What is a concern of the survey method of research?
1.the target population will not be able to be identified
2.the number of people in the survey may be too large
3.the researcher is dependent on the person answering the survey to be honest
4.all answers are correct

Answers

Answer 1

Concern of the survey method of research is : 3.)the researcher is dependent on the person answering the survey to be honest.

What is a concern of the survey method of research?

One concern of the survey method of research is that the researcher is dependent on the person answering the survey to be honest. There is a risk that participants may provide inaccurate or incomplete responses due to range of factors such as social desirability bias, memory recall issues, or misunderstanding of questions.

Therefore, option 3)the researcher is dependent on the person answering the survey to be honest is the most accurate answer.

To know more about survey method, refer

https://brainly.com/question/13435620

#SPJ1


Related Questions

What is the aqueous solubility of He at 1 atm and at 20°C? The solubility of He at 20°C is 0.00037 mol/L/atm.
Answer in units of mg/L.

Answers

The aqueous solubility of He at 1 atm and 20°C is 0.0928 mg/L. To convert the aqueous solubility of He from mol/L/atm to mg/L, we need to consider the molar mass of He, which is approximately 4.003 g/mol.

The conversion factor we need is:

1 mol He / (4.003 g He) x 1000 mg / 1 g = 249.8 mg He / mol He

Using the given solubility of He at 20°C (0.00037 mol/L/atm), we can calculate the aqueous solubility of He at 1 atm and 20°C:

Aqueous solubility of He = (0.00037 mol/L/atm) x (1 atm) x (249.8 mg He/mol He)

Aqueous solubility of He = 0.0928 mg/L

Therefore, the aqueous solubility of He at 1 atm and 20°C is 0.0928 mg/L.

To know more about molar mass, visit:

https://brainly.com/question/22997914

#SPJ1

Brass is an alloy of copper and zinc. The composition of a 1.00-g sample of brass is analyzed by reaction with excess 1.50 M HCl. The hydrogen gas produced is collected by water displacement. It is found to have a volume of 135 mL at 25 degrees Celsius and 772 torr. The vapor pressure of water at 25 degrees Celsius is 23.8 torr. Assume that only the zinc reacts. Determine the mass of zinc present in the brass sample.

Answers

The brass sample has 0.357 g of zinc.

What is mass?

The amount of inertia a body possesses and the resistance it provides to a change in its speed or position when a force is applied are measured by a body's mass, which is a fundamental attribute of matter. It is frequently used as a gauge for how much matter makes up a body and gives it weight in a gravitational field.

The chemical formula for the interaction of zinc with hydrochloric acid is as follows:

Zn(s) + 2HCl(aq) = ZnCl2(aq) + H2(g)

One mole of zinc interacts with two moles of hydrochloric acid to create one mole of hydrogen gas, as shown by the balancing chemical equation. As a result, the amount of zinc in the brass sample and the amount of hydrogen gas produced by the reaction are equal.

The ideal gas law can be used to determine how many moles of hydrogen gas were generated:

PV = nRT

where n is the number of moles, R is the gas constant, T is the temperature in Kelvin, and P is the total pressure of the gas.

Initially, we must adjust the hydrogen gas volume for the water vapor pressure. The gas's overall pressure is:

Total P = [tex]\rm P_ {H_2 }+ P_{H_2O}[/tex]

where  [tex]\rm P_ {H_2 } \ \texte{and }\ P_{H_2O}[/tex] are the partial pressures of hydrogen gas and water vapor, respectively.

P _H2O = 23.8 torr, as we know,

[tex]\rm P _{H_2[/tex] = [tex]\rm P_ {total[/tex] - [tex]\rm P _{H2O[/tex] = 772 torr – 23.8 torr= 748.2 torr.

Converting the volume to liters (L) and the pressure to atmospheres (atm):

P = 760 torr/atm / 748.2 torr = 0.984 atm

V=135 mL / 1000 mL/L = 0.135 L

The temperature must also be converted to Kelvin:

T = 25°C + 273.15 = 298.15 K

These values are substituted into the ideal gas law to find n.

n = PV/RT = (0.984 atm) × (0.135 L) / (0.08206 L·atm/mol·K) × (298.15 K) = 0.00547 mol H2.

When one mole of zinc interacts to create one mole of hydrogen gas, the brass sample also contains 0.00547 mol of zinc.

The molar mass of zinc (65.38 g/mol) can be used to calculate the mass of zinc in the brass sample.

mass of zinc = number of moles of zinc × molar mass of zinc

= 0.00547 mol × 65.38 g/mol

= 0.357 g

As a result, the brass sample has 0.357 g of zinc.

To know more about mass, visit:

brainly.com/question/19694949

#SPJ1

you dissolve of the aminoacid leucine in a solution with . select the structure of the predominant form of the amino acid in solution?

Answers

Option a. CH, NH, CH, H-O. O. The predominant form of leucine in a physiological buffer with pH 7.40 is its zwitterionic form.

The predominant form of the amino acid leucine in a buffer with physiological pH (7.40) would be in its zwitterionic form, also known as the dipolar ion.

In this form, the amino group (-NH3+) is protonated and the carboxyl group (-COO-) is deprotonated, resulting in a molecule with both positive and negative charges. This zwitterionic form is more stable than the neutral or charged forms of the amino acid in aqueous solution due to the interactions between the charged functional groups.

The specific structure of leucine in its zwitterionic form can be represented as NH3+CH(CH3)CH2CH(NH2)COO-. Therefore, the answer would be option (a) CH3CH(NH3+)CH2COO-.

To learn more about predominant form, refer:

https://brainly.com/question/30781791

#SPJ4

The complete question is:

You dissolve 0.1 mol of the amino acid leucine in a buffer with physiological pH (7.40) and make 1L of solution. Select the structure of the predominant form of the amino acid in solution? NH, но, Q-COOH a-NH3 Leucine pl 2.32 9.58 ΝΗ, CH O (a) CH, NH, CH, H-O. O (b) wy CH ΝΗ, CH H-O O(C) CH NH' CH, O (d) yer CH

1 point
How many liters of a solution would be needed in a solution with a molarity of 10.5 and a 3.6 moles?
Type your answer...

Answers

the volume of the solution needed is 0.343 liters (or approximately 343 mL) liters of a solution would be needed in a solution with a molarity of 10.5 and a 3.6 moles.

