what is the optimal solution for
H=17x+10y

Answers

Answer 1

The optimal solution for maximizing H = 17x + 10y depends on the constraints and objectives of the problem.

To determine the optimal solution for maximizing the objective function H = 17x + 10y, we need to consider the specific constraints and objectives of the problem at hand. Optimization problems often involve constraints that limit the feasible values for the variables x and y. These constraints can include inequalities, equations, or other conditions.

The optimal solution will depend on the specific context and requirements of the problem. It may involve finding the values of x and y that maximize H while satisfying the given constraints. This can be achieved through various mathematical optimization techniques, such as linear programming, quadratic programming, or nonlinear programming, depending on the nature of the problem.

Without additional information about the constraints or objectives, it is not possible to determine a specific optimal solution for maximizing H = 17x + 10y. The solution will vary depending on the context, and the problem may require additional constraints or considerations to arrive at the optimal solution.

Learn more about Solution

brainly.com/question/1616939

#SPJ11


Related Questions

Consider the beam shown in kip, w=1.9kip/ft, and point D is located just to the left of the 6-kip load. Follow the sign convention. Determine the internal normal force at section passing through point E. Express your answer to three significant figures and include the appropriate units. - Part E Determine the internal shear force at section passing through point E. Express your answer to three significant figures and include the appropriate units. Incorrect; Try Again; 2 attempts remaining Figure 1 of 1 Determine the internal moment at section passing through point E. Express your answer to three significant figures and include the appropriate units.

Answers

The internal shear force at section E is given by,[tex]V_E = R_A - w (L_AE) = (15.375 kip) - (1.9 kip/ft) (10 ft) = -4.625[/tex]kip

Hence the internal shear force at section E is -4.63 kip (tensile).

The internal moment at section E is given by, [tex]M_E = R_A (L_AE) - (w/2) (L_AE)[/tex]²

[tex]= (15.375 kip) (10 ft) - (1.9 kip/ft) (10 ft)²/2 = 42.5 kip-ft[/tex]

Hence the internal moment at section E is 42.5 kip-ft (clockwise).

Given:Load w = 1.9 kip/ft6 kip point load at point B.A beam is loaded as shown in the figure below; a 6 kip point load at B and a uniform load w=1.9 kip/ft between A and B.

The distances are L_AB = 10 ft, L_BC = 5 ft and L_CD = 6 ft. In order to determine the shear and moment in the beam, take the section through E.Let's first determine the reactions at A and B.

The equations of equilibrium for the vertical direction are given by, R_A + R_B = w(L_AB) + 6Substituting the given values of w, L_AB and the load,R_A + R_B = (1.9 kip/ft)(10 ft) + 6 kip= 25 kip

Taking moments about B,∑[tex]MB = R_A (10 ft) + (1.9 kip/ft) (10 ft²/2) + 6 kip (5 ft)= 52.5[/tex] kip-ftSolving the above two equations for R_A and R_B, we getR_A = 15.375 kipR_B = 9.625 kip

The shear force diagram for the beam can be drawn as shown below;

The moment diagram for the beam can be drawn as shown below;

To know more about moment visit:

https://brainly.com/question/28687664

#SPJ11

The elementary irreversible organic liquid-phase reaction A+B →C is carried out adiabatically in a flow reactor. An equal molar feed in A and B enters at 27°C, and the volumetric flow rate is 2 dm³/s. (a) Calculate the PFR and CSTR volumes necessary to achieve 85%conversion. (b) What is the maximum inlet temperature one could have so that the boiling point of the liquid (550 K) would not be exceeded even for complete conversion? (c) Plot the conversion and temperature as a function of PFR volume (i.e., dis- tance down the reactor). (d) Calculate the conversion that can be achieved in one 500-dm³ CSTR and in two 250-dm³ CSTRs in series. (e) Vary the activation energy 1000

Answers

(a) To calculate the PFR (Plug Flow Reactor) volume necessary to achieve 85% conversion, we can use the equation for conversion in an irreversible reaction:

X = 1 - (1 + k' * V) * exp(-k * V) / (1 + k' * V)

Where X is the conversion, k is the rate constant, k' is the reaction order, and V is the reactor volume.

For a flow reactor, the conversion can be expressed as:

X = 1 - (F₀₀ * V) / (F₀₀₀ * (1 + α * V))

Where F₀₀ is the molar flow rate of A or B, F₀₀₀ is the total molar flow rate, and α is the stoichiometric coefficient of A or B.

Given that F₀₀ = 2 mol/dm³, F₀₀₀ = 4 mol/dm³, and α = 1, we can rearrange the equation to solve for V:

V = (F₀₀₀ / F₀₀) * (1 - X) / (X * α)

Plugging in the values, we get:

V = (4 mol/dm³ / 2 mol/dm³) * (1 - 0.85) / (0.85 * 1) = 0.706 dm³

Therefore, the PFR volume necessary to achieve 85% conversion is 0.706 dm³.

To calculate the CSTR (Continuous Stirred Tank Reactor) volume necessary to achieve the same conversion, we can use the equation:

V = F₀₀₀ / (F₀₀ * α * X)

Plugging in the values, we get:

V = 4 mol/dm³ / (2 mol/dm³ * 1 * 0.85) = 2.353 dm³

Therefore, the CSTR volume necessary to achieve 85% conversion is 2.353 dm³.

(b) To find the maximum inlet temperature, we need to consider the boiling point of the liquid. The boiling point is the temperature at which the vapor pressure of the liquid is equal to the external pressure.

Since the reaction is adiabatic, we can assume constant volume and use the ideal gas law:

PV = nRT

Where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

For complete conversion, the number of moles of A and B entering the reactor is 2 mol/dm³. Let's assume the reactor operates at 1 atm of pressure.

At the boiling point, the vapor pressure of the liquid is also 1 atm. Using the ideal gas law, we can solve for the maximum temperature:

(1 atm) * V = (2 mol) * R * T

Since V is 2 dm³, R is 0.0821 dm³·atm/(mol·K), and solving for T:

T = (1 atm * 2 dm³) / (2 mol * 0.0821 dm³·atm/(mol·K)) = 12.18 K

Therefore, the maximum inlet temperature to avoid exceeding the boiling point is 12.18 K.

(c) To plot the conversion and temperature as a function of PFR volume, we need to solve the conversion equation for different volumes.

(d) To calculate the conversion achieved in one 500-dm³ CSTR and in two 250-dm³ CSTRs in series, we can use the equation for CSTR conversion:

X = 1 - (F₀₀₀ / (V₀ * α * k))

Where X is the conversion, F₀₀₀ is the total molar flow rate, V₀ is the reactor volume, α is the stoichiometric coefficient, and k is the rate constant.

For one 500-dm³ CSTR:

X₁ = 1 - (4 mol/dm³) / (500 dm³ * 1 * k)

For two 250-dm³ CSTRs in series:

X₂ = 1 - (4 mol/dm³) / (250 dm³ * 1 * k)

(e) To vary the activation energy, we need more information or specific values to calculate the effect on the rate constant.

Learn more about reaction:

https://brainly.com/question/16737295

#SPJ11

Q. Is 35Cl detectable by NMR in theory? Either way, explain why?
Q. Why should you use deuterated solvents such as CD3OD and CDCl3 instead of non-deuterated solvents such as acetone and methanol to dissolve organic compounds for NMR analysis?

Answers

Yes, 35Cl is detectable by NMR in theory.

