Solve this quick please thank you.

Solve This Quick Please Thank You.

Answers

Answer 1

Answer:

[tex]y=-\dfrac{8}{x}[/tex]

Step-by-step explanation:

Inverse proportions can be represented by an equation in the form:

[tex]\boxed{y=\dfrac{k}{x}}[/tex]

where:

y and x are the two quantities in the proportion.k is the constant of proportionality.

To write an expression for the graphed function, first input the given point (-2, 4) into the inverse proportion equation and solve for k:

[tex]\implies y=\dfrac{k}{x}[/tex]

[tex]\implies 4=\dfrac{k}{-2}[/tex]

[tex]\implies 4 \cdot (-2)=\dfrac{k}{-2}\cdot (-2)[/tex]

[tex]\implies -8=k[/tex]

[tex]\implies k=-8[/tex]

Therefore, the expression for the graphed function is:

[tex]\boxed{y=-\dfrac{8}{x}}[/tex]


Related Questions

what is the sampling distribution of the sample mean? group of answer choices in practice, to estimate the mean values of a varibale in a large population, we only get to observe a sample, and we can only plot the distribution of this sample, not the distribution of the whole population. the distribution of the sample we have have observed is called the sampling distribution of the sample mean. if we hypothetically had a large number of samples taken from the same population, the distribution of the means of those individual samples is called the sampling distribution of the sample mean

Answers

The sampling distribution of the sample mean is the distribution of the means of all the individual samples that were hypothetically drawn from the same population.

A sampling distribution refers to the probability distribution of a statistic that is obtained from a large number of random samples drawn from a population. The sampling distribution is important because it enables us to make statistical inferences about the population based on the sample data.

This makes the sampling distribution a valuable tool for making statistical inferences about population parameters. We could randomly select a sample of students and compute their mean height. If we repeat this process many times and compute the mean height for each sample, we would obtain a sampling distribution of means. This distribution would provide information about the range of possible mean heights we might expect to see if we were to repeat the sampling process many times.

To learn more about Sampling distribution visit here:

brainly.com/question/29375938

#SPJ4

out of 500 people , 200 likes summer season only , 150 like winter only , if the number of people who donot like both , the seasons is twice the people who like both the season , find summer season winter season , at most one season with venn diagram​

Answers

Answer:

250 people like the summer season, 200 people like the winter season, and 50 people like both seasons.

Step-by-step explanation:

Let's assume that the number of people who like both summer and winter is "x". We know that:

- 200 people like summer only

- 150 people like winter only

- The number of people who don't like either season is twice the number of people who like both seasons

To find the value of "x", we can use the fact that the total number of people who don't like either season is twice the number of people who like both seasons:

150 - 2x = 2x

Solving for "x", we get:

x = 50

150 people like the winter season, 200 people like the summer season.

The number of people who don't like summer and winter is twice the number of people who like both seasons.

The number of people who like both the seasons= x

The number of people like summer 200

The number of people who like winter 150

The number of people who don't like summer and winter is twice the number of people who like both seasons.

To find the value of x, we can use the equation:

150-x= 2x

150= 3x

x= 50

The number of people who like both seasons is 50

The number of people who don't like both seasons is 100

For more information:

brainly.com/question/31893545

A translation is applied to the square formed by the points A(−3, −4) , B(−3, 5) , C(6, 5) , and D(6, −4) . The image is the square that has vertices ​ A′(−3, −6) ​, ​ B′(−3, 3) ​, C′(6, 3) and D′(6, −6) . Select the phrase from the drop-down menu to correctly describe the translation. The square was translated Choose... .

Answers

The square was translated 2 units downwards.

Describing the transformation

From the question, we have the following parameters that can be used in our computation:

Points A(−3, −4) , B(−3, 5) , C(6, 5) , and D(6, −4) . The image is the square that has vertices ​ A′(−3, −6) ​, ​ B′(−3, 3) ​, C′(6, 3) and D′(6, −6)

The square was translated 2 units downward since all the y-coordinates of the vertices of the image square are 2 units less than the corresponding y-coordinates of the vertices of the pre-image square.

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

An architect needs to design a new light house. an average-man (6 ft tall) can see 1 mile


into the horizon with binoculars. if the company building the light house would like for


their guests to be able to see 20 miles out from the top of the light house with binoculars,


then how tall does the building need to be?

Answers

The lighthouse needs to be at least 270.7 feet tall to allow guests to see 20 miles out with binoculars.

Assuming the Earth is a perfect sphere, the distance a person can see to the horizon is given by: d = 1.22 * sqrt(h)

Where d is the distance in miles, h is the height of the observer in feet, and 1.22 is a constant based on the radius of the Earth.

Using this formula, we can solve for the required height of the lighthouse: 20 = 1.22 * sqrt(h), 20/1.22 = sqrt(h), h = (20/1.22)^2, h ≈ 270.7 feet

Therefore, the lighthouse needs to be at least 270.7 feet tall to allow guests to see 20 miles out with binoculars.

To know more about radius, refer here:

https://brainly.com/question/4865936#

#SPJ11

Sort each set of triangle measurements into the appropriate category for number of possible triangles. No Triangles One Triangle Many Triangles 5, 15", 160 45°, 45°, 90° 2.8. 10 7, 24, 25 30", 85°, 60° 5 of 5 Done​

Answers

No Triangles: 160
One Triangle: 45°, 45°, 90°; 2.8, 10; 30", 85°, 60°
Many Triangles: 5, 15"; 7, 24, 25; 5 of 5 Done.