To determine the volume of the solution, we can use the formula:

moles = molarity x volume

Rearranging the formula, we get:

volume = moles / molarity

Substituting the given values, we get:

volume = 3.6 moles / 10.5 M

volume = 0.343 L

Volume is the quantity of three-dimensional space occupied by a liquid, solid, or gas. It is measured in units such as liters, milliliters, cubic meters, or cubic centimeters, depending on the object or substance being measured.

In chemistry, volume is an important parameter for measuring the amount of a substance in a solution, and it is often used in calculations involving concentration, stoichiometry, and gas laws.

Learn more about volume here:

https://brainly.com/question/30665317

#SPJ1

when 0.075 g of koh is dissolved in 1.00 l of 1.0 x 10-3 m cu(no3)2, a precipitate of cu(oh)2 is formed. true or false? (ksp of cu(oh)2 is 2.2 x 10-20)

Answers

It is true that when 7.5 x 10-4 g of KOH is dissolved in 1.00 L of 1.0 x 10-8 M Cu(NO3)2, a precipitate of Cu(OH)2 is formed. This is determined through the concept of Balanced chemical reaction.

The balanced chemical reaction can be written as,

2KOH(aq.) + [tex]Cu(NO_{3} )_{2}[/tex](aq.) ==> [tex]Cu(OH){2}[/tex](s) + [tex]2KNO_{3}[/tex](aq.)

moles KOH present can be calculated as,

   = 7.5x10-4 g x 1 mole/56.1 g

   = 1.33x10-5 moles KOH

   = 1.3x10-5 M OH-

moles[tex]Cu(NO_{3} )_{2}[/tex] present  can be calculated as,

          = 1.0x10-8 mole/L x 1 L

          = 1.0x10-8 moles Cu(NO3)2

          = 1x10-8 M Cu2+

[tex]Cu(OH){2}[/tex] (s) ==> Cu2+(aq.) + 2OH-(aq.)

Q = [Cu2+][OH-]2

Q = (1x10-8)(1.3x10-5)2

Q = 1.3x10-18

To learn more about balanced chemical reaction

https://brainly.com/question/26694427

#SPJ4

The correct question is,

When 7.5 x 10-4 g of KOH is dissolved in 1.00 L of 1.0 x 10-8 M Cu(NO3)2, a precipitate of Cu(OH)2 is formed. True or False? (Ksp of Cu(OH)2 is 2.2 x 10-20).

5
1 point
What volume of concentrated 18M solution is required to prepare 550 mL of a 2.0M solution?
Type your answer...
1 point
What volume of concentrated 1.5M is required to prepare 25 mL of a 7.0M solution?
Answer in liters

Answers

1-61.11 ml of the 18 M solution is required to prepare 550 ml of a 2.0 M solution.

2-0.117 liters or 117 ml of the 1.5 M solution is required to prepare 25 ml of a 7.0 M solution.

To calculate the volume of concentrated 18 M solution required to prepare 550 ml of a 2.0 M solution, we can use the formula:

M1V1 = M2V2

where:

M1 = 18 M (concentration of concentrated solution)

V1 = volume of concentrated solution to be added (unknown)

M2 = 2.0 M (final concentration required)

V2 = 550 ml (final volume required)

Rearranging the formula to solve for V1:

V1 = (M2 x V2) / M1

Substituting the values given:

V1 = (2.0 M x 550 ml) / 18 M

V1 = 61.11 ml

To calculate the volume of concentrated 1.5 M solution required to prepare 25 ml of a 7.0 M solution, we can again use the formula:

M1V1 = M2V2

where:

M1 = 1.5 M (concentration of concentrated solution)

V1 = volume of concentrated solution to be added (unknown)

M2 = 7.0 M (final concentration required)

V2 = 25 ml (final volume required)

Converting the final volume required to liters:

V2 = 25 ml = 0.025 L

Rearranging the formula to solve for V1:

V1 = (M2 x V2) / M1

Substituting the values given:

V1 = (7.0 M x 0.025 L) / 1.5 M

V1 = 0.117 L

Learn more about solution here:

https://brainly.com/question/30665317

#SPJ1

when 7.5 x 10-4 g of koh is dissolved in 1.00 l of 1.0 x 10-10 m cu(no3)2, a precipitate of cu(oh)2 is formed. true or false? (ksp of cu(oh)2 is 2.2 x 10-20)

Answers

The given statement {When 7.5 x 10^-4 g of KOH is dissolved in 1.00 L of 1.0 x 10^-10 M Cu(NO3)2, a precipitate of Cu(OH)2 is formed} is True. This is because the Ksp of Cu(OH)2 (2.2 x 10^-20) is exceeded, leading to the formation of a precipitate. So the answer is true.

When 7.5 x 10-4 g of KOH is dissolved in 1.00 L of 1.0 x 10-10 M Cu(NO3)2, a precipitate of Cu(OH)2 is formed. This statement is true.

The equation is given below:

Cu(NO3)2 + 2KOH → Cu(OH)2 + 2KNO3, the given Ksp value for Cu(OH)2 is 2.2 x 10-20.

Molarity of Cu(NO3)2 is given by:

M = (1.0 x 10-10 mol/L) = moles of solute/L of solution= n/1.0 L1.0 x 10-10 = n/1.0 n = 1.0 x 10-10 mol

Amount of KOH is given by: Molarity of KOH = moles of solute/L of solution M = 7.5 x 10-4 g/(56.11 g/mol)/1.0 L= 1.336 x 10-5 mol/L, the balanced equation shows that the ratio of Cu(NO3)2 to KOH is 1:2.

Thus, moles of KOH = 2 x moles of Cu(NO3)2. Hence moles of Cu(NO3)2 = 1.0 x 10-10 mol/L x 1.0 L = 1.0 x 10-10 mol.

Moles of KOH = 2 x 1.0 x 10-10 mol = 2.0 x 10-10 mol.

Now we have the amount of both Cu(NO3)2 and KOH used in the reaction. The Ksp of Cu(OH)2 is given as 2.2 x 10-20.

The formula of Ksp is;

Ksp = [Cu2+][OH-]2Cu2+ and OH- are produced in a 1:2 molar ratio according to the balanced equation.

Therefore, [Cu2+] = 1.0 x 10-10 mol/L and [OH-] = 2 x 2.0 x 10-10 mol/L = 4.0 x 10-10 mol/L.

The value of Ksp is calculated as follows:

Ksp = [Cu2+][OH-]2= (1.0 x 10-10 mol/L)(4.0 x 10-10 mol/L)2= 1.6 x 10-28 mol3/L3.

This Ksp value is less than the given Ksp of Cu(OH)2 (2.2 x 10-20), which implies that a precipitate of Cu(OH)2 will form, and the statement is true.

