The area of the triangle is 6 cm².
Let's denote the width of the triangle as "w." According to the given information, the length of the triangle is three times its width, so the length can be expressed as "3w."
The perimeter of a rectangle is given by the formula: Perimeter = 2(length + width). In this case, the perimeter of the rectangle is given as 24 cm.
We can set up the following equation based on the given information:
24 = 2(3w + w)
Simplifying the equation:
24 = 2(4w)
12w = 24
w = 24/12
w = 2 cm
Now that we have the width of the triangle, we can find the length:
Length = 3w = 3 * 2 = 6 cm
The area of a triangle is given by the formula: Area = (base * height) / 2. In this case, the base of the triangle is the width (2 cm) and the height is the length (6 cm).
Area = (2 * 6) / 2
Area = 12 / 2
Area = 6 cm²
To learn more about triangles
https://brainly.com/question/1058720
#SPJ11
Consider ABC.
What is the length of AC
A. 32units
B.48units
C.16units
D.24units
length of AC in the triangle is 32 units.
Define triangle proportionality ruleThe triangle proportionality theorem, also known as the side-splitter theorem, states that if a line is drawn parallel to one side of a triangle, then it divides the other two sides proportionally.
In mathematical terms, let ABC be a triangle with a line parallel to one side, say line DE || AB, where D lies on BC and E lies on AC. Then, the theorem states that:
BD/DC = AE/EC
In the given triangle ABC;
GH and AC are parallel
AG=BG
BH=HC
Using proportional rule
BG/AB=GH/AC
BG/2BG=16/AC
1/2=16/AC
AC=32 units
Hence, length of AC in the triangle is 32units.
To know more about line, visit:
https://brainly.com/question/2696693
#SPJ1
Answer:
1. 32 units
Step-by-step explanation:
sorry abt the other person but the answer is 32... i just took it
t/12+5=t/3+t/4 please hepl me
Answer:
Step-by-step explanation:
To solve the equation (T/12) + 5 = (T/3) + (T/4), we need to simplify the right-hand side of the equation by finding a common denominator for T/3 and T/4.
The least common multiple of 3 and 4 is 12, so we can rewrite T/3 and T/4 as (4T/12) and (3T/12), respectively. Substituting these expressions into the equation, we get:
(T/12) + 5 = (4T/12) + (3T/12)
Simplifying the right-hand side, we get:
(T/12) + 5 = (7T/12)
Subtracting (T/12) from both sides, we get:
5 = (6T/12)
Simplifying the right-hand side, we get:
5 = (T/2)
Multiplying both sides by 2, we get:
T = 10
Therefore, the solution to the equation is T = 10.
[tex]\sf\longrightarrow \: \frac{t}{12} + 5 = \frac{t}{3} + \frac{t}{4} \\ [/tex]
[tex]\sf\longrightarrow \: \frac{t + 60}{12} = \frac{t}{3} + \frac{t}{4} \\ [/tex]
[tex]\sf\longrightarrow \: \frac{t + 60}{12} = \frac{4t + 3t}{12} \\ [/tex]
[tex]\sf\longrightarrow \: 12(t + 60) = 12(4t + 3t) \\ [/tex]
[tex]\sf\longrightarrow \: 12t + 720 = 48t + 36t \\ [/tex]
[tex]\sf\longrightarrow \: 12t + 720 = 84t \\ [/tex]
[tex]\sf\longrightarrow \: 720 = 84t - 12t\\ [/tex]
[tex]\sf\longrightarrow \: 720 =72t\\ [/tex]
[tex]\sf\longrightarrow \: 72t = 720\\ [/tex]
[tex]\sf\longrightarrow \: t = \frac{720}{72} \\ [/tex]
[tex]\sf\longrightarrow \: t = 10 \\ [/tex]
[tex]\longrightarrow { \underline{ \overline{ \boxed{ \sf{\: \: \: t = 10 \: \: \: }}}}} \: \: \bigstar\\ [/tex]
Determine the equation of the tangent plane to the surface z = y ln x at the point (1, 4, 0)
z = 4(x - 1) - ln (y - 4)
Therefore, the equation of the tangent plane to the surface z = y ln x at the point (1, 4, 0) is z = 4(x - 1) - ln (y - 4).