NMR (nuclear magnetic resonance) spectroscopy is a technique that provides valuable information about the structure and properties of molecules. NMR is based on the interaction between the nuclei of atoms and a strong magnetic field. In the case of 35Cl, which is the stable isotope of chlorine, it possesses a spin that can be detected using NMR. The NMR signal from 35Cl appears as a peak in the spectrum, indicating its presence in the sample.

However, it's important to note that the sensitivity of NMR for detecting 35Cl can vary depending on the instrument's capabilities and the concentration of the compound being analyzed. In some cases, the signal from 35Cl may be weak or overshadowed by signals from other atoms in the molecule. Nevertheless, in theory, 35Cl is detectable by NMR and can provide valuable information about the molecular structure and environment.

Know more about NMR here:

https://brainly.com/question/30667400

#SPJ11

can someone please help with this question

Answers

Answer:

x = 290 - 1/32y

Step-by-step explanation:

To rewrite the equation as a function of x, we isolate the x term and move all other terms to the other side of the equation. Here's the process:

1/10x + 1/320y - 29 = 0

First, let's move the 1/320y term to the other side:

1/10x = 29 - 1/320y

Next, let's isolate x by multiplying both sides by 10:

x = 10(29 - 1/320y)

Simplifying further:

x = 290 - 1/32y

Therefore, the equation in terms of x is:

x = 290 - 1/32y

Consider the information given below: 1. Ben remembers that his father's birthday comes after April 10 and before April 20. 2. His brother Bob remembers that his father's birthday comes after April 5 and before April 12. Now, which of the following statements is correct with respect to the information given above? Statements 1. Their father's birthday is on April 14 2. Their father's birthday is on April 11 3. Their father's birthday is on April 15 4. Their father's birthday is on April 5

Answers

Answer:

The Father's birthday is on April 11.

Step-by-step explanation:

Ben: After the 10th, but before 20th, so 11, 12, 13, 14, 15, 16, 17, 18, or 19

Bob: After 5th, but before 12th, so 6, 7, 8, 9, 10, 11

Only overlapping date is the 11th

Translate the sentence into an equation.
Twice the difference of a number and 4 is 9.

Answers

The sentence "twice the difference of a number and 4 is 9" can be translated into 2(x-4) = 9 and the value of the number is 8.5.

Let's denote the unknown number as 'x'.

The difference of a number and 4 can be translated into (x - 4)

Therefore, twice the difference of a number and 4 can be translated into 2(x-4).

Now, as per the question:

Twice the difference of a number and 4 is 9. It can be translated into the equation:

2(x - 4) = 9

To find the value of the unknown number, let's solve the equation using the properties of algebra:

2(x-4) = 9

Distribute the terms:

2x - 8 = 9

Add 8 to both sides:

2x = 17

Divide 2 on both sides:

x = 8.5

The expression can be translated into 2(x-4) = 9 and the value of x is 8.5.

Learn more about translate into equations:

brainly.com/question/28551671

The correct question is:-

Translate the sentence "Twice the difference of a number and 4 is 9" into an equation and find the value of the number.

this Intro to Envoermental engineering
2 Listen If the BOD5 of a waste is 210 mg/L and BOD, (Lo) is 363 mg/L. The BOD rate constant, k for this waste is nearly: 1) k = 0.188 2) k = 0.218 3) k-0.173 4) k = 0.211
If the BOD5 of a waste is 2

Answers

The BOD rate constant, k for this waste is nearly 0.218.

The BOD rate constant, k, can be determined using the formula:

k = (2.303 / t) * log(BOD, (Lo) / BOD5)

where t is the incubation time in days, BOD, (Lo) is the initial BOD concentration in mg/L, and BOD5 is the BOD concentration after 5 days in mg/L.

In this case, the BOD5 of the waste is given as 210 mg/L and the BOD, (Lo) is given as 363 mg/L.

Let's assume the incubation time, t, is 5 days.

Plugging in the values into the formula, we get:

k = (2.303 / 5) * log(363 / 210)

Calculating the logarithm, we get:

k = 0.218

So, the correct answer is 2) k = 0.218.

learn more about constant from given link

https://brainly.com/question/27983400

#SPJ11

1 Project stakeholders may include: 1. users such a the eventual upawior of the project result 2. partners, such as in joint venture projecte 3. possible suppliers or contractors 4. members of the project team and their unions 3 interested groups in society A. Only 2 A. All C.1.3.5 D. 1.2. and 3

Answers

The correct answer is option D, i.e., 1, 2, and 3.

Project stakeholders are people or entities who have an interest in a project's outcome, either directly or indirectly. In general, project stakeholders are classified into three categories, which are internal, external, and marginal stakeholders.

The following are the various kinds of project stakeholders:

Users, such as the ultimate beneficiary of the project's outcome

Partners, such as in joint venture projects

Potential suppliers or contractors

Members of the project team and their unions

Interested groups in society

So, the correct answer is option D, i.e., 1, 2, and 3.

To know more about outcome visit

https://brainly.com/question/2561133

#SPJ11

Consider a buffer solution in which the acetic acid concentration is 5.5 x 10¹ M and the sodium acetate concentration is 7.2 x 10¹ M. Calculate the pH of the resulting solution if the acid concentration is doubled, while the salt concentration remains the same. The equilibrium constant, K₁, for acetic acid is 1.8 x 105. pH=

Answers

The pH of the resulting solution, when the acetic acid concentration is doubled while the salt concentration remains the same, can be calculated using the Henderson-Hasselbalch equation. The pH of the resulting solution is approximately 4.76.

The Henderson-Hasselbalch equation relates the pH of a buffer solution to the pKa of the weak acid and the concentrations of the acid and its conjugate base. In this case, acetic acid is the weak acid and sodium acetate is its conjugate base. The pKa of acetic acid is determined by taking the negative logarithm of the equilibrium constant, K₁. Therefore, pKa = -log(K₁) = -log(1.8 x 10⁵) ≈ 4.74.

Using the Henderson-Hasselbalch equation: pH = pKa + log([conjugate base]/[acid]), we can substitute the given concentrations into the equation.

Given:

[acid] = 5.5 x 10¹ M (initial concentration)

[conjugate base] = 7.2 x 10¹ M (initial concentration)

When the acid concentration is doubled, the new concentration becomes 2 * 5.5 x 10¹ M = 1.1 x 10² M.

Plugging the values into the Henderson-Hasselbalch equation:

pH = 4.74 + log(7.2 x 10¹/1.1 x 10²) ≈ 4.76

Therefore, the pH of the resulting solution is approximately 4.76.

Learn more about acetic acid concentration

brainly.com/question/19261609

#SPJ11

Question 3 (33 marks) (a) Find the Fourier series of the periodic function f(t)=3t², -1

Answers

the Fourier Series of the given periodic function is:

[tex]f(t) = a₀ + ∑[from n = 1 to ∞] aₙ cos(nt)[/tex]

Substituting the value of a₀ = 3, we have:

[tex]f(t) = 3 + ∑[from n = 1 to ∞] 0 cos(nt) = 3[/tex]

The Fourier series of the periodic function f(t)=3t², -1

Since the function f(t) is constant within the intervals -π ≤ t ≤ 0 and 0 ≤ t ≤ π, the integral becomes:

bₙ = (1/π) ∫[from -π to 0] 4 sin(nt) dt + (1/π) ∫[from 0 to π] -1 sin(nt) dt

Evaluating the integrals, we find:

bₙ = (1/π) [-4/n cos(nt)]∣∣[from -π to 0] - (1/π) [cos(nt)]∣∣[from 0 to π]

Simplifying, we get:

bₙ = (1/π) (4/n - 4/n - (1/n - 1/n)) = 0

Since the coefficient bₙ is zero for all values of n, the Fourier Series of f(t) consists only of the cosine terms.