Shea wrote the expression 5(y + 2) + 2 to show the amount of money five friends paid for snacks at a basketball game. Which expression is equivalent to the one Shea wrote?
a 5 + y + 5 + 2 + 4
b 5 x y x 5 x 2 +4
c 5 x y x 4 + 5 x 2 x 4
d 5 x y + 5 x 2 + 4

Answers

The expression that is equivalent to the one Shea wrote is b 5 x y x 5 x 2 +4

Which expression is equivalent to the one Shea wrote?

From the question, we have the following parameters that can be used in our computation:

5(y + 2) + 2 shows the amount of money five friends paid for snacks at a basketball game

This means that

Amount = 5(y + 2) + 2

When expanded, we have

Amount = 5 * y + 5 * 2 + 2

Using the above as a guide, we have the following:

The expression that is equivalent to the one Shea wrote is b 5 x y x 5 x 2 +4

Read more about expression at

https://brainly.com/question/15775046

#SPJ1

Find parametric equations for the line that is tangent to the given curve at the given parameter value.
r(t) = 3t^2 i +(4t-1)j + t^3 k t = T_o = 4
what is the standard parameterization for the tangent line. (type expressions using t as the variable)
x =
y=
z=

Answers

The standard parametric equations for the tangent line to the curve r(t) at t = T₀ = 4 are: x = 24(t-4) + 48, y = 15(t-4) - 3, z = 64(t-4) + 64

To find the parametric equations for the tangent line to the curve r(t) at t = T₀ = 4, we can follow these steps:

Step 1: Find the point on the curve at t = T₀.

To find the point on the curve at t = T₀ = 4, we simply evaluate r(4):

r(4) = 3(4²)i + (4(4)-1)j + 4³k

= 48i + 15j + 64k

So the point on the curve at t = 4 is (48, 15, 64).

Step 2: Find the direction of the tangent line at t = T₀.

To find the direction of the tangent line, we need to take the derivative of r(t) and evaluate it at t = 4. So we first find r'(t):

r'(t) = 6ti + 4j + 3t²k

Then we evaluate r'(t) at t = 4:

r'(4) = 6(4)i + 4j + 3(4²)k

= 24i + 4j + 48k

So the direction of the tangent line at t = 4 is the vector <24, 4, 48>.

Step 3: Write the parametric equations for the tangent line.

To write the parametric equations for the tangent line, we use the point and direction found in steps 1 and 2. We can write the parametric equations as:

x = 48 + 24(t-4)

y = 15 + 4(t-4)

z = 64 + 48(t-4)

Simplifying these equations gives us:

x = 24t + 48

y = 4t - 3

z = 48t + 64

These are the standard parametric equations for the tangent line to the curve r(t) at t = 4.

To know more about standard parametric equations, refer here:
https://brainly.com/question/29734728#
#SPJ11

Gross Monthly Income: Jackson works for a pipe line company and is paid $18. 50 per hour. Although he will have overtime, it is not guaranteed when or where, so Jackson will only build a budget on 40 hours per week. What is Jackson’s gross monthly income for 40 hours per week? Type in the correct dollar amount to the nearest cent. Do not include the dollar sign or letters.


A. Gross Annual Income: $


B. Gross Monthly Income: $

Answers

Jackson's gross monthly income for 40 hours per week is approximately $3,201.70 and gross annual income s $38,480.

To find Jackson's gross monthly income, we first need to find his gross weekly income.

Jackson's hourly wage is $18.50, so his weekly gross income for 40 hours of work is:

40 hours/week x $18.50/hour = $740/week

Calculate annual income:

To determine the gross annual income, we need to consider how many weeks there are in a year. Assuming 52 weeks in a year:

Annual income = Weekly income * Number of weeks in a year

Annual income = $740 * 52 = $38,480

To find Jackson's gross monthly income, we can multiply his weekly gross income by the number of weeks in a month (approximately 4.33):

$740/week x 4.33 weeks/month ≈ $3,201.70/month

Therefore, Jackson's gross monthly income for 40 hours per week is approximately $3,201.70.

To know more about gross monthly income, visit:

https://brainly.com/question/30617016#

#SPJ11

Analyze the diagram below and answer the questions that follow.
F
G
t
How many different ways can the line above be named? What are those names?
A. 2 ways; FG, GF
B. 3 ways; t, FG, GF
C. 4 ways; t, FG, FG, GF
D. 5 ways; t, FG, GF, FG GF

Answers

Answer: A. 2 ways; FG, GF

Step-by-step explanation: There are only two ways to name a line, and they are interchangeable: starting from one endpoint and naming the other endpoint second, or starting from the second endpoint and naming the first endpoint second.

A $70,000 mortgage is $629. 81 per month. What was the percent and for how many years?


9%, 20 years



9%, 25 years



7%, 20 years



9%, 30 years

Answers

The closest answer is 9% interest rate and 25 years term of the loan.

Assuming the $70,000 mortgage is a fixed-rate mortgage, we can use the formula for the monthly payment of a mortgage to solve for the interest rate and the term of the loan.