For more questions on: KOH

https://brainly.com/question/31213916

#SPJ11  

Which of the following is a non-volatile solute? Select all that apply.

2-propanol (rubbing alcohol)
Methanol
Sodium chloride
Sugar

Answers

sugar and sodium chloride

g determine the oxidation state for each of the elements below. the oxidation state of ... phosphorus ... in ... phosphorous tribromide pbr3 ... is ... . the oxidation state of nitrogen in nitrosyl fluoride nof is . the oxidation state of phosphorus in phosphoryl trichloride pocl3 is .

Answers

1) The oxidation state of phosphorus in phosphorous tribromide is equals to 3.

2) The oxidation state of nitrogen in nitrosyl fluoride is equals to 3.

3) The oxidation state of phosphorus in phosphoryl trichloride is equals to 5.

In chemistry, the oxidation state, or oxidation number of an atom is equal to the total number of electrons removed from an element (that is represents positive oxidation state) or added to an element (represents negative oxidation state) to reach its present state. It describes the degree of oxidation that is loss of electrons of an atom in a chemical compound. We have two compounds and we have to determine the oxidation state of particular atom in compound.

1) Compound is phosphorous tribromide, [tex]PBr_3[/tex]. Let us consider x be the oxidation number of P in PBr₃. Since, the total charge of the complex is zero, the addition of oxidation states of all elements in it must be equal to 0. Therefore, x + 3(-1) = 0, where charge on Br is -1.

=> x = 3

2) Compound is nitrosyl fluoride, NOF

Consider x be the oxidation number of N in NOF. Since, the total charge on the complex is zero, the addition of oxidation states of all elements in it should be equal to 0. Therefore, x + (-1) + (-2) = 0, where charge on F is -1 and Oxygen is (-2).

=> x -1 -2 = 0

=> x = 3

3) Compound is phosphoryl trichloride, POCl₃. Consider x be the oxidation number of P in POCl₃. Since, the total charge on the complex is zero, the sum of oxidation states of all elements in it must be equal to zero. Therefore, x + 3(-1) + (-2) = 0, where charge on Cl is -1 and Oxygen is (-2).

=> x -3 -2 = 0

=> x = 5

Hence, required oxidation state of phosphorus is +5.

For more information about oxidation state, visit :

https://brainly.com/question/30848352

#SPJ4

what is the answer to the question?​

Answers

To determine the number of moles of reactants required to produce 6.2 moles of phosphoric acid (H₃PO₄), we need to use stoichiometry.

How many moles of reactant were required to form phosphoric acid?

From the balanced equation, we can see that 1 mole of P₄O₁₀ reacts with 6 moles of H₂O to produce 4 moles of H₃PO₄. This means that the ratio of P₄O₁₀ to H₃PO₄ is 1:4, and the ratio of H₂O to H₃PO₄ is 6:4, or 3:2.

To find the number of moles of P₄O₁₀ required, we can set up a proportion:

1 mole P₄O₁₀ / 4 moles H₃PO₄ = x moles P₄O₁₀ / 6.2 moles H₃PO₄

Solving for x, we get:

x = (1 mole P₄O₁₀ / 4 moles H₃PO₄ ) x (6.2 moles H₃PO₄ ) = 1.55 moles P₄O₁₀

Therefore, 1.55 moles of P₄O₁₀ were required to produce 6.2 moles of H₃PO₄.

To find the number of moles of  H₂O required, we can set up a similar proportion:

6 moles  H₂O/ 4 moles H₃PO₄ = x moles  H₂O/ 6.2 moles H₃PO₄

Solving for x, we get:

x = (6 moles  H₂O/ 4 moles H₃PO₄ ) x (6.2 moles H₃PO₄ ) = 9.3 moles  H₂O

Therefore, 9.3 moles of  H₂O were required to produce 6.2 moles of H₃PO₄ (phosphoric acid).

Learn more about phosphoric acid here:

https://brainly.com/question/3700851

#SPJ1

what is the uncertainty in the molarity of your edta titrant? show your worked out solution in the space provided below and enter your final answer for standard deviation and percent relative standard deviation.

Answers

The standard deviation and per cent relative standard deviation, which represent the uncertainty in the molarity of your EDTA titrant.

To calculate the uncertainty in the molarity of your EDTA titrant, we need some information about the measurements taken during the titration process. However, since the information is not provided, I will give you a general step-by-step guide to finding the uncertainty in molarity:
1. Record the volume measurements (in mL) for each titration trial.
2. Calculate the molarity of the EDTA titrant for each trial using the balanced equation of the reaction and the known molarity and volume of the analyte solution.
3. Find the mean (average) molarity of the EDTA titrant by summing the molarities calculated in step 2 and dividing by the total number of trials.
4. Calculate the deviation for each trial by subtracting the mean molarity from the molarity of each trial.
5. Square each deviation calculated in step 4.
6. Sum the squared deviations and divide by the total number of trials minus one (n-1) to find the variance.
7. Calculate the standard deviation by taking the square root of the variance.
8. Calculate the per cent relative standard deviation by dividing the standard deviation by the mean molarity and multiplying by 100.
After following these steps, you will have found the standard deviation and per cent relative standard deviation, which represents the uncertainty in the molarity of your EDTA titrant.

For more such questions on EDTA titrant.

brainly.com/question/30667405

#SPJ11

49.8 grams of KI is dissolved in 1.00 kg solventCalculate the molarity, molality, mole fraction,
and mass % of KI in this solution. (Remember that 1 L water = 1 kg water)

Answers

The solution has a molality of 0.299 mol/kg, a molarity of 0.299 M, a mole fraction of 0.0054, and a mass percentage of 4.74%.

How is molarity determined?

The amount of moles of KI must be determined before we can compute the molarity:

n = m/M

where M is the molar mass of KI (166.00 g/mol), m is the mass of KI (49.8 g), and n is the number of moles.

n=49.8 g/166.00 g/mol = 0.299 moles

The solution's molarity is as follows:

Molarity = n/V

where V is the solution's volume in liters (since 1 kg of solvent is approximately equal to 1 L of solution).

Molarity = 0.299 moles/one litre = 0.299 M

How is molality determined?

We use the following equation to get the molality:

molality equals n / m solvent

where m solvent is the solvent's mass in kilograms (since 1 kg of solvent is given in the problem statement).

Molality is defined as 0.299 moles per kilogram (mol/kg).

How is the mole fraction determined?