Therefore,

To know more about periodic visit:

https://brainly.com/question/16061498

#SPJ11

Draw the Lewis Dot Structure and circle the molecular structure
for trigonal planar, for a molecule with a central atom with 4
valence electrons connected to 2 hydrogen atoms and a sulfur
atom.

Answers

The drawing shows the Sulfur atom is in the center with two Hydrogen atoms bonded to it.

Understanding Lewis Dot Structure

Here is the Lewis dot structure for a molecule with a central atom (Sulfur) connected to two Hydrogen atoms and a central atom with 4 valence electrons in a trigonal planar arrangement:

         H

          |

   H -- S -- H

In this structure, the Sulfur atom is in the center with two Hydrogen atoms bonded to it. The central atom (Sulfur) has 6 valence electrons, and each Hydrogen atom contributes 1 valence electron, making a total of 8 valence electrons.

The molecular structure is circled in the diagram, showing the trigonal planar arrangement of the atoms.

Learn more about lewis dot structure here:

https://brainly.com/question/20300458

#SPJ4

Let G=(V,E) be a directed graph with negative-weight edges. Then one can compute shortest paths from a single source s E V to all v EV faster than Bellman-Ford by re-weighting the edges to be non-negative and then running Dijkstra's algorithm. True False The path between any two vertices s and t in the minimum spanning tree of a graph G must be a shortest path from s to t in G. True False Let P be the shortest path from some vertex s to some other vertex t in a graph. If the weight of each edge in the graph is increased by one, P will still be a shortest path from s to t. True False

Answers

The statement "One can compute shortest paths from a single source s to all vertices v faster than Bellman-Ford by re-weighting the edges to be non-negative and then running Dijkstra's algorithm" is False.

The statement "The path between any two vertices s and t in the minimum spanning tree of a graph G must be a shortest path from s to t in G" is False.

The statement "If the weight of each edge in the graph is increased by one, the shortest path from s to t will still be a shortest path" is True.

The statement is False. Although re-weighting the edges to be non-negative and running Dijkstra's algorithm is faster than the Bellman-Ford algorithm for finding shortest paths in graphs with non-negative edge weights, it does not hold for graphs with negative-weight edges.

The reason is that Dijkstra's algorithm relies on the property of selecting the smallest edge weight at each step, which may not work correctly in the presence of negative-weight edges.

The statement is False. While the minimum spanning tree of a graph connects all vertices with the minimum total edge weight, it does not guarantee that the path between any two vertices in the minimum spanning tree is the shortest path in the original graph.

The minimum spanning tree focuses on minimizing the total weight of the tree, not necessarily considering individual shortest paths between pairs of vertices.

The statement is True. If the weight of each edge in a graph is increased by one, the relative order of the edge weights remains the same. Therefore, the shortest path from a vertex s to another vertex t will still be the shortest path even after increasing the edge weights.

The increased weights simply shift the absolute values of the weights, but the relative differences between the weights remain unchanged, ensuring that the shortest path remains the same.

To learn more about spanning tree visit:

Solve step by step and a solution is provided. Kindly solve
ASAP
Find the lateral and surface area for each pyramid with a regular base. Where necessary, round to the nearest tenth. 7. Solution is 40 cm 25 cm L-900 cm²; S-1592.8 cm²

Answers

Given that,The lateral and surface area for a pyramid with a regular base is:L=½P x SL = ½ l × P × SVolume=⅓BHHere, L = 900 cm², S = ?Given solution is 40 cm 25 cm.

P=Perimeter of the base of the pyramidS=Area of the surface area of the pyramidL=Lateral surface areaB=Area of the base of the pyramidH=Height of the pyramid.B = l²The perimeter of the base,

P = 4lHere, the pyramid has a regular base, and we have the dimension of the base of the pyramid;

therefore, we can find the perimeter of the base.P=4l=4(25)=100 cmFind the slant height of the pyramid using the Pythagorean theorem.s² = l² + h²s² = 25² + h²s² - h² = 625s = √625s = 25 cmNow that we have the slant height, we can find the surface area of the pyramid.

S = ½Pl + Bwhere B = l² = 25² = 625 cm²S = ½(100)(25) + 625S = 1250 + 625S = 1875 cm²Thus, the surface area of the pyramid is 1875 cm².  And we have already found the lateral surface area.L = ½PlL = ½(100)(25)L = 1250 cm²Thus, the lateral surface area of the pyramid is 1250 cm².

To know more about lateral visit:

https://brainly.com/question/32572288

#SPJ11

Which statement is true? (a) An acid-base reaction releases heat, and it is called exothermic. (b) An acid-base reaction absorbs heat, and it is called exothermic. (c) An acid-base reaction releases heat, and it is called endothermic. (d) An acid-base reaction absorbs heat, and it is called endothermic.

Answers

The correct statement is: (a) An acid-base reaction releases heat, and it is called exothermic.

An acid-base reaction involves the transfer of protons (H+ ions) from an acid to a base, resulting in the formation of water and a salt. In general, acid-base reactions are classified as either exothermic or endothermic based on the heat energy released or absorbed during the reaction.

In an exothermic reaction, the overall energy of the products is lower than that of the reactants. As a result, excess energy is released in the form of heat. In the context of an acid-base reaction, when an acid and a base react, the formation of water and the salt is accompanied by the release of heat energy. This release of heat indicates that the reaction is exothermic.

To know more about exothermic,

https://brainly.com/question/15370833

#SPJ11

During prokaryotic translation, how many activations and elongation cycles are needed for a protein with 648 amino acids?

Answers

The number of activations and elongation cycles needed for a protein with 648 amino acids during prokaryotic translation depends on the specific sequence of the mRNA.

During translation, each amino acid is added to the growing polypeptide chain through the process of elongation. Elongation consists of three main steps: aminoacyl-tRNA binding, peptide bond formation, and translocation.

In the first step, an aminoacyl-tRNA molecule, carrying the corresponding amino acid, binds to the A site of the ribosome. This step requires one activation.

Next, a peptide bond is formed between the amino acid in the P site and the amino acid in the A site. This step also requires one elongation cycle.

After the peptide bond formation, the ribosome translocates, moving the mRNA and the tRNA molecules to the next codon. This step requires one elongation cycle.

This process continues until a stop codon is reached, completing the translation of the mRNA and producing the protein. The total number of activations and elongation cycles required depends on the number of codons in the mRNA sequence, which correlates with the number of amino acids in the protein. In the case of a protein with 648 amino acids, there would be approximately 648 activations and elongation cycles.

Know more about tRNA here:

https://brainly.com/question/33305530

#SPJ11

find (5,-3) * (-6,8)

Answers

Answer:

(5 - 3) * (-6.8) = -68/

5

= -13 3/

5

= -13.6

Step-by-step explanation:

Briefly explain the process of starch gelatinisation. In your answer name 5 common staple foods that are high in starch.

Answers

Starch gelatinisation is a critical cooking process that is used to make many starchy foods, including rice, pasta, and potatoes.  

