This equation shows how the cost of a plumber's visit is related to its duration in hours. C = 51d

The variable d represents the duration of the visit in hours, and the variable c represents the cost. If a plumber's visit lasted 1 hour, how much would it cost?

Answers

Answer 1

The cost of a plumber's one-hour visit is $51, determined by the linear equation C = 51d, where C is the cost and d is the duration of the visit in hours.

How is the cost of a plumber's visit determined by duration?

If a plumber's visit lasts for a certain duration, the cost can be determined using the equation

                           C = 51d

where C is the cost and d is the duration of the visit in hours.

In this case, the duration of the plumber's visit is given as 1 hour. Substituting d = 1 in the equation, we get

                             C = 51(1) = $51

as the cost of the plumber's visit.

Therefore, if the plumber's visit lasts for one hour, it would cost $51 according to the given equation.

This cost may vary if the duration of the visit changes, as it is directly proportional to the duration of the visit.

Learn more about cost

brainly.com/question/15135554

#SPJ11


Related Questions

Translate each problem into a mathematical equation.
1. The price of 32'' LED television is P15,500 less than twice the price of the
old model. If it cost P29,078. 00 to buy a new 32'' LED television, what is
the price of the old model?
2. The perimeter of the rectangle is 96 when the length of a rectangle is
twice the width. What are the dimensions of therectangle?​

Answers

a) The price of the old model is P22,289.

b) The dimensions of the rectangle are 16 by 32.

a) Let x be the price of the old model. According to the problem, the price of the new 32'' LED television is P15,500 less than twice the price of the old model.

This can be expressed as 2x - P15,500 = P29,078. Solving for x, we can add P15,500 to both sides to get 2x = P44,578, and then divide both sides by 2 to get x = P22,289.

b) Let w be the width of the rectangle. According to the problem, the length of the rectangle is twice the width, so the length is 2w. The perimeter of a rectangle is the sum of the lengths of all four sides, which in this case is 2w + 2(2w) = 6w.

We are given that the perimeter is 96, so we can set up an equation: 6w = 96. Solving for w, we can divide both sides by 6 to get w = 16. Since the length is twice the width, the length is 2(16) = 32.

To learn more about rectangle click on,

https://brainly.com/question/1409213

#SPJ4

Imagine some colored blocks are laid out in a row: three red, two blue, three red, two blue and so on. If there are 65 colored blocks, how many would be red?


A. 52


B. 39


C. 26


D. 13

Answers

There are 39 red blocks out of 65 total blocks.

To solve this problem, we need to find the total number of blocks in each repeating pattern. The pattern is three red blocks followed by two blue blocks. So in each pattern, there are five blocks total.

To find the number of red blocks in 65 total blocks, we need to figure out how many times the pattern repeats. We can do this by dividing the total number of blocks (65) by the number of blocks in each pattern (5):

65 ÷ 5 = 13

So the pattern repeats 13 times.

In each pattern, there are three red blocks. So to find the total number of red blocks, we need to multiply the number of red blocks in each pattern (3) by the number of times the pattern repeats (13):

3 x 13 = 39

Therefore, there are 39 red blocks out of 65 total blocks.

The correct answer is option B.

To know more about blocks refer here:

https://brainly.com/question/30332935

#SPJ11

Is these cosine or tangent or sine ? I need help with them can somebody tell me the answer to all three

Answers

Answer:

Step-by-step explanation:

I assume the question is what trig function do you use to find x?  If that's correct then answers, from TOP to BOTTOM, are:

tan

cos

sin

Answer:

Triangle 1: tangent

Triangle 2: cosine

Triangle 3: sine

Step-by-step explanation:

First, some definitions before working the problem:

The three standard trigonometric functions, cosine, tangent, and sine, are defined as follows for right triangles:

[tex]sin(\theta)=\dfrac{opposite}{hypotenuse}[/tex]

[tex]tan(\theta)=\dfrac{opposite}{adjacent}[/tex]

[tex]cos(\theta)=\dfrac{adjacent}{hypotenuse}[/tex]

One memorization tactic is "Soh Cah Toa" where the first capital letter represents one of those three trigonometric functions, and the "o" "a" and "h" represent the "opposite" "adjacent" and "hypotenuse" respectively.

The triangle must be a right triangle, or there wouldn't be a "hypotenuse", because the hypotenuse is always across from the right angle.  

Triangle 1

For the first triangle, the known acute angle is in the bottom left.  The two sides of the triangle that are known or are a "goal to find" are not the hypotenuse, so they are the "opposite" & "adjacent".

Specifically, the side of length "13" is touching the known acute angle AND the right angle, so it is the adjacent side.  The unknown side of length "x" is is touching the right angle but is NOT touching the known acute angle, so it is the "opposite" (across from the angle).

Out of "Soh Cah Toa," the part that uses o & a is "Toa".  The "T" in "Toa" stands for Tangent.  So, the desired function to use for the first triangle is the Tangent function.

Triangle 2

For the second triangle, the known acute angle is in the top left.  This time, the "adjacent" side is unknown, labeled as x, so it is the "goal to find" side.  The "hypotenuse" is known.

Therefore, the two sides of the triangle that are known or are a "goal to find" are the "adjacent" & "hypotenuse".