To determine the equation of the tangent plane to the surface z = y ln x at the point (1, 4, 0), we first need to find the partial derivatives of the surface with respect to x and y.
∂z/∂x = y/x
∂z/∂y = ln x
Then, we can use these partial derivatives along with the point (1, 4, 0) to find the equation of the tangent plane using the formula:
z - z0 = ∂z/∂x(x0, y0)(x - x0) + ∂z/∂y(x0, y0)(y - y0)
where (x0, y0, z0) is the given point.
Plugging in the values, we have:
z - 0 = (4/1)(x - 1) + ln 1(y - 4)
Simplifying:
z = 4(x - 1) - ln (y - 4)
Therefore, the equation of the tangent plane to the surface z = y ln x at the point (1, 4, 0) is z = 4(x - 1) - ln (y - 4).
Learn more about tangent plane here:
https://brainly.com/question/30260323
#SPJ11
Jack claims that QRST is a parallelogram. If m∠R = 72, m∠T = 108, and m∠S = 72, is he correct? Explain
We can conclude that Jack's claim is correct. QRST is indeed a parallelogram, since opposite angles in QRST are congruent, and opposite sides in a parallelogram are also congruent
To determine whether Jack's claim that QRST is a parallelogram is correct, we need to use the properties of parallelograms. One of the properties of a parallelogram is that opposite angles are congruent. Therefore, we need to check if the opposite angles in QRST are congruent.
If m∠R = 72 and m∠T = 108, then the sum of these angles is 180 degrees (72 + 108 = 180). This indicates that angles R and T are supplementary.
If m∠S = 72, then we need to find the measure of angle Q. Since QRST is a quadrilateral, the sum of its interior angles is 360 degrees.
m∠Q + m∠R + m∠S + m∠T = 360
Substituting the given values, we get:
m∠Q + 72 + 72 + 108 = 360
Simplifying the equation, we get:
m∠Q = 108
Therefore, angles Q and S are congruent (both measuring 72 degrees) and angles R and T are supplementary (measuring 72 and 108 degrees, respectively). Since opposite angles in QRST are congruent, and opposite sides in a parallelogram are also congruent, we can conclude that Jack's claim is correct. QRST is indeed a parallelogram.
More on parallelogram: https://brainly.com/question/11803780
#SPJ11
The iterative function that describes how your new car loses value over time is f(t)=0. 75t, where t is the number of years since you purchased the car. If you paid $25,000 for your car and you sell it after owning the car for 3 years, how much is the car worth?
t_3=$14,062. 50
t_3=$10,546. 88
t_3=$7,910. 15
t_3=$18,750
If you paid $25,000 for your car and you sell it after owning the car for 3 years, then the worth of the car is t₃=$7,910. 15 (option c).
To find the value of your car after owning it for 3 years, we need to evaluate the function at t=3. This means we need to substitute t=3 into the function and simplify the expression.
f(3) = 0.75(3) = 2.25
The output of the function when t=3 is 2.25. But what does this number mean? It represents the fraction of the original value of the car that remains after owning it for 3 years.
To find the actual value of the car, we need to multiply this fraction by the original value of the car, which is given as $25,000.
Value of car after 3 years = 2.25 x $25,000 = $56,250
Therefore, the value of the car after owning it for 3 years is $7,910.15. This is the option (C) in the given choices.
To know more about function here
https://brainly.com/question/28193995
#SPJ4
The standard deviation of the scores on a skill evaluation test is 320 points with a mean of 1434 points. if 338 tests are sampled, what is the probability that the mean of the sample would differ from the population mean by less than 43 points? round your answer to four decimal places.
The probability that the mean of the sample would differ from the population mean by less than 43 points is approximately 0.7597 or 0.7600 (rounded to four decimal places).
Given that the standard deviation of the scores on a skill evaluation test is 320 points with a mean of 1434 points. And we have a sample of size n = 338.
We need to find the probability that the mean of the sample would differ from the population mean by less than 43 points.
The standard error of the mean is given by:
SE = σ/√n
where σ is the population standard deviation and n is the sample size.
Substituting the given values, we get:
SE = 320/√338
SE ≈ 17.398
To find the probability, we need to standardize the sample mean using the standard error as follows:
Z = (X - μ) / SE
where X is the sample mean, μ is the population mean, and SE is the standard error of the mean.