The formula is:

M = P [ i(1 + i)^n ] / [ (1 + i)^n - 1 ]

where:

M = monthly payment

P = principal (amount borrowed)

i = interest rate (per month)

n = number of months

Substituting the given values, we get:

$629.81 = $70,000 [ i(1 + i)^n ] / [ (1 + i)^n - 1 ]

Using a mortgage calculator or by trial and error, we can find that the closest answer is 9% interest rate and 25 years term of the loan.

learn more about "Principal amount":- https://brainly.com/question/25720319

#SPJ11

Rob bought a 1965 Fender Jazzmaster vintage electric guitar in 1980 for a price of $150. In 2010 it was appraised for $4,200. Suppose $150 was deposited in a variable-rate certifi cate of deposit for 30 years with interest compounded daily. A. If the CD paid 12. 3% interest for the fi rst 7 years, what would the balance be after the fi rst 7 years? Round to the nearest cent. B. If the CD paid 6% interest for the next 10 years, what would the balance be after the fi rst 17 years? Round to the nearest cent. C. If the CD paid 4. 1% interest for the remaining 13 years, what would the balance be after 30 years? Round to the nearest cent. D. What is the difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD?

Answers

a.  If the CD paid 12. 3% interest for the first 7 years, he balance be after the first 7 years will be $492.89.

b.  If the CD paid 6% interest for the next 10 years, the balance be after the first 17 years would be $784.98.

c.  If the CD paid 4. 1% interest for the remaining 13 years, the balance be after 30 years would be $1,265.59.

d. The difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD is $2,784.41.

A. The annual interest rate for a CD that pays 12.3% interest compounded daily is 12.3%/365 ≈ 0.0337% per day. The balance after 7 years can be calculated using the formula:

Balance = $150 x (1 + 0.000337)^((365 x 7) / 365) ≈ $492.89

Rounding to the nearest cent, the balance after 7 years is $492.89.

B. After 7 years, the remaining term of the CD is 30 - 7 = 23 years. The annual interest rate for a CD that pays 6% interest compounded daily is 6%/365 ≈ 0.0164% per day. The balance after 17 years can be calculated using the formula:

Balance = $492.89 x (1 + 0.000164)^((365 x 10) / 365) ≈ $784.98

Rounding to the nearest cent, the balance after 17 years is $784.98.

C. After 17 years, the remaining term of the CD is 30 - 17 = 13 years. The annual interest rate for a CD that pays 4.1% interest compounded daily is 4.1%/365 ≈ 0.0112% per day. The balance after 30 years can be calculated using the formula:

Balance = $784.98 x (1 + 0.000112)^((365 x 13) / 365) ≈ $1,265.59

Rounding to the nearest cent, the balance after 30 years is $1,265.59.

D. The difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD is:

$4,200 - $1,265.59 - $150 ≈ $2,784.41

Rounding to the nearest cent, the difference is $2,784.41.

Learn more about interest rate at https://brainly.com/question/25068711

#SPJ11

Let
D = Ф(R), where Ф(u, v) = (u , u + v) and
R = [5, 6] × [0, 4].
Calculate∫∫dydA.

Answers

Finally, integrate with respect to u:

[4u](5 to 6) = 4(6) - 4(5) = 4

So, the double integral ∫∫R dydA is equal to 4.

To compute the double integral ∫∫R dydA, where D = Ф(R) and Ф(u, v) = (u, u + v), we first need to transform the integral using the given mapping.

The region R is defined as the set of all points (u, v) such that u ∈ [5, 6] and v ∈ [0, 4]. According to the transformation Ф, we have x = u and y = u + v.

Now we need to find the Jacobian determinant of the transformation:

J(Ф) = det([∂x/∂u, ∂x/∂v; ∂y/∂u, ∂y/∂v]) = det([1, 0; 1, 1]) = (1)(1) - (0)(1) = 1

Since the Jacobian determinant is nonzero, we can change the variables in the double integral using the transformation Ф:

∫∫R dydA = ∫∫D (1) dydx = ∫(5 to 6) ∫(u to u + 4) dydu

Now, compute the integral:

∫(5 to 6) ∫(u to u + 4) dydu = ∫(5 to 6) [y](u to u + 4) du
= ∫(5 to 6) [(u + 4) - u] du = ∫(5 to 6) 4 du

Finally, integrate with respect to u:

[4u](5 to 6) = 4(6) - 4(5) = 4

So, the double integral ∫∫R dydA is equal to 4.

Learn more about determinant here:

https://brainly.com/question/13369636

#SPJ11

Pls help I really need help on this

Answers

The operations that results in a rational numbers are C + D, A · B and C · D.

How to obtain a rational number from combining irrational numbers

In this problem we must determine what operations between irrational numbers are equivalent to a rational number. Real numbers are result of the union between rational and irrational numbers. We need to check if each operation is equivalent to a rational number:

Case 1: A + B

A + B = √3 + 2√3 = 3√3 (Irrational)

Case 2: C + D

C + D = √25 + √16 = 5 + 4 = 9 (Rational)

Case 3: A + D

A + D = √3 + √16 = √3 + 4 (Irrational)

Case 4: A · B

A · B = √3 · 2√3 = 2 · 3 = 6 (Rational)

Case 5: B · D

B · D = 2√3 · √16 = 2√3 · 4 = 8√3 (Irrational)

Case 6: C · D

C · D = √25 · √16 = 5 · 4 = 20 (Rational)

Case 7: A · A

A · A = √3 · √3

A · A = 3 (Rational)

To learn more on irrational numbers: https://brainly.com/question/17450097

#SPJ1

Please help with this math problem!

Answers

The equation of the ellipse is x^2/9 + y^2/6.75 = 1

Finding the equation of the ellipse

To find the equation of an ellipse, we need to know the center, the major and minor axis, and the foci.