Gelatinization is the process of breaking down the intermolecular bonds of starch molecules in the presence of water and heat, resulting in the formation of a thickened mass. It is a vital cooking process in making starchy foods such as rice and pasta. The water molecules activate the hydrogen bonds between the starch molecules, which, upon heating, cause the starch granules to absorb water, swell and burst, releasing the mixture’s starch molecules. When heated further, the starch molecules rearrange themselves and begin to recombine with each other, resulting in a gelatinized matrix that contributes to the texture of the finished product. During this process, the starch granules absorb water and swell up, eventually bursting, and allowing the starch molecules to interact with the water. Once this happens, the mixture thickens, resulting in a gel-like substance that contributes to the texture of the finished product.

Starch gelatinisation is a fundamental cooking process that is used to make starchy foods such as rice and pasta. It is a simple process that involves heating the starch in the presence of water. When this happens, the water molecules activate the hydrogen bonds between the starch molecules, which, upon heating, cause the starch granules to absorb water, swell and burst, releasing the mixture’s starch molecules. The starch molecules then begin to recombine with each other, resulting in a gelatinized matrix that contributes to the texture of the finished product. There are numerous common staple foods that are high in starch, including rice, potatoes, wheat, maize, and cassava. Rice is the most commonly consumed starchy food globally, with over half of the world's population consuming it daily. Other starchy staples include potatoes, which are a staple in many cultures worldwide, and wheat, which is used in a wide range of foods, including bread, pasta, and cereal. Maize is also a significant source of starch and is commonly used to make cornmeal, tortillas, and other maize-based foods. Finally, cassava is a root vegetable that is a significant source of starch and is commonly consumed in Africa and South America.

In conclusion, starch gelatinisation is a critical cooking process that is used to make many starchy foods, including rice, pasta, and potatoes. The process involves heating the starch in the presence of water, which causes the starch granules to absorb water, swell, and burst, releasing the mixture's starch molecules. The starch molecules then recombine with each other, resulting in a gelatinized matrix that contributes to the texture of the finished product. Finally, there are numerous common staple foods that are high in starch, including rice, potatoes, wheat, maize, and cassava.

To know more about matrix visit:

brainly.com/question/29132693

#SPJ11

Use the Virtual Work Method to solve the horizontal deflection
at joint C of the truss system below.
A = 600 mm2
E = 200 GPa.
Use a = 3 m and b = 13.5 kN. Enter absolute value only.

Answers

The horizontal deflection at joint C of the truss system, calculated using the Virtual Work Method, is 0.

the horizontal deflection at joint C of the truss system using the Virtual Work Method, we need to follow these steps:

1. Calculate the stiffness of each member:

 - The stiffness (K) of each member is given by the equation K = (E * A) / L, where E is the modulus of elasticity (given as 200 GPa), A is the cross-sectional area (given as 600 mm^2), and L is the length of the member

 - Let's calculate the stiffness for each member:

  Member AB:

[tex]L_AB = sqrt(a^2 + b^2) = sqrt((3 m)^2 + (13.5 kN)^2) = sqrt(9 m^2 + 182.25 kN^2) = sqrt(9 m^2 + 182.25 kN^2) = sqrt(9 m^2 + 182.25 kN^2) ≈ sqrt(190.25) m ≈ 13.79 m[/tex]

[tex]K_AB = (E * A) / L_AB = (200 GPa * 600 mm^2) / (13.79 m) = (200 * 10^9 N/m^2 * 600 * 10^-6 m^2) / (13.79 m) = 10,938.40 kN/m[/tex]

Member BC:

  [tex]L_BC[/tex]= a = 3 m

[tex]K_BC = (E * A) / L_BC = (200 GPa * 600 mm^2) / (3 m) = (200 * 10^9 N/m^2 * 600 * 10^-6 m^2) / (3 m) = 400 kN/m[/tex]

2. Calculate the virtual work done by the applied horizontal force at joint C

  - The virtual work (δW) is given by the equation [tex]δW[/tex]= F * [tex]δL[/tex], where F is the applied horizontal force (given as 150 kN) and δL is the virtual horizontal displacement at joint C.

  - Let's calculate [tex]δW[/tex]:

[tex]δW = F * δL = 150 kN * δL[/tex]

3. Equate the virtual work done by the applied horizontal force to the total potential energy of the truss system:

  - The total potential energy is given by the equation

[tex]PE_total[/tex][tex]= (1/2) * (K_AB * δL_AB^2 + K_BC * δL_BC^2),[/tex]

where K_AB and K_BC are the stiffness of each member, and [tex]δL_AB[/tex]and [tex]δL_BC[/tex] are the horizontal displacements at joints A and B, respectively.
  - Since we are interested in the deflection at joint C, [tex]δL_AB[/tex]and [tex]δL_BC[/tex]are both zero.
  - Let's equate the virtual work to the total potential energy:

  [tex]δW[/tex]= [tex]PE_total[/tex]

[tex]150 kN * δL = (1/2) * (10,938.40 kN/m * 0 + 400 kN/m * 0)[/tex]

[tex]δL = 0[/tex]

Therefore, the horizontal deflection at joint C of the truss system, calculated using the Virtual Work Method, is 0.

Learn more about deflection with the given link,

https://brainly.com/question/1581319

#SPJ11

For the competing reactions: A + 2B C Rxn 1 k₂ 2A + 3BQ Rxn 2 C is the desired product and Q the undesired product. If the rates of reaction of A for each of the reactions are: TiA = -K₁CAC T2A = -K₂C²C² 1.1 What is the net rate of reaction for each of the species in the reactions above written in terms of the rate constants and the concentrations of A and B? What are the units of k₁ and k₂ (use L, mol and s)? Write an expression for the overall selectivity, Sc/q- The reaction is done in a liquid-phase CSTR which achieves a conversion of 73% of the A in the feed and 71% of the B in the feed. The initial concentration of A is 2 mol/L and A and B are fed in a 1:2 ratio. If k₁ = 0.06 and k₂ = 0.01 with units in L, mol and s as given in your answer in Q1.2. What is the final concentration of A and B? Calculate Sc/q- There is no product in the feed. If the space time is 30.4 s, what is the final concentration of C and Q? Based on your answer above, would you recommend using a CSTR in order to maximise the production of C and minimize the production of Q?

Answers

The net rate of reaction for each species can be determined by combining the rates of the competing reactions using the given rate constants and concentrations of A and B.

The units of k₁ and k₂ are in L/mol·s. The overall selectivity, Sc/q-, can be expressed based on the concentrations of C and Q. To determine the final concentrations of A, B, C, and Q, consider the conversion achieved in the liquid-phase CSTR and the given rate constants. Finally, evaluate whether using a CSTR is recommended based on the desired production of C and the minimization of Q.

The net rate of reaction for A is obtained by subtracting the rate of reaction 2 from the rate of reaction 1: Net rate of reaction for [tex]A = TiA - T2A = -K₁CAC - (-K₂C²C²).[/tex]

The net rate of reaction for B is given by: Net rate of reaction for[tex]B = -2(TiA) - 3(T2A).[/tex]

The units of k₁ and k₂ are in L/mol·s, representing the rate constants for the respective reactions.

The overall selectivity, Sc/q-, is calculated as the concentration of the desired product C divided by the concentration of the undesired product Q.

To determine the final concentrations of A and B, consider the conversion achieved in the CSTR and use the given rate constants.

Calculate the final concentrations based on the feed concentrations and conversion.

The final concentrations of C and Q can be determined using the net rates of reaction and the space time of the CSTR.

Evaluate whether using a CSTR is recommended by comparing the production of the desired product C with the minimization of the undesired product Q.