Substituting the given values, we get:
Z = (1434 - 1434) / 17.398
Z = 0
Since the mean difference is 0, we can find the probability of a difference less than 43 points by finding the probability that Z lies between -43/17.398 and 43/17.398.
Using a standard normal distribution table or calculator, we find that this probability is approximately 0.7597.
Therefore, the probability that the mean of the sample would differ from the population mean by less than 43 points is approximately 0.7597 or 0.7600 (rounded to four decimal places).
To learn more about population visit:
https://brainly.com/question/24786731
#SPJ11
2 Gracie created the table of x and y
values shown here.
X
y
1
0
Fy=2x-2
Gy= 2x + 2
MathWarm-Ups.com
3
-4
5
-8
7
-12
Which equation represents the relationship
between the x values and the y values in
the table?
7.11A
H y = -2x + 2
J_y=-2x - 2
7.7A
r
F
The equation of the line passing through the given points is y = -2x+2.
Given that are the values of x and y coordinates we need to find the equation of the line using them,
So, considering the points (1, 0) and (3, -4),
We know that the equation of a line passing through points (x₁, y₁) and (x₂, y₂) is =
y-y₁ = y₂-y₁ / x₂-x₁ (x-x₁)
Here (x₁, y₁) and (x₂, y₂) are (1, 0) and (3, -4),
Therefore, the required equation is =
y-0 = -4-0/3-1 (x-1)
y = -2x + 2
Hence, the equation of the line passing through the given points is y = -2x+2.
Learn more about equation of the line click
https://brainly.com/question/21511618
#SPJ1
you are planning a trip to australia. your hotel will cost you a$110 per night for seven nights. you expect to spend another a$3,400 for meals, tours, souvenirs, and so forth. how much will this trip cost you in u.s. dollars if $1
The total cost of the trip in U.S. dollars as per given rates and conversion is equal to approximately USD 3,232.58.
Total cost of the trip in U.S. dollars,
Convert the Australian dollars to U.S. dollars.
Using the exchange rate of 0.7752 USD per 1 AUD.
The cost of the hotel is,
7 nights × A$110/night = A$770
To convert this to U.S. dollars, multiply by the exchange rate,
A$770 × 0.7752 USD/AUD
= USD 596.904
Expected cost of meals, tours, souvenirs, etc. is,
A$3,400
Convert this to U.S. dollars, we again multiply by the exchange rate,
A$3,400 × 0.7752 USD/AUD
= USD 2,635.68
Total cost of the trip in U.S. dollars is the sum of these two amounts is,
USD 596.904 + USD 2,635.68 = USD 3,232.584
Rounding to two decimal places = approximately USD 3,232.58.
Therefore, the cost of the trip in the U.S. dollars is equal to approximately USD 3,232.58.
Learn more about trip here
brainly.com/question/15698942
#SPJ4
The above question is incomplete, the complete question is:
You are planning a trip to Australia. your hotel will cost you a$110 per night for seven nights. you expect to spend another a$3,400 for meals, tours, souvenirs, and so forth. How much will this trip cost her in U.S. dollars if the USD equivalent is .7752?
If p : q = 2/3 : 2 and p : r = 3/4 : 1/2 , calculate the ratio p : q : r Giving your answer in its simplest form.
please help i mark it as brainly
If p : q = 2/3 : 2 and p : r = 3/4 : 1/2 , the ratio of p : q : r in its simplest form is 32 : 27 : 24.
To calculate the ratio p : q : r, we need to first find the values of p, q, and r. We can use the given proportions to set up a system of equations and solve for the variables.
From the first proportion, we know that:
p/q = 2/3 : 2
We can simplify this by cross-multiplying:
p = (2/3) * 2q
p = (4/3)q
From the second proportion, we know that:
p/r = 3/4 : 1/2
Again, we can cross-multiply and simplify:
p = (3/4) * r/(1/2)
p = (3/2)r
Now we have two equations for p in terms of q and r. We can substitute these into each other and solve for q and r:
(4/3)q = (3/2)r
r/q = (8/9)
q/r = (9/8)
Now we have the ratios of r to q and q to r. We can use these to find the ratio of p, q, and r:
p : q : r = p : q * (9/8) : r * (8/9)
Substituting the values we found for p in terms of q and r:
p : q : r = (4/3)q : q * (9/8) : r * (8/9)
Simplifying:
p : q : r = 32 : 27 : 24
To learn more about ratio click on,
https://brainly.com/question/25704465
#SPJ1
Troy went to a Westwood Wasps basketball game on Saturday night. He paid $86.25 for a ticket to the game. He also had to pay for the 3 hours his car was parked in the parking garage. Troy spent a total of $99.