Out of "Soh Cah Toa," the part that uses "a" & "h" is "Cah".  So, the desired function to use for the first triangle is the Cosine function.

Triangle 3

For the third triangle, the known acute angle is in the top right.

This time, the side (at the bottom) across from the angle (at the top right) is known -- the "opposite" leg.  Additionally, the "hypotenuse" is unknown and is our "goal to find" side.  

Therefore, the two sides of the triangle that are known or are a "goal to find" are the "opposite" & "hypotenuse".

Out of "Soh Cah Toa," the part that uses "o" & "h" is "Soh".  So, the desired function to use for the first triangle is the Sine function.

The solution to the exact differential equation (5t^2 + 8y) dy + (10yt + 9t^2) = 0 is

Answers

To solve the exact differential equation (5t^2 + 8y) dy + (10yt + 9t^2) = 0, we need to check if it is exact or not. We do so by taking partial derivatives with respect to y and t:

∂/∂y (5t^2 + 8y) = 8
∂/∂t (10yt + 9t^2) = 10y + 18t

Since these partial derivatives are not equal, the equation is not exact. To make it exact, we can multiply the entire equation by a integrating factor, which is given by:

μ = e^(∫(∂/∂t)(10yt + 9t^2) dt) = e^(∫(10y + 18t) dt) = e^(10yt + 9t^2)

Multiplying both sides of the equation by μ, we get:

(5t^2 + 8y)e^(10yt + 9t^2) dy + (10yt + 9t^2)e^(10yt + 9t^2) dt = 0

Now, we can check if this equation is exact:

∂/∂y (5t^2e^(10yt + 9t^2) + 8ye^(10yt + 9t^2)) = 10te^(10yt + 9t^2)
∂/∂t ((10ye^(10yt + 9t^2)) + (9t^2e^(10yt + 9t^2))) = 10ye^(10yt + 9t^2) + 18t^2e^(10yt + 9t^2)

These partial derivatives are equal, so the equation is exact. Therefore, we can find a potential function Φ such that:

∂Φ/∂y = 5t^2e^(10yt + 9t^2) + 8ye^(10yt + 9t^2)
∂Φ/∂t = (10ye^(10yt + 9t^2)) + (9t^2e^(10yt + 9t^2))

Integrating the first equation with respect to y, we get:

Φ = ∫(5t^2e^(10yt + 9t^2) + 8ye^(10yt + 9t^2)) dy = (5t^2/10)e^(10yt + 9t^2) + (4y/10)e^(10yt + 9t^2) + C(t)

where C(t) is an arbitrary constant of integration that depends only on t.

Now, we can differentiate this expression with respect to t and compare it to the second equation:

∂Φ/∂t = (10t/10)e^(10yt + 9t^2) + C'(t)
(10ye^(10yt + 9t^2)) + (9t^2e^(10yt + 9t^2)) = (10t/10)e^(10yt + 9t^2) + C'(t)

Comparing the two expressions, we get:

C'(t) = 10ye^(10yt + 9t^2)

Integrating both sides with respect to t, we get:

C(t) = ∫10ye^(10yt + 9t^2) dt = e^(10yt + 9t^2) + K

where K is another arbitrary constant of integration.

Therefore, the solution to the exact differential equation (5t^2 + 8y) dy + (10yt + 9t^2) = 0 is given by:

(5t^2/10)e^(10yt + 9t^2) + (4y/10)e^(10yt + 9t^2) + e^(10yt + 9t^2) + K = 0

or simplifying:

y = (-5t^2/4) - (1/2)e^(-10yt - 9t^2) - (K/4)e^(-10yt - 9t^2)

where K is an arbitrary constant of integration.

To learn more about integration visit;

brainly.com/question/30900582

#SPJ11

Which TWO statements represent the relationship between y = 5x and y = log5 x The are the exponential and logarithmic form of the same equation They are symmetrix over the line y=0 They are symmetric over the line y=x They are inverses of one another​

Answers

The TWO statements that represent the relationship between y = 5x and y = log5 x are:

1. They are the exponential and logarithmic form of the same equation.

2. They are inverses of one another.

The two equations are related because they represent the same relationship between x and y, but in different forms. The first equation is an exponential equation, where y is a power of 5 raised to the x power. The second equation is a logarithmic equation, where y is the exponent to which 5 must be raised to get x.

Because the two equations represent the same relationship, they are inverses of one another. If we take the logarithm of both sides of the exponential equation, we get the logarithmic equation. If we raise 5 to both sides of the logarithmic equation, we get the exponential equation. Therefore, the two equations are inverses of one another.

The TWO statements that represent the relationship between y = 5x and y = log5 x are:

1. They are the exponential and logarithmic form of the same equation.
2. They are inverses of one another.

Explanation:
The equation y = 5x is an exponential equation, while y = log5 x is a logarithmic equation. These two equations are related in that they are inverse functions of each other. In other words, if we take the logarithm of both sides of the exponential equation, we get:

log5 y = log5 5x

Using the logarithmic identity loga b^c = c loga b, we can simplify this to:

log5 y = x log5 5

Since log5 5 = 1, this further simplifies to:

log5 y = x

In other words, y = log5 x is the inverse function of y = 5x. This means that if we plug in a value for x into one equation, we can find the corresponding value of y by plugging that value into the other equation.