Since we are given the eccentricity and foci, we can use the following formula:

c = (1/2)a

Since the foci are (0, +/-3), the center is at (0, 0). We know that c = 3/2, so we can find a:

c = (1/2)a

3/2 = (1/2)a

a = 3

The distance from the center to the end of the minor axis is b, which can be found using the formula:

b = √(a^2 - c^2)

b = √(3^2 - (3/2)^2)

b = √6.75

So the equation of the ellipse is:

x^2/a^2 + y^2/b^2 = 1

Plugging in the values we found, we get:

x^2/3^2 + y^2/6.75 = 1

Simplifying:

x^2/9 + y^2/6.75 = 1

Therefore, the equation of the ellipse is x^2/9 + y^2/6.75 = 1

Read more about ellipse at

https://brainly.com/question/3202918

#SPJ1

Please help I need it ASAP, also needs to be rounded to the nearest 10th

Answers

The length of segment BC is given as follows:

BC = 47.2 km.

What is the law of cosines?

The Law of Cosines is a trigonometric formula that relates the lengths of the sides of a triangle to the cosine of one of its angles. It is also known as the Cosine Rule.

The Law of Cosines states that for any triangle with sides a, b, and c and angle C opposite to side c, the following equation holds true:

c² = a² + b² - 2ab cos(C)

The parameters for this problem are given as follows:

a = 27.8, b = 24.7, C = 129.1

Hence the length of segment BC is given as follows:

(BC)² = 27.8² + 24.7² - 2 x 27.8 x 24.7 x cosine of 129.1 degrees

(BC)² = 2249.0497

[tex]BC = \sqrt{2249.0497}[/tex]

BC = 47.2 km.

More can be learned about the law of cosines at https://brainly.com/question/4372174

#SPJ1

A lube and oil change business believes that the number of cars that arrive for service is the same each day of the week. If the business is open six days a week (Monday - Saturday) and a random sample of n = 200 customers is selected, the critical value for testing the hypothesis using a goodness-of-fit test is x2 = 9. 2363 if the alpha level for the test is set at. 10

Answers

The hypothesis to be tested here is that the number of cars arriving for service is the same for each day of the week.

The null hypothesis, denoted as H0, is that the observed frequency distribution of cars is the same as the expected frequency distribution.

The alternative hypothesis, denoted as H1, is that the observed frequency distribution of cars is not the same as the expected frequency distribution.

To test this hypothesis, we use a goodness-of-fit test with the chi-square distribution. The critical value for a chi-square distribution with 6 - 1 = 5 degrees of freedom (one for each day of the week) and alpha level of 0.10 is 9.2363.

If the computed chi-square statistic is greater than 9.2363, then we reject the null hypothesis and conclude that the observed frequency distribution is significantly different from the expected frequency distribution.

Thus, if the computed chi-square statistic is greater than 9.2363, we can conclude that the number of cars arriving for service is not the same for each day of the week, and there is evidence to support the alternative hypothesis.

If the computed chi-square statistic is less than or equal to 9.2363, then we fail to reject the null hypothesis, and there is not enough evidence to suggest that the observed frequency distribution is different from the expected frequency distribution.

To know more about hypothesis, refer here:

https://brainly.com/question/29519577#

#SPJ11

3/4+(1/3 divided by 1/6) - (-1/2)

Answers

3/4 + (1/3 divided by 1/6) - (-1/2) when simplified give 3 1/4

How to determine this

3/4 + (1/3 divided by 1/6) - (-1/2)

3/4 + (1/3 ÷ 1/6) - (-1/2)

Using the rule of BODMAS

Whee B = Bracket

O = Order

D = Division

M = Multiplication

A = Addition

S = Subtraction

By removing the bracket

3/4 + 1/3 ÷ 1/6 + 1/2

By dividing

3/4 + 1/3 * 6/1 + 1/2

3/4 + 6/3 + 1/2

3/4 +2 + 1/2

By finding the LCM

The LCM is lowest common factor of the denominator which is 4

= [tex]\frac{3+8+2}{4}[/tex]

= 13/4

= 3 1/4

Read more about Fractions

https://brainly.com/question/26366075

#SPJ1

O is the centre of the given circle. if OX⊥PQ, OY⊥RS and PQ=RS, write down the relation between OX and OY.

Answers

Since OX is perpendicular to PQ, and OY is perpendicular to RS, we know that OX and OY are both radii of the circle. Therefore, we can write:

OX = OY

This is because all radii of a circle are equal in length. Alternatively, we could also say that OX and OY are both the distance from the center O to the respective lines PQ and RS. Since PQ=RS, OX and OY are equal in length.

What is the circle about?

In a circle, the center is the point from which all points on the circumference are equidistant. This means that any line segment from the center to a point on the circle is a radius of the circle.

In this problem, we have two lines PQ and RS, both of which are tangent to the circle at points P and R respectively. We also have two lines OX and OY, each of which is perpendicular to one of the tangent lines.

Because the tangent lines are perpendicular to their respective radii (PQ is perpendicular to OX, and RS is perpendicular to OY), we can conclude that OX and OY are both radii of the circle, and therefore, they have the same length.

Note that both are still angles at 90 degrees.

Learn more about circle from

https://brainly.com/question/14283575

#SPJ1

Goldilocks walked into her kitchen to find that a bear had eaten her tasty can of soup. All that was left was the label below that used to completely cover the sides of the can (without any overlap). What was the volume of the can of soup that the bear ate? The label is 22 in. (top) by 9 in. (side).