To know more about concentrations visit:

https://brainly.com/question/10720472

#SPJ11

A mixture of 30 mol% CO, 65 mol % H₂, and 5 mol % N₂ is fed to a methanol (CH3OH) synthesis reactor, where the following reaction occurs: CO + 2H₂CH₂OH The reactor is at 200°C and 4925 kPa. The stream leaving the reactor is at equilibrium. If 100 kmol/h of the feed mixture is fed to the reactor, calculate the flow rates of all species leaving the reactor.

Answers

The flow rates of all species leaving the reactor are as follows n(CH3OH) is 2.81 x 10⁶ kmol/h, n(H2O) is 641 kmol/h, n(CO) is - 2.81 x 10⁶ kmol/h, n(H2) is - 5.61 x 10⁶ kmol/h and n(N2) = 5 kmol/h respectively.

The values of various components can be substituted into the equation above.

mol CO used = 0.3 x 100 kmol/h = 30 kmol/h

mol H2 used = 0.65 x 100 kmol/h = 65 kmol/h

mol N2 used = 0.05 x 100 kmol/h = 5 kmol/h

Total moles used = 30 + 65 + 5 = 100 kmol/h

Now, let us calculate the equilibrium constant

Kc:Kc = (PCH3OH)/(PCO.PH2²)

At 200°C and 4925

kPa:PCH3OH = PCO = PH2² = 4925

kPaKc = (4925)/(4925 * 65² * 30) = 4.02 x 10⁻⁴ mol/kPa³

The flow rate of methanol (CH3OH) leaving the reactor is given by:

n(CH3OH) = (nCO * nH2²) / Kc= (30 x 65²) / 4.02 x 10⁻⁴ = 2.81 x 10⁶ kmol/h

The flow rate of water (H2O) leaving the reactor is given by:

n(H2O) = (nCO * nH2² * Kc)= (30 x 65² x 4.02 x 10⁻⁴) = 641 kmol/h

The flow rate of CO leaving the reactor is given by:

n(CO) = nCO - n(CH3OH)= 30 - 2.81 x 10⁶ = - 2.81 x 10⁶ kmol/h

This negative value indicates that all CO in the feed reacts completely with H2.

The flow rate of H2 leaving the reactor is given by:n(H2) = nH2 - 2 * n(CH3OH)= 65 - 2 x 2.81 x 10⁶ = - 5.61 x 10⁶ kmol/h

This negative value indicates that all H2 in the feed reacts completely with CO.

The flow rate of N2 leaving the reactor is given by:

n(N2) = nN2= 5 kmol/h

Therefore, the flow rates of all species leaving the reactor are as follows n(CH3OH) is 2.81 x 10⁶ kmol/h, n(H2O) is 641 kmol/h, n(CO) is - 2.81 x 10⁶ kmol/h, n(H2) is - 5.61 x 10⁶ kmol/h and n(N2) = 5 kmol/h respectively.

To know more about flow rate, click here

https://brainly.com/question/19863408

#SPJ11

Consider a sample with data values of 10,20,11,17, and 12 . Compute the mean and median. mean median ASWSBE14 3.E.002. Consider a sample with data values of 10,20,21,18,16 and 17 . Compute the mean and median. mean median [-/3 Points] ASWSBE14 3.E.006.MI. Consider a sample with data values of 51,54,71,58,65,56,51,69,56,68, and 51 . Compute the mean. (Round your answer to two decimal places.) Compute the median. Compute the mode.

Answers

The mean is the average value of a set of data. To calculate the mean, you add up all the data values and then divide the sum by the number of values in the set.

For the first sample with data values of 10, 20, 11, 17, and 12, the mean can be calculated as follows:
(10 + 20 + 11 + 17 + 12) / 5 = 70 / 5 = 14

So, the mean of this sample is 14.

The median is the middle value in a set of data when the data is arranged in order. If there is an even number of values, the median is the average of the two middle values.

For the first sample with data values of 10, 20, 11, 17, and 12, the median can be calculated as follows:
First, arrange the data in order: 10, 11, 12, 17, 20
Since there are 5 values, the middle value is the third value, which is 12.

So, the median of this sample is 12.

Now, let's move on to the second sample with data values of 10, 20, 21, 18, 16, and 17.

To calculate the mean:
(10 + 20 + 21 + 18 + 16 + 17) / 6 = 102 / 6 = 17

So, the mean of this sample is 17.

To calculate the median:
First, arrange the data in order: 10, 16, 17, 18, 20, 21
Since there are 6 values, the middle values are the third and fourth values, which are 17 and 18. To find the median, we take the average of these two values:
(17 + 18) / 2 = 35 / 2 = 17.5

So, the median of this sample is 17.5.

Lastly, let's consider the third sample with data values of 51, 54, 71, 58, 65, 56, 51, 69, 56, 68, and 51.

To calculate the mean:
(51 + 54 + 71 + 58 + 65 + 56 + 51 + 69 + 56 + 68 + 51) / 11 = 660 / 11 = 60

So, the mean of this sample is 60.

To calculate the median:
First, arrange the data in order: 51, 51, 51, 54, 56, 56, 58, 65, 68, 69, 71
Since there are 11 values, the middle value is the sixth value, which is 56.

So, the median of this sample is 56.

Please note that the mode refers to the value(s) that appear most frequently in a set of data. In the given questions, mode is not requested for the first and second samples. However, if you need to calculate the mode for the third sample, it would be 51, as it appears three times, which is more than any other value in the set.

Know more about mean:

https://brainly.com/question/31101410

#SPJ11

Calculate the Vertical reaction of support A. Take E as 8 kN, G as 5 kN, H as 3 kN. also take Kas 7 m, Las 3 m, N as 12 m. 5 MARKS HEN H Ekn HEN T Km 1G F GEN Lm JE A IB C ID Nm Nm Nm Nm 6. Calculate the reaction of support E. Take E as 8 kN, G as 5 kN, H as 3 kN. also take Kas 7 m, L as 3 m, N as 12 m. 3 MARKS

Answers

The vertical reaction of support A can be calculated by considering the given values. The values provided are E = 8 kN, G = 5 kN, H = 3 kN, Kas = 7 m, Las = 3 m, and N = 12 m.

To calculate the vertical reaction of support A, follow these steps:

1. Calculate the moment about support A due to the forces:

Moment about A due to E = E * KasMoment about A due to G = G * LasMoment about A due to H = H * N

2. Sum up the moments about A:

Total moment about A = Moment about A due to E + Moment about A due to G + Moment about A due to H

3. Determine the vertical reaction of support A:

Vertical reaction of support A = Total moment about A / Las

The vertical reaction of support A can be determined by calculating the total moment about support A, considering the moments contributed by forces E, G, and H. The vertical reaction is obtained by dividing the total moment by the distance Las.

Calculate the moment about support A due to E: Moment_E = E * KasCalculate the moment about support A due to G: Moment_G = G * LasCalculate the moment about support A due to H: Moment_H = H * NSum up the moments about support A: Total_Moment = Moment_E + Moment_G + Moment_HDetermine the vertical reaction of support A: Reaction_A = Total_Moment / Las

The vertical reaction of support A can be found by calculating the total moment about support A and dividing it by the distance Las.

Learn more about Vertical :

https://brainly.com/question/29774083

#SPJ11

A project consists of three tasks. Task A is scheduled to begin at the start of Week 1 and finish at the end of Week 3. Task B is scheduled to begin at the start of Week 1 and finish at the end of Week 2. Task C is scheduled to begin at the start of Week 2 and end at the end of Week 3. The budgeted cost for Task A is $22,000, for Task B is $17,000, and for Task C is $15,000. At the end of the second week, Task A is 65% complete, Task B is 95% complete, and Task C is 60% complete.
(A)What is the SPI for the project at the end of the second week?
(B) The ACWP at the end of the second week for the project is $37,900. Determine the CPI for the project.