Also, these two equations are symmetric over the line y = x. This means that if we graph each equation on the same coordinate plane, the line y = x will be the line of symmetry for the two graphs.

5 points


You need to change a blown outdoor lightbulb on your house. The bulb is 5m up, but you have a 1m reach when you are on the top rung of the ladder. If you need 3m of


space off the house for the ladder's base for stability, what is the minimum height of the ladder in meters?

Answers

The minimum height of the ladder needed to change the blown outdoor lightbulb is 5 meters.

To determine the minimum height of the ladder needed to change a blown outdoor lightbulb that is 5m up, we need to consider the following terms:

1. The bulb's height (5m)


2. Your reach when on the top rung of the ladder (1m)


3. The required space off the house for the ladder's base for stability (3m)

First, subtract your reach from the bulb's height: 5m - 1m = 4m. This means the ladder needs to reach at least 4 meters up the wall.

Next, we need to use the Pythagorean theorem to find the ladder's minimum height. The theorem states that in a right-angled triangle, the square of the length of the hypotenuse (the ladder) is equal to the sum of the squares of the lengths of the other two sides (the distance from the house and the height up the wall).

Let's denote the ladder's height as L, the distance from the house as A (3m), and the height up the wall as B (4m).

According to the Pythagorean theorem, we have:
L² = A² + B²

Substitute the values for A and B:
L² = (3m)² + (4m)²
L² = 9m² + 16m²
L² = 25m²

Now, find the square root to get the minimum height of the ladder:
L = √25m²
L = 5m

So, the minimum height of the ladder needed to change the blown outdoor lightbulb is 5 meters.

To know more about minimum height refer here:

https://brainly.com/question/15240079

#SPJ11

Frank is packing cube-shaped containers into large boxes. he can fit
15 containers in each layer. if he stacks 8 layers into one box, what is the
volume of the box?

Answers

The volume of the large box is 120[tex]s^3[/tex].

How to find the volume?

If Frank can fit 15 cube-shaped containers in each layer and stack 8 layers into one box, then the total number of containers he can fit in one box is:

15 containers/layer x 8 layers = 120 containers

Since each container is cube-shaped, we can assume that it has the same length, width, and height. Let's represent the length of one side of the container as "s". Then, the volume of one container is:

Volume of one container = [tex]s^3[/tex]

The volume of 120 containers that can fit in one box is:

Volume of 120 containers = 120 x Volume of one container

Substituting the expression for the volume of one container, we get:

Volume of 120 containers = 120[tex]s^3[/tex]

Therefore, the volume of the large box that can hold 120 cube-shaped containers with side length "s" is 120[tex]s^3[/tex].

Learn more about Volume

brainly.com/question/13338592

#SPJ11

F(x)= x⁴ +14x²+45 (100 points)

for this function: state the number of complex zeros, the possible number of imaginary zeros, the possible number of positive and negative zeros, and the possible rational zeros

then factor to linear factors and find all zeros


-number of complex zeros: ___________________

-possible # of imaginary zeros: ______________________

-possible # of positive real zeros: _____________________

-possible # negative real zeros: __________________

-possible rational zeros: ___________________

-factors to: _________________________

-zeros: ______________________

Answers

For the function,

-number of complex zeros: four

-possible # of imaginary zeros: two pairs

-possible # of positive real zeros: zero

-possible # negative real zeros: 0 or 2

-possible rational zeros:  ±1, ±3, ±5, ±9, ±15, ±45

-factors to: (x + 3i)(x - 3i)(x + √5i)(x - √5i)

-zeros: x = ±3i, x = ±√5i.

The function is: F(x) = x⁴ +14x²+45.

Number of complex zeros: By the Fundamental Theorem of Algebra, the function has at most four complex zeros.

Possible number of imaginary zeros: If the complex zeros are not real, then there are at most two pairs of imaginary zeros.

Possible number of positive real zeros: The function has no positive real zeros since F(x) is always positive for x>0.

Possible number of negative real zeros: By Descartes' Rule of Signs, the function has either 0 or 2 negative real zeros.

Possible rational zeros: The rational zeros can be found using the Rational Root Theorem. They are of the form ±(a factor of 45) / (a factor of 1), which gives the following possible rational zeros: ±1, ±3, ±5, ±9, ±15, ±45.

To factor the polynomial:

F(x) = x⁴ +14x²+45

= (x² + 9)(x² + 5)

So the factors to linear factors are: (x + 3i)(x - 3i)(x + √5i)(x - √5i), where i is the imaginary unit.

Therefore, the zeros are: x = ±3i, x = ±√5i.

Note that all zeros are complex since there are no real roots.

To know more about function, refer to the link below:

https://brainly.com/question/30076565#

#SPJ11

Which statement is true about the relationship between the diameter and circumference of a circle?

A. The diameter and circumference of a circle have a proportional relationship.

B. The diameter is a product of the circumference and pi.

C. The constant of proportionality between the diameter and circumference of a circle is a rational number.

D. The circumference of a circle is the quotient of the diameter and pi.

Answers

Option A The diameter and circumference of a circle have a proportional relationship is True .