Answers

The volume of the can of soup that the bear ate was approximately 4644.64 cubic inches.

To solve this problem, we need to make some assumptions about the can of soup. Let's assume that the can is cylindrical and that it is completely filled with soup. We also need to assume that the label covered the entire surface area of the can without any overlap.

The label is 22 inches tall and 9 inches wide, so it covered a total surface area of 22 x 9 = 198 square inches. Since the label completely covered the sides of the can without any overlap, we can use this surface area to find the surface area of the can itself.

The surface area of a cylinder is given by the formula A = 2πrh + 2πr², where r is the radius of the base of the cylinder, and h is the height of the cylinder. In this case, we know that the height of the cylinder is 22 inches (the height of the label), and the circumference of the base of the cylinder is 9 inches (the width of the label).

Using these values, we can solve for the radius of the cylinder:

9 = 2πr
r = 4.53 inches

Now we can use the formula for the surface area of a cylinder to solve for the volume of the can:

A = 2πrh + 2πr²
198 = 2π(22)(4.53) + 2π(4.53)²
198 = 634.26
A = πr²h
V = A x h/3
V = 634.26 x 22/3
V ≈ 4644.64 cubic inches

To know more about volume, refer to the link below:

https://brainly.com/question/23687218#

#SPJ11

Walmart is contacting all of the manufacturers that supply its more than 4,000 u. s. stores with a logistics proposition: the world’s largest retailer wants to use its own fleet of trucks to pick up products directly from manufacturers and deliver the merchandise to walmart’s stores. in short, walmart’s truck fleet would replace manufacturers’ or common carriers’ trucks. by doing so, walmart believes it will enjoy substantial cost savings while allowing manufacturers to concentrate on what they do best—making products rather than managing logistical systems. walmart, with about 6,500 trucks and over 50,000 trailers, believes it has the capacity to implement this new logistical program

Answers

Walmart's decision to use its own fleet of trucks to pick up products directly from manufacturers and deliver them to its stores is a strategic move that has the potential to benefit both Walmart and manufacturers.

By using its own fleet, Walmart will be able to cut down on transportation costs and gain more control over the supply chain, which can lead to better efficiency and cost savings. This is especially important given Walmart's massive scale, with over 4,000 stores in the US alone.

For manufacturers, this move by Walmart could be a relief as they can focus on their core competency of making products rather than managing logistics. With Walmart taking over the transportation aspect, manufacturers can rest assured that their products will be delivered on time and in the right condition.

The fact that Walmart already has a large fleet of trucks and trailers means that it has the capacity to implement this new program without too much additional investment. However, it remains to be seen how manufacturers will respond to this proposal, as they may have existing contracts with other carriers or may be hesitant to rely too heavily on Walmart for their transportation needs.

Overall, Walmart's move towards using its own fleet of trucks is a smart one that has the potential to benefit both the retailer and its suppliers.

To know more about Walmart refer here

https://brainly.com/question/29887733#

#SPJ11

QUESTION 3 2 - 1 Let () . Find the interval (a,b) where y increases. As your answer please input a+b QUESTION 4 Let(x) = xº - 6x3 - 60x2 + 5x + 3. Find all solutions to the equation f'(x) = 0. As your answer please enter the sum of values of x for which f() -

Answers

The interval where y increases for the function f(x) = (4x² - 1)/(x² + 1) is (-∞, -0.5) U (0.5, ∞) is 0.5-(-∞) = ∞.

To find the intervals where the function f(x) = (4x² - 1)/(x² + 1) increases, we need to find its derivative and determine its sign. The derivative of f(x) can be found using the quotient rule:

f'(x) = [(8x)(x² + 1) - (4x² - 1)(2x)]/(x² + 1)²

Simplifying this expression, we get:

f'(x) = (12x - 4x³)/(x² + 1)²

To find the critical points, we need to solve the equation f'(x) = 0:

12x - 4x³ = 0

4x(3 - x²) = 0

This gives us the critical points x = 0 and x = ±√3. We can now test the intervals between these critical points to determine the sign of f'(x) in each interval.

Testing x < -√3, we choose x = -4, and we get f'(-4) = (-224)/(17²) < 0. Therefore, f(x) is decreasing on this interval.

Testing -√3 < x < 0, we choose x = -1, and we get f'(-1) = (16)/(2²) > 0. Therefore, f(x) is increasing on this interval.

Testing 0 < x < √3, we choose x = 1, and we get f'(1) = (16)/(2²) > 0. Therefore, f(x) is increasing on this interval.

Testing x > √3, we choose x = 4, and we get f'(4) = (-224)/(17²) < 0. Therefore, f(x) is decreasing on this interval.

Hence, the interval where f(x) increases is (-∞, -0.5) U (0.5, ∞). Therefore, the answer is 0.5 - (-∞) = ∞.

For more questions like Function click the link below:

https://brainly.com/question/16008229

#SPJ11

Given that MNPQ is a rectangle with vertices M(3, 4), N(1, -6), and P(6, -7), find the coordinates Q that makes this a rectangle

Answers

Given that MNPQ is a rectangle with verticles M(3, 4), N(1, -6), and P(6, -7), to find the coordinates of point Q, we can use the fact that opposite sides of a rectangle are parallel and have equal lengths.