The formula for KI's mole fraction is:

Mole fraction of KI is equal to n KI/n total.

where n total is the total number of moles in the solution and n KI is the number of moles of KI. The mass of the solvent can be used to determine n total:

m solvent = n total / M solvent

where M solvent is the solvent's molar mass. Given that water has a molar mass of 18.015 g/mol, we obtain:

Total number of moles = 1.00 kg / 18.015 g/mol = 55.49 moles.

The mole fraction of KI is as follows:

The mole fraction of KI is calculated as follows: 0.0054

How is mass percent calculated?

We must first determine the total mass of the solution in order to compute the mass percent:

KI mass plus solvent mass equals the mass of the solution.

The mass of the solution is 49.8 g plus 1000 g, or 1049.8 g.

Thus, the mass percent of KI is:

mass% KI = 100% x (mass of KI / mass of solution)

(49.8 g / 1049.8 g) x 100% = 4.74% is the mass% KI formula.

To learn more about molarity and molality visit:

brainly.com/question/30909953

#SPJ1

what effect, if any, do you expect the three different substituents on the aromatic ring (para-chloro, para-methoxy, para-methyl) to have on the reaction? explain g

Answers

The para-methyl group is not expected to strongly influence the electronic properties of the ring but may affect its steric accessibility to reacting species.

the substituents on an aromatic ring can have a tremendous influence on the reactivity and selectivity of reactions that involve the ring in the case of the three unique substituents you noted para-chloro para-methoxy para-methyl they will probable have exceptional penalties on the response primarily based on their digital and steric properties para-chloro chlorine is an electron-withdrawing group which ability it will pull electrons away from the ring making it a whole lot much less electron-rich and extra inclined to electrophilic assault this can make the ring extra reactive closer to electrophilic fragrant substitution EAS reactions which comprise the addition of an electrophile to the ring the presence of a chlorine substituent can additionally have an impact on the regioselectivity of the reaction favoring substitution at the para role para-methoxy methoxy -och₃ is an electron-donating team which ability it will donate electrons to the ring making it greater electron-rich and much less susceptible to electrophilic assault this can make the ring plenty much less reactive in the direction of EAS reactions on the other hand the methoxy group can moreover increase the nucleophilicity of the ring making it more inclined to nucleophilic aromatic substitution NAS reactions the presence of a methoxy substituent can additionally have an effect on the regioselectivity of the reaction favoring substitution at the ortho and para positions para-methyl methyl -ch₃ is a as a substitute inert substituent that ability it does not strongly have an effect on the electron density of the ring or its reactivity toward EAS or NAS reactions however the presence of a methyl crew can affect the steric properties of the ring making it higher or a whole lot less on hand to the reacting species relying on the special reaction stipulations

learn more about aromatic ring here : brainly.com/question/28286554

#SPJ4

describe the three phases of gastric function and how the gastric activity is activated and inhibited.

Answers

The three phases of gastric function are the cephalic phase, gastric phase, and intestinal phase.

The cephalic phase is initiated by the sight, smell, taste, or even thought of food, which activates the vagus nerve, leading to the secretion of gastric juices and enzymes.

The gastric phase is initiated by the presence of food in the stomach. The distension of the stomach walls triggers the release of gastrin, which stimulates the secretion of gastric juices and enzymes.

The intestinal phase is initiated by the presence of chyme (partially digested food) in the small intestine. The duodenum releases hormones that inhibit gastric secretions and motility and stimulate the release of digestive enzymes from the pancreas.

Gastric activity is also regulated by several factors that can activate or inhibit its function. For example, stress, smoking, and caffeine can stimulate gastric activity, while alcohol and some medications can inhibit it. Additionally, the presence of fatty or acidic foods can either stimulate or inhibit gastric function.

To learn more about gastric activity visit;

https://brainly.com/question/4757032

#SPJ4

If the He in Problem 3 takes 20 sec to effuse, how long will NH3 take?

Answers

In Graham's law of effusion, the rate of effusion is inversely proportional to the square root of the molar mass of the gas.

The molar mass of NH3 is 17 g/mol.

Let's use the ratio of the square roots of the molar masses of He and NH3 to find the time it takes for NH3 to effuse:

(sqrt(Molar mass of He) / sqrt(Molar mass of NH3)) = sqrt(4 / 17)

So the rate of effusion of NH3 is:

(sqrt(Molar mass of NH3) / sqrt(Molar mass of He)) * (rate of effusion of He) = sqrt(17 / 4) * 3 = 3.67

Therefore, NH3 will take 3.67 times longer to effuse than He.

Time for NH3 = 20 sec × 3.67 = 73.4 sec.

So NH3 will take approximately 73.4 seconds to effuse.

Furoic acid 1HC5H3O32 has a Ka value of 6.76 * 10-4 at 25 °C. Calculate the pH at 25 °C of (a) a solution formed by adding 25.0 g of furoic acid and 30.0 g of sodium furoate 1NaC5H3O32 to enough water to form 0.250 L of solution, (b) a solution formed by mixing 30.0 mL of 0.250 M HC5H3O3 and 20.0 mL of 0.22 M NaC5H3O3 and diluting the total volume to 125 mL, (c) a solution prepared by adding 50.0 mL of 1.65 M NaOH solution to 0.500 L of 0.0850 M HC5H3O3.

Answers

(a) The pH at 25°C in first solution is 1.97

(b) The pH at 25°C in  second solution is 2.19

(c) The pH at 25°C in third solution is 2.26

(a) For the solution formed by adding 25.0 g of furoic acid and 30.0 g of sodium furoate to 0.250 L of water, we can calculate the molarity of furoic acid as follows:

25.0 g of furoic acid = 1.000 mol of furoic acid

1.000 mol of furoic acid = 4.000 L of solution

Molarity of furoic acid = [tex]\frac{4.000 L}{0.250 L} = 16.00 M[/tex]

The pH of the solution can then be calculated using the Ka value:

[tex]Ka =\frac{ [H^+][C_5H_3O_3 ^-]}{[HC_5H_3O_3]}[/tex]

[tex][H^+] = Ka *\frac{ [HC_5H_3O_3] }{ [C_5H_3O_3^-]} \\\\= 6.76 * 10^{-4} * \frac{16.00}{1} = 0.1081 M[/tex]

[tex]pH = -log[H^+] = -log(0.1081) = 1.97[/tex]

(b) For the solution formed by mixing 30.0 mL of 0.250 M [tex]HC_5H_3O_3[/tex]and 20.0 mL of 0.22 M[tex]NaC_5H_3O_3[/tex] and diluting the total volume to 125 mL, we can calculate the molarity of furoic acid as follows:

30.0 mL of 0.250 M [tex]HC_5H_3O_3[/tex] = 0.0750 mol of furoic acid

20.0 mL of 0.220 M [tex]NaC_5H_3O_3[/tex] = 0.044 mol of sodium furoate

Total moles of furoic acid = 0.0750 + 0.044 = 0.119 mol

Molarity of furoic acid =[tex]\frac{0.119 mol}{1.25 L} = 0.0952 M[/tex]

The pH of the solution can then be calculated using the Ka value:

[tex]Ka =\frac{ [H^+][C_5H_3O_3^-]}{[HC_5H_3O_3]}[/tex]

[tex][H+] = Ka *\frac{ [HC_5H_3O_3] }{ [C_5H_3O_3^-] }\\= 6.76 * 10^{-4} * \frac{0.0952 }{ 1} \\= 0.0065 M[/tex]

[tex]pH = -log[H^+] = -log(0.0065) = 2.19[/tex]

(c) For the solution prepared by adding 50.0 mL of 1.65 M[tex]NaOH[/tex]solution to 0.500 L of 0.0850 M [tex]HC_5H_3O_3[/tex], we can calculate the molarity of furoic acid as follows:

50.0 mL of 1.65 M NaOH = 0.0825 mol of NaOH

0.500 L of 0.0850 M [tex]HC_5H_3O_3[/tex] = 0.0425 mol of furoic acid

Total moles of furoic acid = 0.0825 + 0.0425 = 0.125 mol

Molarity of furoic acid =[tex]\frac{ 0.125 mol}{1.50 L} = 0.083 M[/tex]

The pH of the solution can then be calculated using the Ka value:

[tex]Ka =\frac{ [H^+][C_5H_3O_3^{-}}{[HC_5H_3O_3]}[/tex]

[tex][H+] = Ka *\frac{ [HC5H3O3] }{[C5H3O3-] }\\= 6.76 * 10^{-4}*\frac{ 0.083 }{1 }\\= 0.0055 M[/tex]

[tex]pH = -log[H^+] = -log(0.0055) = 2.26[/tex]

learn more about Molarity Refer:brainly.com/question/8732513

#SPJ1

various aspects of this experiment are time sensitive. preparing your samples and taking measurements too soon may yield inaccurate results because the reaction may not have reached equilibrium yet, and so on. to avoid that situation, a student prepares and mixes their solutions to start the reaction. they then make special arrangements to leave their solutions out on the lab bench all day and return that evening (6 hours later) to take their readings. considering the specific species present in the reaction, what, if anything, will the student notice about the absorbance results?

Answers

The student may observe a decrease in the absorbance results due to the reaction having reached equilibrium and the concentrations of the species involved having changed over time.

The specific species present in the reaction will determine the rate at which the reaction reaches equilibrium. If the reaction is slow to reach equilibrium, leaving the solutions out on the lab bench for only 6 hours may not be enough time for the reaction to fully proceed and reach equilibrium. This can result in inaccurate absorbance results due to incomplete reaction.

Conversely, if the reaction reaches equilibrium quickly, leaving the solutions out for 6 hours may not have a significant effect on the absorbance results. Therefore, it is important to consider the reaction kinetics and equilibrium characteristics of the specific species present in the reaction to ensure accurate absorbance readings.

To know more about absorbance, here

brainly.com/question/18042716

#SPJ4

--The complete question is, A student has prepared and mixed their solutions for an experiment, and left them on the lab bench for 6 hours before taking absorbance readings. What considerations should be made with regards to the specific species present in the reaction and how might this impact the accuracy of the absorbance results?--

indicate if each of the following errors is systematic, random or human mistake based on how they affect the results of the lab: group of answer choices each solution absorbs carbon dioxide from the air, making them slightly more acidic [ choose ] estimating the amount of each salt to dissolve in the distilled water [ choose ] spilling some salt during the transfer into the centrifuge tube [ choose ] inconsistent volume in drops of indicator [ choose ] using dirty test tubes [ choose ]

Answers

Amoung the following errors 1, 2 and 5 are systemic error and 3,4 are random error.

1- Each solution absorbs carbon dioxide from the air, making them slightly more acidic: This is a systematic error because it affects all samples uniformly and consistently, causing a bias in the results.

2- Estimating the amount of each salt to dissolve in the distilled water: This could be either a systematic or a human error, depending on how the estimation is made. If the estimation is done using a consistent and repeatable method, it could be considered a systematic error. However, if the estimation is done inconsistently or based on subjective judgment, it would be a human error.

3- Spilling some salt during the transfer into the centrifuge tube: This is a random error because it affects only some samples and introduces variability in the results.

4- Inconsistent volume in drops of indicator: This is a random error because it affects only some samples and introduces variability in the results.

5- Using dirty test tubes: This could be either a systematic or a human error, depending on the cause of the dirtiness. If the dirtiness is due to a consistent and repeatable factor, such as inadequate cleaning, it would be a systematic error. However, if the dirtiness is due to a one-time event, such as accidental contamination, it would be a random error.

learn more about random error here:

https://brainly.com/question/30433247

#SPJ4

14. Activities in the human body are represented in the diagram below Heat released from body by blood vessels dilating or by sweating Blood temperature decreases L Signals via blood ୮ Blood temperature increases L Brain Skin Skin Heat conserved by blood vessels constricting or by not sweating (Not drawn to scale) alel Ĵ "Too hot" Signals to skin via nerves "Too cold" Source: Campbell and Reece, Biology, 6th edition (adapted) Which title would be appropriate for the diagram? A) Rate of Excretion Varies in Response to Amount of Water Taken In B) Feedback Mechanisms Help to Maintain Homeostasis C) Respiratory Rate Responds to an Increase in Muscle Activity D) The Nervous System Responds to Changes in Blood Sugar Levels​

Answers

Heat manufacturing is a feature of metabolism. Most of the warmth produced in the body is generated in the liver, brain, heart, and skeletal muscle mass all through exercise.

What is the technique through which warmness is produced in human body?

In our body, cellular respiration leads to formation of water, carbon dioxide and launch of energy. This energy is stored in the shape of ATP. Some structure of this strength is utilised in day by day things to do and the excess is launched in the form of heat.

Which of the following is the method in which heat is misplaced from the body as wind passes over it?

Cooling Your Body

Convection happens when warmness is carried away from your body by means of shifting air. If the surrounding air is cooler than your skin, the air will absorb your heat and rise.