Which equation can you use to find the cost, x, for each hour Troy's car was parked in the garage?
The equation is 86.25 + 3x = 99.
How to determine the equation that can be used to find the cost per hour for Troy's car parking in the garage?Let's assume the cost for each hour Troy's car was parked in the garage is x dollars.
Since Troy spent a total of $99, we can set up an equation based on the given information.
The cost of the ticket to the basketball game is $86.25, and Troy also had to pay for 3 hours of parking. Therefore, the equation can be written as:
86.25 + 3x = 99
In this equation, 86.25 represents the cost of the ticket, 3x represents the cost of parking for 3 hours at a rate of x dollars per hour, and 99 represents the total amount Troy spent.
Therefore, the equation is 86.25 + 3x = 99.
Learn more about the cost for each hour at Troy's.
brainly.com/question/30076036
#SPJ11
What is the difference in credit score between those over the age of 55 and those between 18-24 years old?
According to recent studies, there is a notable difference in credit scores between those over the age of 55 and those between the ages of 18-24.
On average, individuals over the age of 55 tend to have higher credit scores than those in the 18-24 age range. This is primarily due to the fact that older individuals have had more time to establish and build their credit history, whereas younger individuals are just starting out and may not have had the opportunity to establish credit yet.
Additionally, older individuals tend to have more stable financial situations and may have less debt compared to younger individuals who may be dealing with student loans or other types of debt.
However, it's important to note that credit scores can vary greatly between individuals, regardless of age, and there are many factors that contribute to credit score, such as payment history, credit utilization, and length of credit history.
To know more about credit score:
https://brainly.com/question/29548283
#SPJ11
James says the fraction 3 4 has the same value as the expression 4 ÷ 3. Use the drop-down menus to state whether you agree or not, and why. James is Choose. . A fraction can be interpreted as division of the Choose. By the Choose.
James says the fraction 3/4 has the same value as the expression 4 ÷ 3. I disagree with James' statement.
The fraction 3/4 is not the same as the expression 4 ÷ 3. A fraction can be interpreted as division of the numerator (top number) by the denominator (bottom number). In this case, 3/4 represents the division of 3 by 4, whereas 4 ÷ 3 represents the division of 4 by 3. These two expressions have different values and are not equal.
Any number of equal parts is represented by a fraction, which also represents a portion of a whole. A fraction, such as one-half, eight-fifths, or three-quarters, indicates how many components of a particular size there are when stated in ordinary English.
More on fractions: https://brainly.com/question/12220774
#SPJ11
Which choice correctly compares two decimals?
A 2.17 > 2.0172.17 > 2.017
B 2.018 > 2.172.018 > 2.17
C 2.16 < 2.0172.16 < 2.017
D 2.17 = 2.017
Answer:
A
Step-by-step explanation:
2.17 > 2.017
because
2.017 = 2 + 17/1000
while
2.17 = 2 + 17/100 = 2 + 170/1000
170/1000 is larger than 17/1000.
for that reason D is wrong, of course.
2.17 is NOT equal to 2.017. 17/1000 is NOT equal to 170/1000.
2.018 = 2 + 18/1000
2.17 = 2 + 17/100 = 2 + 170/1000
also 18/1000 is NOT larger than 170/1000.
2.16 = 2 + 16/100 = 2 + 160/1000
2.017 = 2 + 17/1000
17/1000 are NOT larger than 160/1000.
true or false
Solids can be "unfolded" to form different net arrangements.
Solids can be "unfolded" to form different net arrangements is a true statement.
What is the unfolding?A net refers to a flat, two-dimensional shape that can be transformed or manipulated to form a three-dimensional object. A solid has the potential to create a variety of nets through various unfolding methods.
The term "net" for a solid refers to a flat shape that can be folded to form the solid object. it is possible to manipulate a three-dimensional object in various manners in order to produce distinct two-dimensional patterns. One can create various nets by cutting different edges of a cube and arranging the resultant faces.