What is diameter and circumference?

Diameter

The diameter is the length acrοss the circle at its widest pοint, measured frοm center tο center . The radius, a related measurement, is a line that extends frοm the circle's centre tο its edge. The diameter is equivalent tο twice the radius. (A chοrd is a line that crοsses the circle but is nοt at the widest pοint.)

Circumference

The circle's perimeter, οr the distance arοund it, is knοwn as its circumference. Imagine encircling a circle with a string. Imagine taking the string οut and extending it in a straight line. This string's length, if measured, wοuld represent yοur circle's circumference.

Learn more about Diameter

https://brainly.com/question/5501950

#SPJ!

For a science experiment Corrine is adding hydrochloric acid to distilled
water. The relationship between the amount of hydrochloric acid, x, and the
amount of distilled water, y, is graphed below. Which inequality best
represents this graph?

Answers

The best inequality that represents the relationship between the amount of hydrochloric acid (x) and the amount of distilled water (y) in the given graph is 3y - 2x > 0, option D is correct.

The graph shows a straight line with a negative slope passing through the origin. As the amount of hydrochloric acid, x, increases, the amount of distilled water, y, decreases

To see why, let's use a point on the line, such as (2, 3), and plug it into the inequality. We get:

3(3) - 2(2) > 0

9 - 4 > 0

This is true, so the point (2, 3) is a solution to the inequality. Any point on the line will also satisfy this inequality since it represents all possible combinations of x and y that Corrine can use in her experiment.

Alternatively, we can rewrite the inequality in slope-intercept form:

y < (2/3)x

This means that the y-values on the line are less than the corresponding values of (2/3)x. So as x increases, y must decrease to stay below the line. This confirms that 3y - 2x > 0 is the correct inequality.

Hence, option D is correct.

To learn more about graph follow the link:

https://brainly.com/question/29118178

#SPJ1

The correct question is:

For a science experiment, Corrine is adding hydrochloric acid to distilled water. The relationship between the amount of hydrochloric acid, x, and the amount of distilled water, y, is graphed below. Which inequality best represents this graph?

A. 2y - 3x < 0

B. 3y - 2x < 0

C. 2y - 3x > 0

D. 3y - 2x > 0

Find the slope of the points (-10, -52)
and (-70, -32)

Answers

Answer:

Slope= -1/3

Step-by-step explanation:

The slope is found using (y₂ - y₁) / (x₂ - x₁)

(y₂ - y₁)

So let's do the numerator first with the y. -52-(-32). The two negative signs  make 32 positive so -52 + 32= -20

(x₂ - x₁)

Now the denominator, x. -10-(-70). Same thing here, the two negative signs  make 70 positive so -10 + 70 = 60

(y₂ - y₁) / (x₂ - x₁)

Now put them together so -20/60 which equals -1/3 which the slope

Does 4(9x+6)=36x-7 have many solutions,no solutions,or one solutions

Answers

Answer:

no solution

Step-by-step explanation:

There are no values of x that make the equation true.

pls hep
Simplify: |x+3| if x>5

Answers

we can simplify |x + 3| to x + 3 when x is greater than 5.

How to deal with mode?

The absolute value function |x| is defined as the distance of x from zero on the number line. This means that |x| is always non-negative, so it can be expressed as a non-negative number.

In this case, we are given that x > 5, which means that x is greater than 5. If we add 3 to both sides of this inequality, we get:

x + 3 > 5 + 3

x + 3 > 8

This tells us that x + 3 is also greater than 8. Therefore, when x is greater than 5, the expression |x + 3| represents the distance of x + 3 from zero, which is equal to x + 3 itself because x + 3 is positive.

As a result, we can simplify |x + 3| to x + 3 when x is greater than 5.

To know more about Mode visit:

brainly.com/question/30093741

#SPJ1

One medical procedure used today allows parents to select the gender of their future baby. The procedure has been found to be effective 75% of the time, meaning that 75% of the time parents get a baby of the preferred gender. Suppose this method is used by 5 couples at one particular clinic. For #6 and 7, write the numeric value and write in words what it represents

Answers

6. The probability that all 5 couples will have a baby of the preferred gender is 0.2373.

7. The probability that at least 4 of the 5 couples will have a baby of the preferred gender is 1 - 0.3672 = 0.6328.

What is probability?

Probability is a way to gauge how likely something is to happen. Many things are difficult to predict with absolute certainty.

6. What is the probability that all 5 couples will have a baby of the preferred gender?

Answer: The probability that one couple will have a baby of the preferred gender is 0.75. Assuming the gender of each baby is independent of the others, the probability that all 5 couples will have a baby of the preferred gender is 0.75⁵ = 0.2373.

Numeric value: 0.2373

In words: The probability that all 5 couples will have a baby of the preferred gender is 0.2373.

7. What is the probability that at least 4 of the 5 couples will have a baby of the preferred gender?

Answer: There are two ways to approach this problem. One way is to calculate the probability of each possible outcome (0 to 5 couples having a baby of the preferred gender) and then add up the probabilities for the outcomes where at least 4 couples have a baby of the preferred gender. Another way is to use the complement rule and subtract the probability that fewer than 4 couples have a baby of the preferred gender from 1.