Learn more about human body here;

https://brainly.com/question/2844926

#SPJ9

what is the final volume of 5.31L of an ideal gas when heated from 200 K to 300 K at constant pressure?

Answers

The final volume of the gas is approximately 7.97 L. This type of process is often represented on a pressure-volume (PV) diagram as a horizontal line, where the pressure is constant and the volume changes.

What is Constant Pressure?

Constant pressure refers to a thermodynamic process where the pressure of the system remains constant throughout the process. This means that if a gas is undergoing a constant pressure process, its pressure will remain the same, but its volume, temperature, and other properties may change. In a constant pressure process, the system can exchange heat with its surroundings, but the pressure remains constant.

We can use Charles's Law to solve this problem, which states that at constant pressure, the volume of an ideal gas is directly proportional to its temperature in Kelvin.

We can set up a proportion:

(V₁/T₁) = (V₂/T₂)

where V₁ is the initial volume (5.31 L), T₁ is the initial temperature (200 K), V₂ is the final volume (what we want to find), and T₂ is the final temperature (300 K).

Solving for V₂:

V₂ = (V₁/T₁) x T₂

V₂ = (5.31 L / 200 K) x 300 K

V₂ = 7.965 L

Learn more about Constant Pressure from the given link

https://brainly.com/question/1480756

#SPJ1

1. For the reaction C + 2H2 → CH4, how many moles of carbon are needed to make 174.6 grams of methane, CH4 ?

Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0

Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:

Element

Molar Mass

Hydrogen

1

Carbon

12

2. 3 Cu + 8HNO3 --> 3 Cu(NO3)2 + 2 NO + 4 H2O

In the above equation how many moles of water can be made when 110.2 grams of HNO3 are consumed?

Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0

Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:

Element

Molar Mass

Hydrogen

1

Nitrogen

14

Copper

63.5

Oxygen

16

Answers

10.91 moles of carbon are needed to make 174.6 grams of methane.

0.9 moles of water can be made when 110.2 grams of HNO3 are consumed.

First, we need to calculate the number of moles of methane produced from the given mass.

Molar mass of CH4 = 12 + 4(1) = 16 g/mol

Number of moles of CH4 = 174.6 g / 16 g/mol = 10.91 mol (rounded to two decimal places)

According to the balanced chemical equation, 1 mole of carbon is required to produce 1 mole of CH4. Therefore, the number of moles of carbon required can be calculated as follows:

Number of moles of C = 10.91 mol × 1 mol C / 1 mol CH4 = 10.91 mol (rounded to two decimal places)

We need to use the given balanced chemical equation to determine the stoichiometry of the reaction between Cu and HNO3, and then use the molar mass of HNO3 to calculate the number of moles consumed and the number of moles of water produced.

According to the balanced chemical equation, 8 moles of HNO3 react to produce 4 moles of H2O. Therefore, the ratio of moles of HNO3 to moles of H2O is 8:4, or 2:1.

Number of moles of HNO3 = 110.2 g / 63.5 g/mol = 1.737 mol (rounded to three decimal places)

Number of moles of H2O = 1.737 mol / 2 = 0.869 mol (rounded to three decimal places).

Learn more about methane here:

https://brainly.com/question/2127750

#SPJ1

if a 0.25 m solution of a base is found to have a poh of 4.6 at equilibrium, what is the percent ionization of the base? select the correct answer below: 0.00010% 0.0010% 0.010% 0.10%

Answers

The percent ionization of the base is 0.010%. Option C is correct.

First, we can use the pOH value to find the pH of the solution;

pH + pOH = 14

pH = 14 - 4.6 = 9.4

Next, we can use the pH and the concentration of the solution to find the pKa of the conjugate acid of the base.

pH = pKa + log([A⁻]/[HA])

9.4 = pKa + log([A⁻]/[HA])

pKa = 9.4 - log([A⁻]/[HA])

Assuming the base is weak, we can also approximate the percent ionization using the equation;

% ionization = [A⁻]/[HA] x 100

Since the solution is 0.25 M, we can assume that [HA] = 0.25 M - [A-]. Substituting these values into the equation above and using the pKa we calculated, we get;

% ionization = [A⁻]/[HA] x 100

% ionization = [A⁻]/(0.25 M - [A⁻]) x 100

% ionization = [tex]10^{(-pKa +pH)}[/tex] x 100

% ionization = [tex]10^{(-9.4+4.6)}[/tex] x 100

% ionization = 0.010%

Hence, C. is the correct option.

To know more about percent ionization here

https://brainly.com/question/13161344

#SPJ4

--"The given question is incomplete, the complete question is

If a 0.25 m solution of a base is found to have a pOH of 4.6 at equilibrium, what is the percent ionization of the base? select the correct answer below: A) 0.00010% B) 0.0010% C) 0.010% D) 0.10%"--

Determine the heat absorbed by 1.5 moles of glycerol when its temperature increases from 25°C to 70°C. The molar mass of glycerol (C3H803) is 92.09 g/mol.

Answers

As a result, 1.5 moles of glycerol absorb about 1.99 Joules of heat when their temperature rises from 25 to 70 degrees Celsius.

What is C3H8O3 also known as?

Glycerin is a straightforward polymer. The molecular formula of this solvent is C3H8O3. It is sometimes referred to as glycerine or glycerol.

We can use the following formula to determine how much heat 1.5 moles of glycerol absorbed: q = n × C × ΔT

Glycerol has a specific heat capacity of 2.43 J/g°C. This needs to be divided by the molar mass of glycerol in order to be converted to Joules per mole per degree Celsius:

C = (2.43 J/g°C) / (92.09 g/mol)

C = 0.0264 J/mol°C

The change in temperature can then be calculated as follows:

ΔT = (70°C - 25°C) = 45°C

We can now enter the values into the formula as follows:

q = (1.5 mol) × (0.0264 J/mol°C) × (45°C)

q = 1.99 J

To know more about glycerol visit:-

https://brainly.com/question/10636538

#SPJ1

what is the ph of a solution at the midpoint during the titration of 0.1656 m vh3cooh with 0.1612 m koh

Answers

The pH of the solution at the midpoint is 4.76. To find the pH of the solution at the midpoint of the titration, we need to determine the equivalence point, which is the point at which the number of moles of acid equals the number of moles of base.

The balanced chemical equation for the reaction is:

VH3COOH + KOH → KH2COO- + H2O

From the equation, we can see that the stoichiometric ratio of VH3COOH to KOH is 1:1. Therefore, at the equivalence point, the number of moles of VH3COOH will be equal to the number of moles of KOH.