Answers

The CPI for the project is 1.04.

The following are the values given in the question for the three tasks:

Task A is scheduled to begin at the start of Week 1 and finish at the end of Week 3. The budgeted cost for Task A is $22,000.

Task B is scheduled to begin at the start of Week 1 and finish at the end of Week 2. The budgeted cost for Task B is $17,000.

Task C is scheduled to begin at the start of Week 2 and end at the end of Week 3. The budgeted cost for Task C is $15,000.

At the end of the second week, the completion percentages of the tasks were:

Task A: 65% complete

Task B: 95% complete

Task C: 60% complete

SPI = EV / PV

To calculate the SPI, we must first calculate the EV and PV values.

The EV and PV values will be calculated for each task and then summed to calculate the total project value.

EV = % completion * Budgeted Cost

Task A

EV = 65% * $22,000

= $14,300

PV = Task duration / Project duration * Budgeted cost

PV for Task A = 3 / 3 * $22,000

= $22,000

Task B

EV = 95% * $17,000

= $16,150

PV for Task B = 2 / 3 * $22,000

= $14,666

Task C

EV = 60% * $15,000

= $9,000

PV for Task C = 2 / 3 * $22,000

= $14,666

Total EV = $14,300 + $16,150 + $9,000

= $39,450

Total PV = $22,000 + $14,666 + $14,666

= $51,332

SPI = EV / PV

= $39,450 / $51,332

= 0.77

Hence, the SPI of the project at the end of the second week is 0.77.

CPI = EV / ACAC = Actual Cost for the Project

AC for the project at the end of the second week = $37,900

EV for the project = $39,450CPI

= $39,450 / $37,900

= 1.04

Therefore, the CPI for the project is 1.04.

To know more about CPI visit:

https://brainly.com/question/33121211

#SPJ11

17. Problem What is the pressure in KPa 1.20 below the surface of a liquid of : 1.50 the gas pressure on the surface is 0.40 atmosphere? a) 42.99 kPa c) 47.04 kPa. d) 63.12 kPa b) 58.20 kPa
100.

Answers

The correct option is c. The pressure in kPa 1.20 below the surface of a liquid is 47.04 kPa.

Given:

Pressure at surface = 0.40 atm

Pressure below the surface = 1.20 m

Density of the liquid = 1500 kg/m³

G = 9.81 m/s²

The pressure due to the weight of the liquid is given as:

P = ρgh

where,ρ is the density of the liquid

h is the depth of the liquid

G is the acceleration due to gravity

At 1.20m below the surface of the liquid, the pressure due to the weight of the liquid is:

P = ρgh

= 1500 kg/m³ × 9.81 m/s² × 1.20m

= 17640 Pa

The total pressure at 1.20m below the surface of the liquid is the sum of the pressure due to the weight of the liquid and the pressure due to the weight of the air. The pressure due to the weight of the air is calculated as follows:

Pa = P0 + ρgh

where,

P0 is the pressure at the surface of the liquid

= 0.40 atm

= 0.40 × 101.325 kPa

= 40.53 kPa

Pa = P0 + ρgh

= 40.53 kPa + 1500 kg/m³ × 9.81 m/s² × 1.20m

= 47.04 kPa

Hence, the pressure in kPa 1.20 below the surface of a liquid is 47.04 kPa.

To know more about pressure visit:

https://brainly.com/question/30673967

#SPJ11

Given the equation x′′+2x=f(t) where x′(0)=0 and x(0)=0 solve using Laplace Transforms and the CONVOLUTION Theorem. The correct answer will have - all your algebra - the Laplace Transforms - Solving for L(x) - the inverse Laplace Transforms You will not be able to compute the CONVOLUTION

Answers

The solution using Laplace transform and Convolution theorem cannot be obtained as we cannot compute L[f(t)].

The differential equation, x′′+2x=f(t) with initial conditions x′(0)=0 and x(0)=0. Applying Laplace transform to both sides of the given differential equation yields:

L[x′′+2x]=L[f(t)]⇒L[x′′]+2L[x]=L[f(t)]

We know that for any function f(t),L[f′(t)]=sL[f(t)]−f(0)L[f′′(t)]=s2L[f(t)]−s[f(0)]−f′(0)

Here, we have x′′ and x in the differential equation. Therefore, we need to take Laplace transform of both x′′ and x.

L[L[x′′]]=L[s2X(s)−s(x(0))−x′(0)]⇒L[x′′]=s2L[x(s)]−s(x(0))−x′(0)

Similarly, L[x]=X(s)

Substituting the Laplace transform of x′′ and x in the original equation,

L[x′′+2x]=L[f(t)]⇒s2L[x]+2X(s)=L[f(t)]⇒X(s)=L[f(t)]/(s2+2)

Now, we need to find the inverse Laplace transform of X(s) to get the solution.

L[f(t)] can be computed using Convolution Theorem, which is given by

L[f(t)] =L[x(t)]⋅L[h(t)]

where h(t) is the impulse response of the system. But, the problem statement mentions that we cannot compute the Convolution. Therefore, we cannot compute L[f(t)] and hence the inverse Laplace transform of X(s).

To know more about differential equation visit:

https://brainly.com/question/32645495

#SPJ11

A sedimentation tank is designed to settle 85% of particles with the settling velocity of 1 m/min. The retention time in the tank will be 12 min. If the flow rate is 15 m³/min, what should be the depth of this tank in m?

Answers

The depth of the sedimentation tank should be approximately 211.76 meters.

To determine the depth of the sedimentation tank, we can use the formula:

Depth = (Flow Rate * Retention Time) / (Settling Velocity * Settling Efficiency)

Given:

Flow Rate = 15 m³/min

Retention Time = 12 min

Settling Velocity = 1 m/min

Settling Efficiency = 85% = 0.85 (decimal)

Using the provided values, we can calculate the depth of the tank:

Depth = (15 m³/min * 12 min) / (1 m/min * 0.85)

Depth = 180 m³ / (0.85)

Depth = 211.76 m

Therefore, the sedimentation tank's depth should be around 211.76 metres.

Learn more about distance on:

https://brainly.com/question/12356021

#SPJ11

In A ABC. AB = 6 cm, AC = 15 cm, and mA = 48° What is the area of A ABC? Enter your answer as a decimal in the box. Round only your final answer to the nearest hundredth.​

Answers

Answer:

To find the area of triangle ABC, we can use the formula A = (1/2) * b * h, where b is the base of the triangle and h is its height. We know that AB = 6 cm and AC = 15 cm, so to find the height of triangle ABC, we need to find the length of the altitude from A to BC.

To find the length of the altitude, we can use trigonometry. Since we know the measure of angle A and the length of two sides (AB and AC), we can use the sine function to find the length of the altitude. Specifically, we can use the formula h = AC * sin(A).

Plugging in the values we have, we get:

h = 15 cm * sin(48°) h ≈ 11.32 cm

Now that we have the height, we can find the area of triangle ABC:

A = (1/2) * AB * h A = (1/2) * 6 cm * 11.32 cm A ≈ 33.96 cm²

So the area of triangle ABC is approximately 33.96 cm². Rounded to the nearest hundredth, the answer is 33.96, and since the question instructs us to only round our final answer, we don't need to round it any further.