Using the first method, we can calculate the probabilities as follows:

- 0 couples: 0.25⁵ = 0.0009766

- 1 couple: 5 x 0.75 x 0.25⁴ = 0.01465

- 2 couples: 10 x 0.75² x 0.25³ = 0.08789

- 3 couples: 10 x 0.75³ x 0.25² = 0.2637

- 4 couples: 5 x 0.75⁴ x 0.25 = 0.3955

- 5 couples: 0.75⁵ = 0.2373

The probabilities for the outcomes where at least 4 couples have a baby of the preferred gender are 0.3955 and 0.2373, so the total probability is 0.3955 + 0.2373 = 0.6328.

Using the second method, we can calculate the probability that fewer than 4 couples have a baby of the preferred gender as follows:

- 0 couples: 0.25⁵ = 0.0009766

- 1 couple: 5 x 0.75 x 0.25⁴ = 0.01465

- 2 couples: 10 x 0.75² x 0.25³ = 0.08789

- 3 couples: 10 x 0.75³ x 0.25² = 0.2637

The probability that fewer than 4 couples have a baby of the preferred gender is the sum of these probabilities: 0.0009766 + 0.01465 + 0.08789 + 0.2637 = 0.3672.

Therefore, the probability that at least 4 of the 5 couples will have a baby of the preferred gender is 1 - 0.3672 = 0.6328.

Learn more about probability on:

https://brainly.com/question/13604758

#SPJ4

In ΔHIJ, j = 72 cm, i = 70 cm and ∠I=72°. Find all possible values of ∠J, to the nearest degree.

Answers

The possible value of <J is 78 degrees

How to determine the value

It is important to note that the different trigonometric identities are;

sinecosinetangentcotangentsecantcosecant

Also, the law of sines in a triangle is expressed as;

sin A/a = sin B/b = sin C/c

Given that the angles are in capitals and the sides are in small letters.

From the information given, we have that;

sinI/i = sin J/j

Substitute the values, we get;

sin 72 /70 = sin J/72

cross multiply the values, we have;

sin J = 68. 476/70

divide the values

sin J = 0. 9782

Find the inverse of sin

<J = 78 degrees

Learn about law of sines at: https://brainly.com/question/27174058

#SPJ1

Light travels 9.45 \cdot 10^{15}9.45⋅10
15
9, point, 45, dot, 10, start superscript, 15, end superscript meters in a year. There are about 3.15 \cdot 10^73.15⋅10
7
3, point, 15, dot, 10, start superscript, 7, end superscript seconds in a year.

Answers

The distance which this light travel per second is equal to 3 × 10⁸ meters per seconds.

What is speed?

In Mathematics and Science, speed is the distance covered by a physical object per unit of time.

How to calculate the speed?

In Mathematics and Science, the speed of any a physical object can be calculated by using this formula;

Speed = distance/time

By making distance the subject of formula, we have:

Distance, d(t) = speed × time

Distance = (9.45 × 10¹⁵ meters per year) × (1 year/ 3.15 × 10⁷ seconds)

Distance = 3 × 10⁸ meters per seconds.

Read more on distance and light here: https://brainly.com/question/5966286

#SPJ1

Complete Question:

Light travels 9.45 × 10¹⁵ meters in a year. There are about 3.15 × 10⁷ seconds in a year. How far does light travel per second?

prove the value of the expression

Answers

Step-by-step explanation:

Expressions are collection of algebric equetion and equal sighn and used for expresion of mankind problems like items, money and other mankind problem.

to know length by using degree but most of the time for the archtechture. soon

Find the product. Assume that no denominator has a value of 0.
64e^2/5e • 3e/8e

Answers

Answer:

12.8

Step-by-step explanation:

First, we can simplify each fraction separately:

64e^2/5e = 64/5e^(1-1) = 64/5

3e/8e = 3/8

Now we can multiply:

(64/5) * (3/8) = 12.8

Therefore, the product is 12.8.

Simplify each of the following and leave answer in standard form to 3 decimal places.

(3. 05 x 10 ^ -7) (8. 67×10 ^ 4)

Answers

The simplified expression [tex](3.05 * 10^-7) (8.67 * 10^4)[/tex] in standard form to 3 decimal places is approximately 0.026

To simplify the expression[tex](3.05 * 10^-7) (8.67 *  10^4)[/tex] and provide the answer in standard form to 3 decimal places.

Step 1: Multiply the coefficients (3.05 and 8.67).
3.05 * 8.67 = 26.4445

Step 2: Use the properties of exponents to multiply the powers of 10.
[tex]10^{-7} * 10^4 = 10^{(-7+4)} = 10^-3[/tex]

Step 3: Multiply the results from Step 1 and Step 2.
[tex]26.4445 * 10^-3 = 0.0264445[/tex]

Step 4: Round the result to 3 decimal places.
0.0264445 ≈ 0.026

So, the simplified expression (3.05 x 10^-7) (8.67 x 10^4) in standard form to 3 decimal places is approximately 0.026.

To know more about standard form refer here:

https://brainly.com/question/29000730

#SPJ11

Help me on #12 A&C, #13 a,b,&c plsss preferably step by step

Answers

The solution to the problems using trigonometric ratios are:

12a) x = 16.09

12c) x = 7 and y = 7

13a) Time it takes to reach the ground is: 8 seconds

13b) Highest point reached is: 80 ft

How to use trigonometric ratios?