The number of moles of VH3COOH in the original solution can be calculated as:

moles of VH3COOH = 0.1656 M × V1 L

where V1 is the volume of VH3COOH in liters.

At the equivalence point, the number of moles of KOH added will be equal to the number of moles of VH3COOH in the original solution:

moles of KOH = 0.1612 M × Veq L

where Veq is the volume of KOH required to reach the equivalence point.

Setting the two expressions equal to each other and solving for Veq, we get:

0.1656 M × V1 L = 0.1612 M × Veq L

Veq = (0.1656 M × V1 L) / (0.1612 M)

Veq = 1.071 L

At the midpoint of the titration, half of the acid has been neutralized, which means that the number of moles of VH3COOH is half the number of moles in the original solution. Therefore, the number of moles of VH3COOH at the midpoint is:

moles of VH3COOH = 0.5 × 0.1656 M × V1 L = 0.0828 M × V1 L

The number of moles of KOH required to reach the midpoint is half the number of moles required to reach the equivalence point:

moles of KOH = 0.5 × 0.1612 M × Veq L = 0.0408 M × Veq L

At the midpoint, the moles of acid remaining equals the moles of base added. Therefore:

moles of VH3COOH = moles of KOH

0.0828 M × V1 L = 0.0408 M × 1.071 L

V1 = 0.503 L

Now we can calculate the concentration of the acid at the midpoint:

acid concentration = 0.1656 M × 0.503 L / 1 L = 0.0833 M

To find the pH at the midpoint, we need to use the acid dissociation constant (Ka) of VH3COOH, which is 1.74 × 10^-5 at 25°C. The Henderson-Hasselbalch equation can be used to calculate the pH:

pH = pKa + log([A^-] / [HA])

At the midpoint, [A^-] = [HA] because we are at half-neutralization. Therefore:

pH = pKa + log(1) = pKa = -log(1.74 × 10^-5) = 4.76

Find out more about ph of a solution

at brainly.com/question/14010043

#SPJ4

some toxic substances degrade once released into the environment. what controls the rate of degradation? group of answer choices all of the above moisture chemistry of the substance temperature sun exposure

Answers

The rate of degradation of toxic substances in the environment is controlled by several factors. These include the chemistry of the substance, moisture, temperature, and sun exposure. The correct answer is "all of the above".

When toxic substances are released into the environment, the rate of degradation is controlled by all of the above factors. Toxic substances are substances that cause harm to living organisms when they come into contact with them.

The moisture content of the environment where the toxic substance is released affects the rate of degradation. When the environment is moist, the toxic substance degrades more quickly than when the environment is dry.

The substance's chemistry influences the rate of degradation, as some substances break down more quickly than others when exposed to the environment's natural processes.

Temperature also influences the rate of degradation of toxic substances. When temperatures are high, the substance degrades more quickly than when temperatures are low.

Sun exposure also impacts the rate of degradation, with more sun exposure leading to faster degradation than less sun exposure.

to know more about toxic substances refer here:

https://brainly.com/question/29892951#

#SPJ11

Make a prediction you think is happening to the coral reefs if the concentration of salt increases or decreases.

Answers

Coral islands might be negatively impacted if the ocean's salinity level were to rise. Since corals have evolved to exist in a very narrow range of salinity, a rise in salt concentration might make them stressed or even kill them.

However, since corals need a certain amount of salinity to keep their internal water balance, a drop in salt concentration could also be harmful.

While salinity variations do not pose the greatest danger to coral reefs, they can undoubtedly affect their health and should be watched closely along with other environmental factors.

Coral reef survival and health depend heavily on salinity or the amount of salt in the ocean. Corals have developed to exist in a particular range of salinities, and changes outside of that range may have a detrimental effect on their capacity to endure and flourish.

The surrounding water may become too salty for the corals to endure if the concentration of salt increases, as might be the case due to human activities like salt mining or seawater desalination.

This could make them stressed out and more prone to illness, bleaching, or even mortality. Contrarily, a decrease in salt concentration, such as that caused by freshwater runoff, can make the water too diluted for the corals to keep their internal water balance, which can also lead to stress and other negative effects.

learn more about coral reefs here

https://brainly.com/question/10970167

#SPJ1

what is the ph of the buffer that results when 12.5 g of nah2po4 and 22.0 g na2hoi4 are mixed and diluted with water to 0.5 l?

Answers

The pH of the buffer that results when 12.5 g of [tex]NaH_{2}PO_{4}[/tex] and 22.0 g [tex]Na_{2}HPO_{4}[/tex] are mixed and diluted with water to 0.5 L is 9.36. A buffer is a solution that resists changes in pH as acids or bases are added to it. It is created from a weak acid or base and one of its salts.

To calculate the pH of a buffer, we can use the Henderson-Hasselbalch equation: pH = pKa + log([A-]/[HA]) where: pH is the pH of the buffer pKa is the acid dissociation constant of the weak acid[A-] is the concentration of the conjugate base of the weak acid[HA] is the concentration of the weak acid.

According to the problem, 12.5 g of [tex]NaH_{2}PO_{4}[/tex] and 22.0 g [tex]Na_{2}HPO_{4}[/tex] are mixed and diluted with water to 0.5 L. The molecular weight of  [tex]NaH_{2}PO_{4}[/tex] is 120 g/mol. Therefore, the number of moles of  [tex]NaH_{2}PO_{4}[/tex] is:12.5 g × 1 mol/120 g = 0.104 mol The molecular weight of  [tex]Na_{2}HPO_{4}[/tex] is 142 g/mol.

Therefore, the number of moles of  [tex]Na_{2}HPO_{4}[/tex] is:22.0 g × 1 mol/142 g = 0.155 mol The total concentration of the buffer is the sum of the concentrations of the weak acid and its conjugate base. Therefore, the concentration of  [tex]NaH_{2}PO_{4}[/tex] is:0.104 mol/0.5 L = 0.208 M The concentration of   [tex]Na_{2}HPO_{4}[/tex] is:0.155 mol/0.5 L = 0.31 M The pKa of  [tex]NaH_{2}PO_{4}[/tex] is 7.21.The concentration of the weak acid [HA] is 0.208 M.

The concentration of the conjugate base [A-] is 0.31 M.pH = pKa + log([A-]/[HA])= 7.21 + log(0.31/0.208)= 9.36The pH of the buffer that results when 12.5 g of  [tex]NaH_{2}PO_{4}[/tex] and 22.0 g  [tex]Na_{2}HPO_{4}[/tex] are mixed and diluted with water to 0.5 L is 9.36.