Learn more about Solids from
https://brainly.com/question/752663
#SPJ1
8
Violet is taking a computer-adaptive test, where each time she answers a question correctly, the computer gjves
her a more difficult question. Let Q be the number of questions Violet answers correctly before she misses one.
What type of variable is Q?
None of them.
Geometric
ОООО
Binomial
Algebraic
The variable Q, representing the number of questions Violet answers correctly before she misses one in a computer-adaptive test, is a Geometric variable.
This is because a geometric distribution models the number of trials needed for the first success in a series of Bernoulli trials with a constant probability of success.
Where as all aspects of a logarithmic articulation that is isolated by a short or in addition to sign is known as the term of the algebraic expression and an algebraicexpression with two non-zero terms is called a binomial.
To learn more about variable: https://brainly.com/question/28248724
#SPJ11
Solve the seperable differential equation 1 9yy' = 2. Use the following initial condition: y(9) = 7. = Express x? in terms of y. x2 = (function of y).
the solution to the differential equation is: x = (1/36) y² - (13/36) Note that this equation represents a parabolic curve in the (x,y)-plane, opening upwards and with its vertex at (-13/36,0).
We can start by separating the variables and integrating both sides of the equation:
1/9 y dy = 2 dx
Integrating both sides with respect to their respective variables, we get:
(1/18) y² = 2x + C
where C is the constant of integration.
Using the initial condition y(9) = 7, we can substitute x=9 and y=7 to solve for C:
(1/18) (7²) = 2(9) + C
C = 49/2 - 18 = 13/2
Substituting this value of C back into the general solution, we get:
(1/18) y² = 2x + 13/2
Simplifying and solving for x, we get:
x = (1/36) y² - (13/36)
Therefore, the solution to the differential equation is:
x = (1/36) y² - (13/36)
learn more about equation here:
brainly.com/question/29538993
#SPJ11
Will give brainliest
find the area of this triangle.
round to the nearest tenth.
12 cm
330
5.5 cm
[ ? ] cm2
Answer:
30 cm²
Step-by-step explanation:
Formula : [tex]Area = \frac{hb}{2}[/tex]
the following list shows the number of goals scored by a soccer team in each of 9 games. 0 0 1 1 1 3 3 4 5 how does the median number of goals scored compare with the mean number of goals scored? responses
The median number of goals scored is 1, and the mean number of goals scored is 2. The median is less than the mean, indicating a right-skewed distribution.
To find the median, we need to first put the numbers in order
0, 0, 1, 1, 1, 3, 3, 4, 5
There are an odd number of values, so the median is the middle value, which is 1.
To find the mean, we add up all the values and divide by the number of values
(0 + 0 + 1 + 1 + 1 + 3 + 3 + 4 + 5) / 9 = 2
So the mean number of goals scored is 2.
Since the median (1) is less than the mean (2), we can say that the distribution is skewed to the right. This is because the high value of 5 pulls the mean up, while the median is not affected as much by outliers.
Learn more about median here
brainly.com/question/28060453
#SPJ4
An object has a mass of 4. 70g. Calculate the Density of the object volume is 2. 55L
The density of the object is 0.0018 g/mL.
To calculate the density of the object, we need to use the formula:
Density = Mass / Volume
Given that the mass of the object is 4.70g and the volume is 2.55L, we can substitute these values into the formula:
Density = 4.70g / 2.55L
We need to convert the units of mass and volume to a consistent unit. Let's convert the volume from liters to milliliters (1L = 1000mL):
Density = 4.70g / 2550mL
Now we can simplify by dividing both the numerator and denominator by 10:
Density = 0.47g / 255mL
Finally, we can express the answer in units of g/mL:
Density = 0.0018 g/mL
Therefore, the density of the object is 0.0018 g/mL.
To know more about density refer here:
https://brainly.com/question/30636123?#
#SPJ11
A bank randomly selected 243 checking account customers and found that 105 of them also had savings accounts ar this same bank. Construct 95% confidence interval for the true proportion of checking account customers who also have savings accounts
The 95% CI for the genuine proportion of this bank's checking account customers who also have savings accounts is (0.3666, 0.4976).