Step-by-step explanation:

which of the following reagents can be used to synthesis 2,2-dibromopentane from 1-pentyne

Answers

The overall balanced equation for the conversion of 1-pentyne to 2,2-dibromopentane is: 1-pentyne + Br2 + H2O → 2,2-dibromopentane + 2HBr

The reagent that can be used to synthesis 2,2-dibromopentane from 1-pentyne is Br2/H2O.

What is the conversion of 1-pentyne to 2,2-dibromopentane? Pentyne, a compound with the formula C5H8, is a straight chain alkyne with a triple bond at the end of the chain. It can be converted to 2,2-dibromopentane by the action of bromine (Br2) and water (H2O) or aqueous hydrobromic acid (HBr). The reagents are explained below:Br2/H2O: This is one of the simplest approaches to synthesize 2,2-dibromopentane from 1-pentyne.

The reaction mechanism involves the bromine being added across the triple bond of the pentyne, giving 1,2-dibromopentene, which is then converted to 2,2-dibromopentane by reacting it with water or aqueous NaOH.Br2/HBr: It's a Markovnikov addition reaction where the H is added to the carbon atom of the triple bond with fewer hydrogens and the Br is added to the carbon with more hydrogens. The product obtained is 2-bromopent-1-ene which then reacts with Br2 to produce 2,2-dibromopentane.

To know more about dibromopentane visit:

brainly.com/question/29787125

#SPJ11

An empty container weighs 260 g. Soil is put in the container and the weight of the container and the soil is 355 g. A flask with an etch mark is filled with water up to the etch mark and the filled flask weighs 700 g. The water is emptied from the flask and is saved. The entire amount of soil is added to the flask. Some of the water that was saved is added to the flask up to the etch mark. The flask, now containing all of the soil and some of the water has a mass of of 764 g. What is the specific gravity of the solids in the soil sample? Provide the appropriate units.

Answers

Specific gravity of the solids in the soil sample cannot be calculated without knowing the volume of the flask.

First of all, let's start with the formula to calculate the specific gravity.

We know that:

specific gravity = density of soil / density of water

We can calculate the density of water. The weight of the flask with the etch mark is 700 g.

The weight of the flask is 260 g.

Therefore, the weight of water that was put into the flask is:

700 g - 260 g = 440 g

We know that the volume of water put into the flask is up to the etch mark.

So, the volume of water is the same as the volume of the flask.

The weight of the water is 440 g.

Therefore, we can calculate the density of water as:

density of water = weight / volume= 440 g / volume of the flask

Now, we can calculate the density of the soil and use the formula to find the specific gravity.

The weight of the container with the soil is 355 g.

The weight of the container alone is 260 g.

Therefore, the weight of the soil is: 355 g - 260 g = 95 g

Now, we need to weigh the flask containing all the soil and some of the water. It weighs 764 g.

We know that the weight of the water is 440 g. Therefore, the weight of the soil and water in the flask is:

764 g - 440 g = 324 g

We can use this information to calculate the volume of the soil and water in the flask. We know that the volume of water in the flask is up to the etch mark.

Therefore, the volume of water and soil in the flask is the same as the volume of the flask. The density of the mixture of water and soil is:

density of mixture = weight / volume= 324 g / volume of the flask

Now, we can use the formula for specific gravity.

We know that the density of water is 1 g/mL (at room temperature), and we need to convert the density of the soil-water mixture into the same units.

We can do this by dividing the density of the mixture by the density of water:

density of soil / density of water = density of mixture / density of water= (324 g / volume of the flask) / 1 g/mL= 324 / volume of the flask

Specific gravity of the solids in the soil sample is given as:

density of soil / density of water= 324 / volume of the flask

Therefore, specific gravity of the solids in the soil sample cannot be calculated without knowing the volume of the flask.

To know more about Specific gravity, visit:

https://brainly.com/question/9100428

#SPJ11

and nant a lotal Winrest of the accourt balances woud hive teen
(Do not suier 5 alge in answer - it's already sntered) By Conidering commanon, how inuch de ate receve bom the sale of the stacus? 5

Answers

A) She invested $15,310.60 in the purchase of the stocks.

B) She received $17,547.20 from the sale of the stocks.

C) She received a profit of $2,236.60 from the sale of the stocks.

D) She earned a simple interest rate of return of approximately 14.6% on the sale of the stocks.

A) Including commission, she invested:

Principal amount = Number of shares * Price per share

Principal amount = 800 * $19 = $15,200

Commission paid to buy the stock = $65 + 0.3% of principal amount

Commission = $65 + (0.3/100) * $15,200

Commission = $65 + $45.60

Commission = $110.60

Total investment including commission = Principal amount + Commission

Total investment = $15,200 + $110.60 = $15,310.60

Therefore, she invested $15,310.60 in the purchase of the stocks.

B) Considering commission, she received from the sale of the stocks:

Number of shares sold = 800 shares

Sale price per share = $22

Sale amount = Number of shares sold * Sale price per share

Sale amount = 800 * $22 = $17,600

Commission paid to sell the stock = 0.3% of sale amount

Commission = (0.3/100) * $17,600

Commission = $52.80

Total amount received from the sale of the stocks = Sale amount - Commission

Total amount received = $17,600 - $52.80 = $17,547.20

Therefore, she received $17,547.20 from the sale of the stocks.

C) The profit (interest) received from the sale of the stocks is:

Profit = Total amount received - Total investment

Profit = $17,547.20 - $15,310.60 = $2,236.60

Therefore, she received a profit of $2,236.60 from the sale of the stocks.

D) The simple interest rate of return she earned on the sale of the stocks is:

Simple interest rate of return = (Profit / Total investment) * (1 / t) * 100%

Since the investment period is 9 months (t = 9/12 = 3/4 years):

Simple interest rate of return = ($2,236.60 / $15,310.60) * (1 / (3/4)) * 100%

Simple interest rate of return ≈ 14.6%

Therefore, she earned a simple interest rate of return of approximately 14.6% on the sale of the stocks.

To know more about simple interest rate, refer here:

https://brainly.com/question/13261867

#SPJ4

Complete Question:

An investor purchased 800 shares of a stock at $19 per share. The commission she paid to buy the stock was $65 plus 0.3% of the principal amount. Nine months later she sold the stock for $22 per share. If she paid the same rate of commission to sell the stock, what annual rate of interest did she earn on her initial investment (including purchase price and commission)? Answer each question below. Think about (t) in simple interest.

Round answer to nearest cent and do not enter commas for larger numbers.

A) Including commission, how much did she invest in the purchase of the stocks?

B) Considering commission, how much did she receive from the sale of the stocks?

C) How much profit (interest) did she receive from the sale of the stocks?

D) What simple interest rate of return (to nearest tenth of a %) did she earn on the sale of the stocks?