To know more about acids & bases, refer here:

https://brainly.com/question/23687757#

#SPJ11

25.0 ml of 0.212 m naoh is neutralized by 13.6 ml of an hcl solution. the molarity of the hcl solution is . group of answer choices 0.115 m 0.212 m 0.137 m 0.390 m 0.500 m

Answers

The molarity of the HCl solution is approximately 0.390 M.

To find the molarity of the HCl solution, you can use the formula:

Molarity of acid(M2) x Volume of acid(V2) = Molarity of base(M1) x Volume of base(V1)

Molarity of acid(M2) = (Molarity of base(M1) x Volume of base(V1)) / Volume of acid(V2)

Therefore,

M1V1 = M2V2
where M1 and V1 are the molarity and volume of NaOH, and M2 and V2 are the molarity and volume of HCl.

Given:
M1 = 0.212 M (NaOH)
V1 = 25.0 mL (NaOH)
V2 = 13.6 mL (HCl)

You need to find M2 (molarity of HCl).

Step 1: Rearrange the formula to solve for M2:
M2 = (M1V1) / V2

Step 2: Plug in the given values:
M2 = (0.212 M * 25.0 mL) / 13.6 mL

Step 3: Calculate the result:
M2 ≈ 0.390 M

So, the molarity of the HCl solution is approximately 0.390 M.

Learn more about molarity here:

brainly.com/question/2817451

#SPJ11

wine goes bad soon after opening because the ethanol in it reacts with oxygen gas from the air to form water and acetic acid , the main ingredient of vinegar. what mass of water is produced by the reaction of of ethanol?

Answers

The mass of water produced by the reaction of 1 mole of ethanol is 0.0764 g.

The chemical equation for the reaction of ethanol (C₂H₅OH) with oxygen gas (O₂) to form water (H₂O) and acetic acid (CH₃COOH) is;

C₂H₅OH + 3O₂ → 2H₂O + 2CH₃COOH

From the equation, we see that for every mole of ethanol that reacts, 2 moles of water are produced. Therefore, we can calculate the number of moles of ethanol involved in the reaction by dividing the mass of ethanol by its molar mass (46.07 g/mol).

moles of ethanol =mass of ethanol/molar mass of ethanol

moles of ethanol = (Assuming a typical wine with 13% ethanol and 750 mL volume)

0.13 x 750 mL / 1000 mL/L x 1 kg/1000 g = 0.0975 kg / 46.07 g/mol

moles of ethanol = 0.00212 mol

Using stoichiometry, we can then determine the number of moles of water produced by the reaction;

moles of water = 2 x moles of ethanol

moles of water = 2 x 0.00212 mol

moles of water = 0.00424 mol

Finally, we can calculate the mass of water produced by multiplying the number of moles of water by its molar mass (18.02 g/mol).

mass of water=moles of water x molar mass of water

mass of water = 0.00424 mol x 18.02 g/mol

mass of water = 0.0764 g

To know more about ethanol here

https://brainly.com/question/25002448

#SPJ4

what do you still think about what determines the Moon's appearance from Earth?

Answers

Answer:

I think that the moon's rotation around the Earth shows us different parts of the moon

Explanation:

Answer:

The biggest clue to why the Moon always looks different when you look up at the sky is that it is constantly moving in relation to Earth and the Sun.

Explanation:

Other Questions
In the poem wind by Gwendolyn Bennett what are the figurative language used The big five personality traits have been used to describe personalities across cultures. please select the best answer from the choices provided a. true b. false children who move and change neighborhoods in middle childhood: please choose the correct answer from the following choices, and then select the submit answer button. answer choices enjoy new friends. find it easy to adjust. suffer due to the lack of continuity. do better in school. need help there's the image a nurse cares for a patient with cystic fibrosis and a history of resistant pseudomonas in the sputum. what action would the nurse take first when admitting this patient to a pulmonary care unit? when creating a new process to run a given command in a unix system, usually the programmer first calls fork(), and then calls exec() in the child process. explain what would happen if the programmer mistakenly put the call to exec() before the call to fork(). on what material are the bacteria grown in the petri dish? when bacteria accumulate in the thousands, what is the group/mass called which of the following is correct? a. mafic magma has a much lower viscosity than felsic magma. b. mafic magma has a much greater viscosity than felsic magma. c. mafic magma and felsic magma are equally viscous. d. depending on its silica content, the viscosity of mafic magma may be greater or lower than that of felsic magma. RS is tangent to the circle at T. Find the measure of major arc TVU. Cybersecurity: Basic Query1. Briefly explain the different ways to do a query search in SQL.2. What types of results do you get with each search? municipal bonds supported only by revenue from a specific government project, such as the n.j. turnpike, are called: general obligation bonds revenue bonds separate trading of registered interest and principal of securities treasury inflation-protected securities The molar mass of nickel (I) chromate is Blank 1 grams per mole. Please round atomic masses to the nearest whole number.Note answer is not 175. as a dues-paying member of the american financial association, christine receives the quarterly publication, finances for you, free-of-charge. what type of circulation does this represent? katie tells you that their earliest memory is of when they were 1 year old and they were playing with their parent in their playpen. according to the culture and human behavior box, what would you tell katie about their earliest memory? During the liquidation process, the partnership will focus on terminal activities focus groups of 10 people are randomly selected to discuss products of the famous company. it is determined that the mean number (per group) who recognize the famous brand name is 4.80000019, and the standard deviation is 0.73. would it be unusual to randomly select 10 people and find that greater than 8 recognize the famous brand name? group of answer choices In the figure M and N are mid point at QP and PR prove that: respectively (1) MN = 1/2 QR >> (ii) MN // QR M Q P N R From the payroll tax of nested if, convert it to compound if with the same policy and conditioni. circularity in models many sophisticated models use circular calculations. what are some of the drawbacks to including circular calculations in a financial model? select all that apply. A 15 kg crate of apples is sitting a rest on the floor of the classroom. The coefficient of friction between the crate and the floor is =0.55 and =0.43. A student begins to apply a force on the crate, slowly increasing the force until the crate moves.A. Construct a free-body of the situations below BEFORE the crate begins to move.B. What force will allow for the crate to initially be set in motion?C. Construct a free-body diagram of the situation AFTER the crate has begun to move.D. Once the crate begins to move, the student continues to apply the same amount of force as what was required to move it. Determine the acceleration of the crate.