First, let's find the vector MN and MP:

MN = N - M = (1 - 3, -6 - 4) = (-2, -10)
MP = P - M = (6 - 3, -7 - 4) = (3, -11)

Now, let's add the vector MN to point P:

Q = P + MN = (6 + (-2), -7 + (-10)) = (4, -17)

Therefore, the coordinates of point Q that make MNPQ a rectangle are Q(4, -17).


If you want to learn more about verticles, click here:
https://brainly.com/question/24681896
#SPJ11

A sector with a central angle measure of 4/ 7π(in radians) has a radius of 16 cm. what is the area of the sector.

Answers

The area of the sector is approximately 73.14 square centimeters.

The formula to calculate the area of a sector is given by A = (θ/2) × r^2, where θ is the central angle measure in radians, and r is the radius of the circle.

Substituting the given values in the formula, we get A = (4/7π/2) × 16^2

Simplifying this expression, we get A = (8/7) × 16^2 × π/2

A = 128π square centimeters/7

Using the approximation π ≈ 3.14, we can calculate the value of A as follows:

A ≈ (128 × 3.14) square centimeters/7 ≈ 573.44 square centimeters/7 ≈ 73.14 square centimeters (rounded to two decimal places)

Therefore, the area of the sector is approximately 73.14 square centimeters.

For more questions like Sector click the link below:

https://brainly.com/question/7512468

#SPJ11

A ball is drawn randomly from a jar that contains 8 red balls, 7 white balls, and 3 yellow balls. Find the probability of the given event. Write your answers as reduced fractions or whole numbers. (a) P(A red ball is drawn) = (b) P(A white ball is drawn) = (c) P(A yellow ball is drawn) = (d) P(A green ball is drawn) =

Answers

(a) P(A red ball is drawn) = 4/9

(b) P(A white ball is drawn) = 7/18

(c) P(A yellow ball is drawn) = 1/6

(d) P(A green ball is drawn) = 0



(a) To find the probability that a red ball is drawn, we'll use the following formula:
P(A red ball is drawn) = (Number of red balls) / (Total number of balls)

There are 8 red balls and a total of 8+7+3 = 18 balls in the jar. So, the probability of drawing a red ball is:
P(A red ball is drawn) = 8/18 = 4/9

(b) To find the probability that a white ball is drawn:
P(A white ball is drawn) = (Number of white balls) / (Total number of balls)

There are 7 white balls, so the probability of drawing a white ball is:
P(A white ball is drawn) = 7/18

(c) To find the probability that a yellow ball is drawn:
P(A yellow ball is drawn) = (Number of yellow balls) / (Total number of balls)

There are 3 yellow balls, so the probability of drawing a yellow ball is:
P(A yellow ball is drawn) = 3/18 = 1/6

(d) To find the probability that a green ball is drawn:
P(A green ball is drawn) = (Number of green balls) / (Total number of balls)

There are no green balls in the jar, so the probability of drawing a green ball is:
P(A green ball is drawn) = 0/18 = 0

To know more about probability click here:

https://brainly.com/question/11234923

#SPJ11

Find all solutions of the equation in the interval [0, 2π). Show formula and steps used, not a calculator problem. (8 csc x - 16)(4 cos x - 4) = 0

Answers

The solutions for the equation in the interval [0, 2π) are x = 0, x = π/6, and x = 5π/6.

To find all solutions of the equation (8 csc x - 16)(4 cos x - 4) = 0 in the interval [0, 2π), we can set each factor equal to zero and solve for x separately.

1) 8 csc x - 16 = 0
8 csc x = 16
csc x = 2

Recall that csc x = 1/sin x, so:

1/sin x = 2
sin x = 1/2

In the interval [0, 2π), sin x = 1/2 at x = π/6 and x = 5π/6. So, the solutions for this part are x = π/6 and x = 5π/6.

2) 4 cos x - 4 = 0
4 cos x = 4
cos x = 1

In the interval [0, 2π), cos x = 1 at x = 0 and x = 2π. However, since 2π is not included in the interval, we only have x = 0 as a solution for this part.

Combining both parts, the solutions for the equation in the interval [0, 2π) are x = 0, x = π/6, and x = 5π/6.

To learn more about interval, refer below:

https://brainly.com/question/13708942

#SPJ11

the figure above, AB is parallel to DE; (ABC = 800 and (CDE = 280. Find (DCB.(3mks)

Answers

Answer:

Step-by-step explanation:

Since AB is parallel to DE, we know that:

(ABC + BCD) = (CDE + EDC)

Substituting the given values, we get:

800 + BCD = 280 + EDC

Simplifying, we get:

BCD = EDC - 520

We also know that:

(BCD + CDE + DCE) = 180

Substituting BCD = EDC - 520 and CDE = 280, we get:

(EDC - 520 + 280 + DCE) = 180

Simplifying, we get:

EDC + DCE - 240 = 0

EDC + DCE = 240

Now we can solve for DCE in terms of BCD:

DCE = 240 - EDC

DCE = 240 - (BCD + 520)

DCE = 760 - BCD

Substituting this expression for DCE into the equation (BCD + CDE + DCE) = 180, we get:

BCD + 280 + (760 - BCD) = 180

Simplifying, we get:

1040 - BCD = 180

BCD = 860

Therefore, (DCB) = 180 - (BCD + CDE) = 180 - (860 + 280) = -960. However, since angles cannot be negative, we can add 360 degrees to this value to get:

(DCB) = -960 + 360 = -600

Therefore, (DCB) = -600 degrees.

