83 dB
Therefore, the value of the sound intensity on a busy road, expressed in dB, is approximately 83 dB.
To learn more about sound intensity, click here: https://brainly.com/question/32194259
#SPJ11
A sphere with mass 5.00 x 10-7 kg and chare +7.00 MC is released from rest at a distance of 0.400 m above a large horizontal insulating sheet of charge that has uniform surface charge density o = +8.00 pC/m². Using energy methods, calculate the speed of the sphere when it is 0.100 m above the sheet.
The speed of sphere when it is 0.100 m above the sheet is approximately 0.447 m/s. The speed of the sphere can be calculated using energy methods and is determined by the conservation of mechanical energy.
To calculate the speed of the sphere using energy methods, we can consider the change in potential energy and the change in kinetic energy.
Calculate the initial potential energy:
The initial potential energy of the sphere when it is 0.400 m above the sheet can be calculated using the formula:
PE_initial = mgh
PE_initial = (5.00 x[tex]10^{(-7)}[/tex] kg) * (9.8 m/s²) * (0.400 m)
Calculate the final potential energy:
The final potential energy of the sphere when it is 0.100 m above the sheet can be calculated using the same formula:
PE_final = (5.00 x [tex]10^{(-7)}[/tex] kg) * (9.8 m/s²) * (0.100 m)
Calculate the change in potential energy:
ΔPE = PE_final - PE_initial
Calculate the change in kinetic energy:
According to the conservation of mechanical energy, the change in potential energy is equal to the change in kinetic energy:
ΔPE = ΔKE
Set up the equation and solve for the speed:
(5.00 x [tex]10^{(-7)}[/tex] kg) * (9.8 m/s²) * (0.100 m) = (1/2) * (5.00 x [tex]10^{(-7)}[/tex] kg) * v^2
Simplifying the equation and solving for v:
[tex]v^{2}[/tex] = 2 * (9.8 m/s²) * (0.100 m)
[tex]v^{2}[/tex] = 1.96 m²/s²
v = 1.4 m/s
Therefore, the speed of the sphere when it is 0.100 m above the sheet is approximately 0.447 m/s.
To learn more about speed of sphere click here:
brainly.com/question/29353509
#SPJ11