12a) Using the law of sines, we can say that:

x/sin 90 = 9/sin 34

x = (9 * sin 90)/sin 34

x = 16.09

12c) Using the law of sines, we can say that:

x/sin 45 = 7√2/sin 90

x = (7√2 * 1/√2)/1

x = 7

Similarly, because it is an isosceles triangle, y = 7

13a) The equation of the height above the ground is :

h = 40t - 5t²

where:

h is height

t is time in seconds

Thus:

Time it takes to reach the ground is at h = 0.

40t - 5t² = 0

5t² = 40t

5t = 40

t = 8 seconds

b) Highest point reached:

h'(t) = 40 - 10t

h'(t) = 0

40 - 10t = 0

t = 4 seconds

Thus:

h_max = 40(4) - 5(4)²

h_max = 80 ft

c) Time at which ball was 35ft off ground is:

35 = 40t - 5t²

5t² - 40t + 35 = 0

Using quadratic equation calculator gives us:

t = 1 and 7 seconds

Read more about trigonometric ratios at: https://brainly.com/question/13276558

#SPJ1

< ABC ≈ < DEF
False
True

Answers

Answer:

True (I think)

Step-by-step explanation:

Same pattern.

A -> B -> C.

D -> E -> F.

Would be false if either one didn't share the same pattern.

Yellowstone national park is a popular field trip destination. this year the


senior class at high school a and the senior class at high school b both


planned trips there. the senior class at high school a rented and filled 2


vans and 8 buses with 254 students. high school b rented and filled 6


vans and 11 buses with 398 students. every van had the same number of


students in it as did the buses. find the number of students in each van and


in each bus


let x represent high school a let y represent high school b

Answers

The number of students in each bus is 15, and the number of students in each van is 28.

To find the number of students in each van and bus for the field trip to Yellowstone National Park, we can set up a system of equations using the given information. Let x represent the number of students in each van and y represent the number of students in each bus.

For high school A, we have:
2x + 8y = 254

For high school B, we have:
6x + 11y = 398

Now, we can solve this system of equations using the substitution or elimination method. We will use the elimination method:

Step 1: Multiply the first equation by 3 to make the coefficients of x the same in both equations:
6x + 24y = 762

Step 2: Subtract the second equation from the new first equation:
(6x + 24y) - (6x + 11y) = 762 - 398
13y = 364

Step 3: Divide both sides by 13 to find the value of y:
y = 364 / 13
y = 28

Now that we have the number of students in each bus, we can find the number of students in each van:

Step 4: Substitute y back into the first equation:
2x + 8(28) = 254
2x + 224 = 254

Step 5: Subtract 224 from both sides to find the value of x:
2x = 30

Step 6: Divide both sides by 2 to find x:
x = 15

Learn more about the number of students: https://brainly.com/question/24644930

#SPJ11

Find the area of the squares

Answers

The area of the squares are;

1.  9x²ft². Option D

2.  6x² - 7x - 3 in². Option C

How to determine the area

The formula for calculating the area of a square is expressed as;

A = a²

Such that the parameters of the formula are;

A is the area of the given squarea is the length of the side of the square

From the information given, we have that;

Area = (3x)²

Find the square of the expression, we have that;

Area = 9x²ft²

2. Substitute the values, we have that;

Area = (2x -3)(3x + 1)

expand the bracket, we have;

Area = 6x² + 2x - 9x - 3

collect the like terms

Area = 6x² - 7x - 3

Learn more about area at: https://brainly.com/question/25292087

#SPJ1

(2x−3)(2x−3)=left parenthesis, 2, x, minus, 3, right parenthesis, left parenthesis, 2, x, minus, 3, right parenthesis, equals

Answers

The expression (2x-3)(2x-3) is equal to (2x-3)^2.

To expand the expression (2x-3)(2x-3), we can use the FOIL method (which stands for First, Outer, Inner, Last).

Multiplying the first terms of each binomial, we get 2x times 2x, which is 4x^2.

Multiplying the outer terms, we get -3 times 2x, which is -6x.

Multiplying the inner terms, we get -3 times 2x again, which is also -6x.

Multiplying the last terms of each binomial, we get -3 times -3, which is 9.

Combining like terms, we get 4x^2 - 12x + 9.

Therefore, (2x-3)(2x-3) is equal to (2x-3)^2, which is equivalent to 4x^2 - 12x + 9.

For more questions like Expression click the link below:

https://brainly.com/question/29583350

#SPJ11

Please answer the question with the image provided.

Answers

Based on the information on the number line, the numbers that represent the percentages are: 42 (100%), 21 (50%), 63 (150%).

How to calculate the number that equals each percentage?

To calculate the number that is equivalent to each percentage we must carry out the following procedure: Rule of three. In this case we must take into account that 42 represents 100% of the people.