THIS IS DUE TONIGHT! PLEASE HELP ME! :c
USE STRUCTURE Complete the table to show the effect that the transformation has on the table of the parent function f(x)=x2.

g(x)is a reflection of f(x)across the x-axis.
x f(x) g(x)
-2 4
-1 1
0 0
1 1
2 4

Answers

The table of values to show the effect of the transformation is

x f(x) g(x)

-2 4   -4

-1 1      -1

0 0     0

1 1       -1

2 4     -4

Completing the table of values to show the effect

From the question, we have the following parameters that can be used in our computation:

f(x) = x²

Also, we have

g(x) is a reflection of f(x)across the x-axis

This means that

g(x) = -f(x)

So, we have

g(x) = -x²

Using the above as a guide, we have the following:

x f(x) g(x)

-2 4   -4

-1 1      -1

0 0     0

1 1       -1

2 4     -4

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

Pls help me with this! I need to finish today

Answers

Answer:

T=64

Step-by-step explanation:

Multiply both sides by 4

t/4=16

t/4×4=16×4 Cancel out the 4

t=64

Use the Mean Value Theorem to show that if * > 0, then sin* < x.

Answers

According to the Mean Value Theorem, if a function is continuous on the interval [a, b] and differentiable on the open interval (a, b), there exists a point c in (a, b) such that the derivative at c equals the average rate of change between a and b.

To use the Mean Value Theorem to show that if * > 0, then sin* < x, we first need to apply the theorem to the function f(x) = sin x on the interval [0, *].

According to the Mean Value Theorem, there exists a number c in the interval (0, *) such that:

f(c) = (f(*) - f(0)) / (* - 0)

where f(*) = sin* and f(0) = sin 0 = 0.

Simplifying this equation, we get:

sin c = sin* / *

Now, since * > 0, we have sin* > 0 (since sin x is positive in the first quadrant). Therefore, dividing both sides of the equation by sin*, we get:

1 / sin c = * / sin*

Rearranging this inequality, we have:

sin* / * > sin c / c

But c is in the interval (0, *), so we have:

0 < c < *

Since sin x is a decreasing function in the interval (0, π/2), we have:

sin* > sin c

Combining this inequality with the earlier inequality, we get:

sin* / * > sin c / c < sin* / *

Therefore, we have shown that if * > 0, then sin* < x.
I understand that you'd like to use the Mean Value Theorem to show that if x > 0, then sin(x) < x. Here's the answer:

According to the Mean Value Theorem, if a function is continuous on the interval [a, b] and differentiable on the open interval (a, b), there exists a point c in (a, b) such that the derivative at c equals the average rate of change between a and b.

Let's consider the function f(x) = x - sin(x) on the interval [0, x] with x > 0. This function is continuous and differentiable on this interval. Now, we can apply the Mean Value Theorem to find a point c in the interval (0, x) such that:

f'(c) = (f(x) - f(0)) / (x - 0)

The derivative of f(x) is f'(x) = 1 - cos(x). Now, we can rewrite the equation:

1 - cos(c) = (x - sin(x) - 0) / x

Since 0 < c < x and cos(c) ≤ 1, we have:

1 - cos(c) ≥ 0

Thus, we can conclude that:

x - sin(x) ≥ 0

Which simplifies to:

sin(x) < x

This result is consistent with the Mean Value Theorem, showing that if x > 0, then sin(x) < x.

To know more about Mean Value Theorem click here:

brainly.com/question/29107557

#SPJ11

Given the following point on the unit circle, find the angle, to the nearest tenth of a
degree (if necessary), of the terminal side through that point, 0<θ<360.
p=(-√2/2,√2/2)

Answers

Answer: Therefore, the angle of the terminal side through the point p is 315.0 degrees (to the nearest tenth of a degree).

Step-by-step explanation:

The point p = (-√2/2,√2/2) lies on the unit circle, which is centered at the origin (0,0) and has a radius of 1. To find the angle of the terminal side through this point, we need to use the trigonometric ratios of sine and cosine.

Recall that cosine is the x-coordinate of a point on the unit circle, and sine is the y-coordinate. Therefore, we have:

cos(θ) = -√2/2

sin(θ) = √2/2

We can use the inverse trigonometric functions to solve for θ. Taking the inverse cosine of -√2/2, we get:

θ = cos⁻¹(-√2/2)

Using a calculator, we find that θ is approximately 135.0 degrees.

However, we need to ensure that the angle is between 0 and 360 degrees. Since the point lies in the second quadrant (i.e., x < 0 and y > 0), we need to add 180 degrees to the angle we found. This gives:

θ = 135.0 + 180 = 315.0 degrees

The angle of the terminal side through the point p is 315.0 degrees (to the nearest tenth of a degree).