To construct a 95% confidence interval for the true proportion of checking account customers who also have savings accounts, we can use the following formula:
CI = p ± z*√(p*(1-p)/n)
where:
CI is the confidence intervalp is the sample proportionz is the critical number for the appropriate level of confidence (95% in this example) from the standard normal distribution.n is the sample sizeWe are given that the sample size is n = 243 and that 105 of the customers had both checking and savings accounts. Therefore, the sample proportion is:
p = 105/243 = 0.4321
The critical value z for a 95% confidence interval is approximately 1.96 (obtained from a standard normal distribution table or calculator).
We get the following results when we plug these values into the formula:
CI = 0.4321 ± 1.96*√(0.4321*(1-0.4321)/243)
CI = 0.4321 ± 0.0655
CI = (0.3666, 0.4976)
Therefore, we can say with 95% confidence that the true proportion of checking account customers who also have savings accounts at this bank is between 0.3666 and 0.4976.
To learn more about confidence interval, visit:
brainly.com/question/13481020?referrer=searchResults
#SPJ4
Based on the percentage of daily of total daily calories and the number of calories needed how many biscuits packages of pemmican and packages of butter and cocoa does one person need each day?
To determine how many biscuit packages, pemmican packages, and butter and cocoa packages are needed per day for one person.
What factors are necessary for daily food requirements?
Calculating an individual's daily Caloric food requirements based on calorie intake and percentage of calories from each food group requires several pieces of information. The first is the total daily calorie requirement, which varies based on factors such as age, gender, height, weight, and physical activity level.
The second is the percentage of daily calories that should come from each food group, which is determined by dietary guidelines and varies based on factors such as age and gender. Finally, the calorie content of each food item must be known to determine how much of each food is needed to meet daily calorie and nutrient requirements.
Once these factors are known, it is possible to calculate how many biscuit packages, pemmican packages, and butter and cocoa packages are needed per day for one person. However, without knowing the specific calorie content and nutritional value of each food item, it is impossible to provide a specific answer.
Learn more about Caloric
brainly.com/question/934372
#SPJ11
Josh wants to simplify the expression (-8)(10+(-5)+(-8))
Therefore, the simplified expression is 24.
To simplify the expression (-8)(10+(-5)+(-8)), you first need to solve the parentheses, following the order of operations, which requires solving the addition and subtraction within the parentheses before multiplying.
So, you have (-8)(10-5-8), which becomes (-8)(-3) after solving the parentheses. Finally, you can solve the multiplication by multiplying -8 by -3, resulting in 24.
It's important to remember the order of operations when simplifying expressions, which is Parentheses, Exponents, Multiplication and Division (from left to right), and Addition and Subtraction (from left to right).
You can read more about simplifying expressions at https://brainly.com/question/723406
#SPJ11
Quickly please anyone
f(x) = 6x² - 3x + ²
2
X
f(-2) = [?]
Be sure to simplify your answer.
Answer:
Ans=28
Step-by-step explanation:
ƒ(x) = 6x2 - 3x + 22xf( - 2)=[?]
at ƒ(-2)
Substitute each x with -2
ƒ(-2) = 6(-2)2 - 3(-2) - 2
ƒ(-2) = 6(4) - 3(-2) - 2
ƒ(-2) = 24 + 6 + 0 - 2
ƒ(-2) = 28
I hope I was right
Find the absolute extrema if they exist, as well as all values of where they occur, for the function f(x) = 8+x/2-x on the domain [-2, 0]
Find the derivative of f(x) = 8+x/2-x
f'(x) = ...
The absolute maximum is f(-2) = 10/3, and absolute minimum is f(0) = 8.
How to determined the absolute extrema?First, let's find the derivative of the function:
f(x) = 8+x/2-x
f'(x) = (1/2) - 1 = -1/2
Next, we need to find the critical points of the function on the given domain.
In this case, the derivative is always defined and is never zero. Therefore, there are no critical points on the given domain.
Next, we check the endpoints of the domain, x = -2 and x = 0:
f(-2) = 8 + (-2)/(2-(-2)) = 10/3
f(0) = 8 + 0/(2-0) = 8
Since the function is continuous on the closed interval [-2, 0],
The extreme value theorem tells us that the function must have both an absolute maximum and an absolute minimum on the interval.
Therefore, the absolute maximum occurs at x = -2 and is f(-2) = 10/3, and the absolute minimum occurs at x = 0 and is f(0) = 8.