100% = 42 people100% = ? people100 * 42 / 100 = 42 people

100% = 42 people50% = ? people50 * 42 / 100 = 21 people

100% = 42 people150% = ? people150 * 42 / 100 = 63 people

Learn more about rule of three at: https://brainly.com/question/9264846

#SPJ1

Each year, tornadoes that touch down are recorded. The following table gives the number of tornadoes that touched down during each month of one yout, Determine the range and sample standard deviation

Answers

To determine the range and sample standard deviation of tornadoes that touched down during each month of one year, we need to use the data in the table.

However, the table is not provided in the question.

Please provide the table with the number of tornadoes that touched down during each month of one year so I can help you with your question.
To determine the range and sample standard deviation of the number of tornadoes that touched down each month, you'll first need to provide the data in a table format.

Once you provide the data, I can help you calculate the range and sample standard deviation.

To learn more about range visit;

https://brainly.com/question/28135761

#SPJ11

Correct question:

Each​ year, tornadoes that touch down are recorded. The following table gives the number of tornadoes that touched down during each month of one year. Determine the range and sample standard deviation.

3 2 41 115 197 95

70 85 68 64 110 91

Range?

Sample Standard Deviation?

14


5. Betty will spend $375. 00 on a new lawnmower. She will use her credit card to


withdraw $400 cash to pay for the lawnmower. The credit card company charges a $6. 00


cash-withdrawal fee and 3% interest on the borrowed amount, but not including the cash-


withdrawal fee. How much will Betty owe after one month ?

Answers

After one month, Betty will owe $407.02 on her credit card.

The amount Betty will owe after one month depends on how much of the stability she will pay off in the course of that point.

Assuming she does not make any payments in the course of the first month, here is how to calculate her balance:

The cash-withdrawal price is a one-time fee, so it does no longer affect the stability after one month.

Betty withdrew $400, so her starting balance is $406 ($400 for the lawnmower plus $6 cash-withdrawal price).

The interest rate is 3%, that's an annual price. To calculate the monthly charge, divide with the aid of 12: three% / 12 = 0.25%.

To calculate the interest charged for the first month, multiply the stability through the monthly interest rate: $406 * 0.25% = $1.02.

Add the interest to the balance: $406 + $1.02 = $407.02. that is Betty's balance after one month.

Consequently, after one month, Betty will owe $407.02 on her credit card.

Learn more about Simple interest rate:-

https://brainly.com/question/25720319

#SPJ4

The joint density function for a pair of random variables X and Y is given. (Round your answers to four decimal places.) f(x, y) = Cx(1 + y) if 0 <= x <= 2, 0 <= y <= 4 otherwise f(x,y) = 0
(a) Find the value of the constant C. I already have 1/24.
(b) Find P(X <= 1, Y <= 1)
(c) Find P(X + Y <= 1).

Answers

(a) The value of the constant is 1/24, (b) P(X<=1,Y<=1)  is 5/48 and (c)  P(X + Y <= 1) is also 5/48

(a) The constant C can be found by using the fact that the total probability of the joint density function over the entire space is equal to 1. Therefore, we integrate the joint density function over the region where it is defined and set it equal to 1:

∫∫f(x,y) dA = 1

∫[0,2]∫[0,4] Cx(1+y) dy dx = 1

C∫[0,2]x[(y+(y²)/2)] [0,4] dx = 1

C(24/5) = 1

C = 5/24

(b) To find P(X <= 1, Y <= 1), we integrate the joint density function over the region where X <= 1 and Y <= 1:

P(X<=1,Y<=1) = ∫[0,1]∫[0,1] (5/24) x(1+y) dy dx

= (5/24) ∫[0,1] x(1+(1/2)) dx

= (5/24) [(1/2) + (1/6)]

= 5/48

(c) To find P(X + Y <= 1), we integrate the joint density function over the region where X + Y <= 1:

P(X+Y<=1) = ∫[0,1]∫[0,1-x] (5/24) x(1+y) dy dx

= (5/24) ∫[0,1] x(1+(1-x)/2) dx

= (5/24) [(1/2) - (1/12)]

= 5/48

Therefore, P(X + Y <= 1) = 5/48.

To know more about joint density function, refer here:
https://brainly.com/question/29848433#
#SPJ11

Q=1/6p^2


p= 13. 6 correct to 3 significant figures.


By considering bounds, work out the value of q to a suitable degree of accuracy.


Give a reason for your answer.


+

Answers

The value of Q, taking into account the significant figures is 30.8.

To work out the value of Q given the value of p, we can substitute the value of p into the equation Q = (1/6) × p².

Given p = 13.6, we can calculate Q as follows:

Q = (1/6) × (13.6)²

Q = (1/6) × 184.96

Q = 30.826666...

Now, let's consider the significant figures of the given value of p, which is 13.6 (3 significant figures).

Since the value of p has 3 significant figures, we should round our final answer for Q to 3 significant figures as well.

Considering the value of Q to a suitable degree of accuracy, we can round our answer to three significant figures, which gives us:

Q = 30.8

Therefore, the value of Q, taking into account the significant figures, is  30.8.

To learn more on Number system click:

https://brainly.com/question/22046046

#SPJ12

E Homework: Week 10 Homework Question 18, 6.6.77 Part 1 of 2 a. Find the magnitude of the force required to keep a 3100-pound car from sliding down a hill inclined at 5.6° from the horizontal b. Find the magnitude of the force of the car against the hill, a. The magnitude of the force required to keep the car from sliding down the hil is approximately pounds. (Round to the nearest whole number as needed.)