Other Questions
Question 35 (1 point) In the video "This is Water" David Forster Wallace suggests that choices may be enhanced by: Psychotherapy Exercise. Education Medication. 4147M The FM signal you should generate is X3(t) = cos(211 x 105t + kf Scos(4t x 104t)). The value of depends on the modulation index, and the modulation index is 0.3What is the value of ? Provide the details of your calculation. Construct a Lagrange polynomial that passes through the following points: -2 -1 0.1 1.3 14.5 -5.4 0.3 0 X y 3.5 4.5 Calculate the value of the Lagrange polynomial at the point x = 2.5. A soil element in the field has various complicated stress paths during the lifetime of a geotechnical structure. The behaviour of this soil can be predicted under more realistic field conditions. Briefly discuss simulation field conditions in the laboratory using shear strength test. The following information is given for iron at 1 atm: boiling point = 2750 C melting point = 1535 C specific heat solid = 0.452 J/gC specific heat liquid = 0.824 J/gC point. AHvap (2750 C) = 354 kJ/mol AHfus(1535 C) = 16.2 kJ/mol kJ are required to melt a 46.2 g sample of solid iron, Fe, at its normal melting Write a program that models a game of Assassin. The game reads the names of the initial Kill ring from a file and puts them into a linked list. The program will prompt the user repeatedly for the name of a person that has been assassinated. The game continues until only one player remains and is declared the winner. The program should also have methods for printing the current contents of the kill ring and printing a graveyard of all players who have been assassinated. 1 of 5 You will write a java class AssassinNode that represents a single node in a linked list for a game of Assassin: player name, killer name, and reference to next node. You will write a java class Assassin Manager that keeps track of who is stalking whom and the history of who assassinated whom. You will maintain two linked lists: a list of people currently alive (the "kill ring") and a list of those who have been assassinated (the "graveyard"). As people are assassinated, you will move them from the kill ring to the graveyard by rearranging links between nodes. The game ends when only one node remains in the kill ring, representing the winner. You will write a client program called AssassinMain. It should read a file of names and construct an object of your class AssassinManager. This main program will ask the user for the names of each victim to assassinate until there is just one player left alive (at which point the game is over and the last remaining player wins). AssassinMain calls methods of the AssassinManager class to carry out the tasks involved in administering the game. --Q6. List the details for all members that are in either Toronto or Ottawa and also have outstanding fines less than or equal $3.00.--Q7. List the details for all members EXCEPT those that are in either Toronto or Ottawa.--Q8. List the details for all COMEDY movies. Sequence the output by title within year of release in reverse chronilogical order followed by Title in ascending order.--Q9. List the details for all Ontario members with osfines of at least $4. Sequence the output from the lowest to highest fine amount.--Q10. List the details for all movies whose category is either Horror or SCI-FI, and who also have a over 2 nominations and at least 2 awards. from the file DVDMovieColumn Na...FeaturesCondensed Type NullableCastingColumn Na...Condensed Ty...Nullable8 DVDNointNoActorlDint intNoTitlechar(20)YesDVDNONoCategoryYesFeePaidintNochar(10)decimal(4, 2)DailyRateYesYrOfReleaseintNoAppears InAwardsintNoNominsintNoIs Copy OfActorColumn Na...Condensed Ty...Nullable Actor DintActorNamechar(20)DateBorndateDateDieddateGenderchar(1)MemberColumn Na...Condensed Ty...NullableMemNointNoMemNamechar(20)NoStreetchar(20)No8DVDCopyColumn Na... % DVDNoRentsCityCondensed Ty... Nullablechar(12)NointNoProvchar(2)No8 CopyNointNoRegDatedateNoStatuschar(1)YesOSFinesdecimal(5, 2)YesMemNo A 1.60-m long steel piano wire has a diameter of 0.20 cm. What is the needed tension force in the wire for it to stretch at a length of 0.25 cm? (Continuation) What is the amount of force that could break this wire? The ultimate strength of steel is 500 x10 Pa. What is the elongation length of the wire the moment it breaks? For the torque exercise; If the 1m long ruler balances right in the middle, determine the position where a 200g mass should be placed if at position 20cm from the ruler there is a 150g mass. Based on the article getting ready for robots how did automation change american farming from 1850 through 1910 Calculate the molar volume of saturated liquid waterand saturated water vapor at 100C and 101.325 kpa using:a) van der waalsb) redlich - kwongcubic equations. Tc = 647.1 K, Pc = 220.55 bar, w=0 Select the solid that is likely to have the highest melting point. O tantalum, a metallic solid O calcium chloride, an ionic solid O sucrose, a molecular solid Oboron nitride, a network solid A given process has the transfer function 2 G(s) -0.2s -e S+1 (a) Calculate the PI controller settings that result from the Cohen-Coon tuning relations. (b) Calculate the PI controller settings that result from the ITAE performance index for load rejection. (c) Calculate the PI controller settings that result from the ITAE performance index for set- point tracking. (d) Which approach from the list la-lc prescribes the most aggressive proportional action for this process? (e) Which approach from the list la-lc prescribes the most aggressive integral action for this process? (f) Which approach from the list la-lc prescribes the least aggressive (i.e., most conservative) proportional action for this process? (g) Which approach from the list la-lc prescribes the least aggressive (i.e., most conservative) integral action for this process? Note: Aggressive proportional action: higher Kc. Aggressive integral action: lower Ti A food liquid with a specific temperature of 4 kJ / kg m. It passes through an inner tube of a heat exchanger. If the liquid enters the heat exchanger at a temperature of 20 C and exits at 60 C, then the flow rate of the liquid is 0.5 kg / s. The heat exchanger enters in the opposite direction, hot water at a temperature of 90 C and a flow rate of 1 kg. / a second. If you know that the specific heat of water is 4.18 kJ/kg/m, calculate:A- The temperature of the water leaving the heat exchangerb- The logarithmic mean of the temperature differencec- If the total average heat transfer coefficient is 2000 mW and the inner diameter of the heat exchanger is 5 cm, calculate the length of the heat exchangerD- Efficiency of the exchangere- Repeat the previous question if the heat exchanger is of the parallel type. Water enters the heat exchanger at a temperature of 35 C and exits at a temperature of 75 C at a rate of 68 kg / min and the water is heated by the oil at a certain temperature. You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 12-m-high hill, then descends 17 m to the track's lowest point. You've determined that the spring can be compressed maximum of 2.1 m and that a loaded car will have a maximum mass of 450 kg. For safety reasons, the spring constant should be 15% larger than the minimum needed for the car to just make it over the top. Part AWhat spring constant should you specify? Express your answer with the appropriate units. k = _________ N/mPart B What is the maximum speed of a 350 kg car if the spring is compressed the full amount? Express your answer with the appropriate units. v = Value ____________ Unit ___________ What is force equal to the distance between the fulcrum and the line action of force A 2.50% grade intersects a +4.00% grade at Sta.136+20 and elevation 85ft. A 800 ft vertical curve connects the two grades. Calculate the low point station and low point elevation. State which of the following statements are true: a) When two metals, e.g. Zn and Cd, are con- nected and placed in a solution containing both metal ions, the metal with the lower standard potential would corrode. b) Conversely, the metal with the higher potential would be deposited. c) The cell and cell reaction are written in opposite orders, for instance, for the cell Fe/Fe+ (aq)/Cu+ (aq)/Cu, the reaction is Fe++Cu Cu+ + Fe d) The cell potential is obtained by sub- tracting the electrode potential of the right-hand electrode from the left-hand electrode. Describe how to prepare 50.0 ml of a 5% (w/v) solution of K2SO4(m.w. 174g) Consider the reaction 2F20 (g) 2F2 (g) +O2 (g) Where the following mechanism has been suggested to explain it (chem.phys.lett.17, 235(1972)). ki F20 +F20 F+OF+F20 F+F,0 k2 F+F20 F2 +OF k3 OF+OF > O2 +F +F k4 F+F+F20 F2 +F20 Apply the steady state approximation to the reactive species OF and F to show the mechanism is consistent with the following experimental rate law: d(F20) dt = k(F20)2 + k'(F20)3/2 and identify k and k'.