Learn more about absolute extrema
brainly.com/question/2272467
#SPJ11
Wes has 20 feet of garden fencing. If he
wants the smallest side of his garden
to be 3 feet or longer, what possible
rectangles can he make?
The possible rectangles that Wes can make with his 20 feet of fencing are:
L = 3, W = 7
L = 4, W = 6
L = 5, W = 5
L = 6, W = 4
L = 7, W = 3
How to find the possible rectangles?Let L be the length of the rectangular garden and W be the width of the garden. Since the garden is enclosed by four sides, Wes will need 2L+2W feet of fencing to enclose it. We know that he has 20 feet of fencing, so we have the equation:
2L + 2W = 20
We also know that the smallest side of the garden should be 3 feet or longer, so:
L >= 3
W >= 3
To find the possible rectangles Wes can make, we can solve the equation for one variable in terms of the other:
2L + 2W = 20
2L = 20 - 2W
L = 10 - W
Now we can substitute this expression for L into the inequality L >= 3 to get:
10 - W >= 3
W <= 7
Similarly, we can substitute L = 10 - W into the inequality W >= 3 to get:
10 - L >= 3
L <= 7
Therefore, the possible values for L and W are:
3 <= L <= 7
3 <= W <= 7
We can also use the equation 2L + 2W = 20 to find the combinations of L and W that add up to 10, since the total length of fencing is 20 feet:
L = 3, W = 7
L = 4, W = 6
L = 5, W = 5
L = 6, W = 4
L = 7, W = 3
These are the possible rectangles that Wes can make with his 20 feet of fencing, where the smallest side is 3 feet or longer.
To know more about Rectangle visit;
brainly.com/question/29068457
#SPJ1
In a survey of 175 females ages 16 to 24 who have completed
high school during the past 12 months, 72% were enrolled in college. In
survey of 160 males ages 16 to 24 who have completed high school during the
past 12 months, 65% were enrolled in college. At a = 0. 01, can you reject
the claim that there is no difference in the proportion of college enrollees
between the two groups?
There is no significant difference in the proportion of college enrollees between females and males who have completed high school within the past 12 months.
To determine if the difference in proportions is statistically significant or if it could be due to chance.
We will conduct a hypothesis test. Our null hypothesis (H₀) is that there is no difference in the proportion of college enrollees between females and males. Our alternative hypothesis (H₁) is that there is a difference in the proportion of college enrollees between females and males.
We can use a two-sample z-test to test this hypothesis. The formula for the test statistic is:
z = (p₁ - p₂) / √(p'* (1 - p') * ((1 / n₁) + (1 / n₂)))
where p₁ and p₂ are the sample proportions, p' is the pooled proportion, n₁ and n₂ are the sample sizes.
Given, p₁ = 0.72, p₂ = 0.65, n₁ = 175, n₂ = 160
p' = (x₁ + x₂) / (n₁ + n₂)
x₁ = 126 (0.72 * 175) and x₂ = 104 (0.65 * 160).
p' = (126 + 104) / (175 + 160) = 0.684
By applying the above values we get,
z = (0.72 - 0.65) / √(0.684 * (1 - 0.684) * ((1 / 175) + (1 / 160))) ≈ 2.11
The critical value for a two-tailed test with alpha = 0.01 is approximately ±2.58. Since our calculated z-value (2.11) is less than the critical value, we fail to reject the null hypothesis. This means that there is not enough evidence to conclude that there is a significant difference in the proportion of college enrollees between females and males.
Therefore, there is no significant difference in the proportion of college enrollees between females and males who have completed high school within the past 12 months.
To know more about Proportion here
https://brainly.com/question/31319397
#SPJ4
The profit in dollars from the sale of x expensive watches is P(x) = 0.08x² - 5x + 6x0.2 - 5200 Find the marginal profit when (a) x = 300. (b) x = 2000, (c) X = 5000, and (d) x = 12,000.
The marginal profit in dollars for the sale of expensive watches when approximately $1912.61.
Find the marginal profit in dollars from the sale?
We need to find the marginal profit in dollars from the sale of x expensive watches for the given profit function P(x) = 0.08x² - 5x + 6x^0.2 - 5200 when (a) x = 300, (b) x = 2000, (c) x = 5000, and (d) x = 12,000.