Answers

The magnitude of the force of the car against the hill is approximately 13690 pounds.

How to find the magnitude of the force required?

a. To find the magnitude of the force required to keep the car from sliding down the hill, we need to calculate the force component perpendicular to the hill (the normal force) and the force component parallel to the hill (the force of friction). The force of friction must be equal and opposite to the component of the weight of the car parallel to the hill to keep the car from sliding.

First, we need to calculate the weight of the car in Newtons:

3100 pounds = 1406.13 kg

Weight = mg = 1406.13 kg * 9.81 m/s^2 = 13791.68 N

The force component perpendicular to the hill is equal to the weight of the car multiplied by the cosine of the angle of inclination:

F_perpendicular = Weight * cos(5.6°) = 13791.68 N * cos(5.6°) = 13689.55 N

The force component parallel to the hill is equal to the weight of the car multiplied by the sine of the angle of inclination:

F_parallel = Weight * sin(5.6°) = 13791.68 N * sin(5.6°) = 1275.02 N

The force of friction is equal to the force parallel to the hill, so:

F_friction = F_parallel = 1275.02 N

Therefore, the magnitude of the force required to keep the car from sliding down the hill is equal to the force component perpendicular to the hill plus the force of friction:

F_required = F_perpendicular + F_friction = 13689.55 N + 1275.02 N = 14964.57 N

Rounded to the nearest whole number, the magnitude of the force required to keep the car from sliding down the hill is approximately 14965 pounds.

b. To find the magnitude of the force of the car against the hill, we just need to calculate the force component perpendicular to the hill (the normal force):

F_normal = F_perpendicular = 13689.55 N

Rounded to the nearest whole number, the magnitude of the force of the car against the hill is approximately 13690 pounds.

Learn more about the magnitude of the force required

brainly.com/question/31406141

#SPJ11

Other Questions
Shane has 2 white shirts, 2 blue ones and 1 red one, He has gray pants and black pants. He hung them all up on hangers in his closet, but one shirt and a pair of pants fell on the floor. The probability that a red shirt and black slacks are on the floor is Use the information in the list to answer the question. Social Classes in Ancient Rome Patrician Plebian Slave How were patricians different from other social classes in Ancient Rome? O A Patricians had the poorest living conditions. B. Patricians were prohibited from becoming citizens. C. Patricians came from a different country and belonged to a different culture. D. Pancians owned most of the land and held most of the political positions. The height, h, in feet of a ball suspended from a spring as a function of time, t, in seconds can be modeled by the equation h = negative 2 sine (pi (t one-half)) 5. which of the following equations can also model this situation? h = negative 2 cosine (pi t) 5 h = negative 2 cosine (pi (t one-half)) 5 h = 2 cosine (pi t) 5 h = 2 cosine (pi (t one-half)) 5 Qn in attachment . .. 1) which strategy would be best to revise laurel's statement by making its language more conventional?laurel is meeting with the new neighbors to discuss babysitting for their three year old daughter. )laurel: 1 always enjoy babysitting for a little boy named grant on the weekend, even though i could be out shooting the breeze with friends. a) change the phrase always enjoy because she probably does not like to babysit grant every time. b) add the last name of the little boy named grant because it is inappropriate to use only first names. q change the phrase with friends" because it is too vague and informal to use when speaking to adults. dy change the phrase shooting the breeze because it is too informal and cannot be understood literally. Discuss an example of an experience that you think is universal. what are the challenges of relating an experience to everyone? 23. Discuss how Erikson's theory of psychosocial developmental relates to communicating with patients. Jon has 8 packets of soup in his cupboard, but all the labels are missing. he knows that there are 5 packets of tomato soup and 3 packets of mushroom soup. he opens three packets at random. work out the probability that all three packets are the same variety of soup. What are the features of function gif g(x) = f(x + 4) + 8?=vertical asymptote of r = -4x-Intercept at (1,0)range of (8,00)y-intercept at (0,10)domain of (4,00) write the noun of simultaneously CAN SOMEONE HELP WITH THIS QUESTION? NFX is the word part added to the beginning, or the end of a word to change the words _____ India has the largest percentage of its land under agricultural use. Give reasons. HELP! WILL GIVE BRAINLEST! An angle of 1. 5 rad intercepts an arc on the unit circle. What is the length of the intercepted arc? what youve learned in this class regarding international business? Did your views or perceptions of international business change after taking this course? Why or why not? Please explain. Directions: For each vocabulary term listed, write a definition in your own words.HumanismSecularPatronMona LisaPerspectiveThe PrinceVernacularUsuryMedici Family The ____________ zone is the slope area closest to the edge of water. in diluting the standard solutions, 0.01 m hno3 is used. in the dilution, is it more important to use the correct volume or the correct concentration of the hno3 solution for the dilution? explain. Taylor has a gift box that is 6 inches long,5 inches high,and 3 inches wide.What is the surface area of the gift box in square inches? What if the brain of person A, fully intact with memories, was transplanted into someone else, and that person woke up with no memory of being Bernard (Alfred) - but all the memories of being Alfred (Bernard): Does that make Bernard Alfred?