To know more about terminal refer here

https://brainly.com/question/27349244#

#SPJ11

Other Questions
Already Know The Vertex but need help on the opens and axis of symmetry The following two-way table shows the distribution of daily traffic and weather issues in a certain large city. A 4-column table with 3 rows. Column 1 has entries bad weather, good weather, total. Column 2 is labeled heavy traffic with entries 25, 55, 80. Column 3 is labeled Light traffic with entries 5, 15, 20. Column 4 is labeled Total with entries 30, 75, 100. The columns are titled daily traffic and the rows are titled weather conditions. Suppose a day from this city is selected at random. Let event A = heavy traffic and event B = bad weather. Are events A and B independent?No, P(A) = P(B|A). No, P(A) P(A|B). Yes, P(A) = P(A|B). Yes, P(A) P(B|A) A molecule that donates electrons becomes ______, and a molecule that accepts electrons becomes _________.oxidized; reducedreduced; oxidizedionic; electrifiedelectrified; ionic A children's library has 5 storybooks for every 3 science books it has. The library also has the same number of picture books as science books. The library added 50 more picture books so now there are the same number of picture books as storybooks. How many of each of the book does the children's library have? Draw a model Describe how a reservoir functions like a battery. In your description, write how energy is stored, how energy is charged, and how energy is released. In each of the following independent cases, indicate the amount (1) deductible for AGI, (2) deductible from AGI, and (3) deductible neither for nor from AGI before considering income limitations or the standard deduction. a. Fran spent $90 for uniforms for use on her job. Her employer reimbursed her for $75 of this amount under an accountable plan (and did not report the reimbursement as wages). b. Timmy paid $470 for health insurance premiums this year (not through an exchange and not with pre-tax dollars). Timmy is employed full-time and his employer paid the remaining premiums as a qualified fringe benefit montgomery comprehensive dental center montgomery, tx Sikie Shoe Manufacturing Co. Was incorporated in the New York State on January 15, 2021 and received authorization to issue 100,000 shares of $25 par value, preferred stock 200,000 shares of $2 Par Value Common Stock. Prepare journal entries to record the following transactions. (40 POINTS) 1 What journal entry would you make on January 15, the authorization date? 2 On Jan. 20, 50,000 preferred stock were sold cash at $70 per share. 3 On February 1, 2021 Sikie Shoe Manufacturing Co. Issued 70,000 common shares with a Market price of $8 4 On February 15, 2021 Sikie Shoe Manufacturing Co. Issued 4,000 common shares to Delkab Consulting Co. In settlement of various Professional Services Provided at a fee of $100,000 5 On March 20, 2021 Mr. Park agreed to exchange a piece of land he owns with a fair value of $150,000 for 10,000 common shares. Sikie Shoe Manufacturing Co. Shares are actively traded at $10 per share on the stock exchange. 6 On July 1, 2021 Sikie Shoe Manufacturing Co. Issued 45,000 common shares for cash at a Market price of $25 7 As of July 31, How many common shares have been issued? 8 As of July 31, How many common shares are outstanding? The following treasury stock transactions were made by Sikie in 2021 Prepare the necessary journal entries to record the transactions in the financial records of the company. (25 POINTS) 9 1-Aug Purchased 5,000 shares of its own $2 par value common stock at $20 per share 10 1-Sep Sold 1,500 shares of treasury stock purchased on August 1 for $30 per share 11 21-Oct Sold 700 shares of treasury stock purchased on August 1 for $27 per share 12 1-Nov Sold 900 shares of treasury stock purchased on August 1 for $13,500 13 18-Nov Sold 600 shares of treasury stock purchased on August 1 for $9,600 Prepare the stockholders' equity section of Sikie Shoe Manufacturing Co as of December 31, 2021 including disclosure of all relevant information. (Hint: Refer to Learning Objective 3 Illustration 13. 11 page 13-18 of your text book). (35 points) the following standards for variable manufacturing overhead have been established for a company that makes only one product: standard hours per unit of output 6.6 hours standard variable overhead rate $13.00 per hour the following data pertain to operations for the last month: actual hours 2,675 hours actual total variable manufacturing overhead cost $35,435 actual output 250 units what is the variable overhead efficiency variance for the month? multiple choice $13,985 u $13,325 u $660 u $21,450 f algebra hw I will give brainlyest What is the definition of physical activity? A. a movement that stimulates your respiratory system B. a movement that causes perspiration C. a movement that results in the bodys use of energy D. a movement that requires little effort Kaden invested $5,000 into a savings account. The interest was compoundedannually at 2. 5%. How much interest will Kaden earn in 30 months? A population of rabbits is increasing at a rate of 1.5% per month. If there are 60 rabbits today, how many will there be after 10 months? Round to the nearest whole. A student is solving the problem |29x|=29. They know that one answer can be found by solving the equation 29x = 29. They subtract 2 to get 9x=27 and then divide by -9 to get x=3. They think that this is one answer, and then take the absolute value of this to get their other answer of x=3. Did this student solve this problem correctly? If so, how can you show that they got it correct. If not, what mistake did they make and what should they have done instead? so many people sea the picture of success as full of money power and with the emphasis on fame Julian is using a biking app that compares his position to a simulated biker traveling Julian's target speed. When Julian is behind the simulated biker, he has a negative position.Julian sets the simulated biker to a speed of 20kmh20 hkm 20, start fraction, start text, k, m, end text, divided by, start text, h, end text, end fraction. After he rides his bike for 151515 minutes, Julian's app reports a position of 214km2 41 km minus, 2, start fraction, 1, divided by, 4, end fraction, start text, k, m, end text.What has Julian's average speed been so far? Use the drop-down menus to identify the underlined phrase in each sentence.The students carrying boxes into their new dorm rooms were exhausted at the end of the day. To text in the middle of a movie is rude to other moviegoers. Skiing down that slope was exhilarating! Your doing practice 4 Robin records the height of her plant for 3 months. If the pattern continues, what algebraic expression can Robin use to find the plant's height for any month? What will the plants height be at 12 months Isabel chapter 275. What connection is made between Josefs story and Isabels story? REFUGE NOVEL