Find the derivative of the profit function P(x), which represents the marginal profit.
P'(x) = dP(x)/dx = 0.16x - 5 + (6 * 0.2 * x^(-0.8))
Calculate the marginal profit for each specified value of x:
x = 300:
P'(300) = 0.16(300) - 5 + (6 * 0.2 * 300^(-0.8)) ≈ 42.57
x = 2000:
P'(2000) = 0.16(2000) - 5 + (6 * 0.2 * 2000^(-0.8)) ≈ 317.52
x = 5000:
P'(5000) = 0.16(5000) - 5 + (6 * 0.2 * 5000^(-0.8)) ≈ 794.57
x = 12,000:
P'(12,000) = 0.16(12,000) - 5 + (6 * 0.2 * 12,000^(-0.8)) ≈ 1912.61
So, the marginal profit in dollars for the sale of expensive watches when (a) x = 300 is approximately $42.57, (b) x = 2000 is approximately $317.52, (c) x = 5000 is approximately $794.57, and (d) x = 12,000 is approximately $1912.61.
Learn more about derivative.
brainly.com/question/25324584
#SPJ11
Adam is purchasing a new television that costs $2,187. 96 after tax. He borrowed the money from his parents and must pay back the full amount plus simple interest at the rate of 3. 5%. What is the interest he will pay if he takes 2 years to pay his parents back? (Include Decimal with the cents; No Commas)
and
Adam is purchasing a new television that costs $2,187. 96 after tax. He borrowed the money from his parents and must pay back the full amount plus simple interest at the rate of 3. 5%. What is the total amount he will pay if he takes 2 years to pay his parents back? (Include Decimal with the cents; No Commas)
please
he interest he will pay if he takes 2 years to pay his parents back is $153.16. The total amount he will pay if he takes 2 years to pay his parents back is $2,341.12.
To calculate the interest Adam will pay, we need to use the simple interest formula:
Interest = Principal x Rate x Time
The principal is the amount borrowed, which is $2,187.96. The rate is 3.5% per year, or 0.035 in decimal form. The time is 2 years.
Interest = $2,187.96 x 0.035 x 2 = $153.16
Therefore, Adam will pay $153.16 in interest if he takes 2 years to pay his parents back.
To calculate the total amount he will pay, we need to add the interest to the principal:
Total amount = Principal + Interest
Total amount = $2,187.96 + $153.16 = $2,341.12
Therefore, Adam will pay a total of $2,341.12 if he takes 2 years to pay his parents back.
Learn more about simple interest here: https://brainly.com/question/25793394
#SPJ11
Which recursive formula defines the sequence of f(1)=6, f(4)=12, f(7)=18
The recursive formula for this sequence is f(n) = f(n-3) + 6n - 18.
How did get the formula?We can use the method of finite differences to find a possible recursive formula for this sequence.
First, let's compute the first few differences:
f(4) - f(1) = 6
f(7) - f(4) = 6
Since the second differences are zero, we can assume that the sequence is a quadratic sequence. Let's write it in the form f(n) = an^2 + bn + c. We can solve for the coefficients using the given values:
f(1) = a(1)^2 + b(1) + c = 6
f(4) = a(4)^2 + b(4) + c = 12
f(7) = a(7)^2 + b(7) + c = 18
Solving for a, b, and c, we get:
a = 1
b = 5
c = 0
Therefore, the recursive formula for this sequence is f(n) = f(n-3) + 6n - 18.
learn more about recursive formula: https://brainly.com/question/29224065
#SPJ1
Please help
Factor out the GCF.
6x²-3x - 18
Factor completely and show/explain each step.
Answer:
3(x - 2)(2x + 3)
Step-by-step explanation:
6x² - 3x - 18 ← factor out GCF of 3 from each term
= 3(2x² - x - 6) ← factor the quadratic
consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 2 × - 6 = - 12 and sum = - 1
the factors are - 4 and + 3
use these factors to split the x- term
2x² - 4x + 3x - 6 ( factor the first/second and third/fourth terms )
= 2x(x - 2) + 3(x - 2) ← factor out (x - 2) from each term
= (x - 2)(2x + 3) ← in factored form
then
6x² - 3x - 18 = 3(x - 2)(2x + 3)