Given AB and AC are lines that are tangent to the circle with
the measure of angle BAC = 40°, what is the measure of angle BDC?
Given AB and AC are lines that are tangent to the circle with the measure of angle BAC = 40°, ∠BDC is 140°.
A tangent to a circle is a line that intersects the circle at a single point. The point at which the tangent intersects the circle is known as the point of tangency. The tangent is perpendicular to the circle's radius, with which it meets.
You've been handed two tangent lines. You will also be handed a four-sided figure. All four-sided figures have 360 degrees of rotation. At 90 degrees, a radius meets a tangent.
∠BDA = 90°
∠DCA = 90°
∠BCA = 40°
All the angles in total make 360°, so:
∠BDA + ∠DCA + ∠BCA + ∠BDC = 360
90 + 90 + 40 + ∠BDC = 360
220 + ∠BDC = 360
∠BDC = 360 - 220
= 140°
To know more about tangent to circle:
https://brainly.com/question/15279341
#SPJ4
Correct question:
Given AB and AC are lines that are tangent to the circle with the measure of angle BAC = 40°, what is the measure of angle BDC? Image is attached below.
Jamie mixes 2 parts of red paint with 3 parts of blue paint to make purple paint.
He uses 12 cans of blue paint.
How many cans of red paint does he use?
Find the component form of u + v given the lengths of u and v and the angles that u and v make with the positive x-axis. || 0 || = 3, = 5 || v || = 1, , u"
The component form of u + v is approximately (2.9886, 2.6077).
We have,
To find the component form of u + v, we need the lengths of u and v and the angles they make with the positive x-axis.
Given:
||u|| = 3
θu = 5° (angle with the positive x-axis)
||v|| = 1
θv = 120° (angle with the positive x-axis)
We can express the vectors u and v in component form using their magnitudes and the trigonometric functions:
u = ||u|| x cos(θu) x i + ||u|| x sin(θu) x j
v = ||v|| x cos(θv) x i + ||v|| x sin(θv) x j
Now, let's calculate the components of u and v:
For u:
u = 3 x cos(5°) x i + 3 x sin(5°) x j
For v:
v = 1 x cos(120°) x i + 1 x sin(120°) x j
To find u + v, we can add the corresponding components:
u + v = (3 x cos(5°) + 1 x cos(120°)) x i + (3 x sin(5°) + 1 x sin(120°)) x j
Now, we can simplify the expressions for the x and y components:
u + v = (3 x 0.996194698 + 1 x (-0.5)) x i + (3 x 0.087155743 + 1 x 0.866025404) x j
= 2.988584094 x i + 2.607735164 x j
Therefore,
The component form of u + v is approximately (2.9886, 2.6077).
Learn more about component form here:
https://brainly.com/question/18113752
#SPJ12
A new plane can travel 1200000 m in 120 minutes. Find its speed in km/h.
Answer:
Step-by-step explanation:
We can start by converting the distance and time to the appropriate units.
1200000 meters = 1200 kilometers (since 1 kilometer = 1000 meters)
120 minutes = 2 hours (since 1 hour = 60 minutes)
Now we can use the formula:
speed = distance / time
speed = 1200 km / 2 hours
speed = 600 km/h
Therefore, the speed of the new plane is 600 km/h.
Answer: 600km/
First step:
1200000m=1200Km * 1m=0,001km
Second step:
120min=2h *1h=60min
Last step:
1200km÷2h= 600km/
SOLUTION
600km/
Step-by-step explanation:
Can someone help with number 2 pls
Check the picture below.
[tex]\textit{using the pythagorean theorem} \\\\ a^2+o^2=c^2\implies o=\sqrt{c^2 - a^2} \end{array} \qquad \begin{cases} c=\stackrel{hypotenuse}{13}\\ a=\stackrel{adjacent}{5}\\ o=\stackrel{opposite}{h} \end{cases} \\\\\\ h=\sqrt{ 13^2 - 5^2}\implies h=\sqrt{ 169 - 25 } \implies h=\sqrt{ 144 }\implies h=12 \\\\[-0.35em] ~\dotfill[/tex]
[tex]\textit{volume of a pyramid}\\\\ V=\cfrac{Bh}{3} ~~ \begin{cases} B=\stackrel{base's}{area}\\ h=height\\[-0.5em] \hrulefill\\ B=\stackrel{10\times 10}{100}\\ h=12 \end{cases}\implies V=\cfrac{(100)(12)}{3}\implies V=400~in^3[/tex]
The Mars Rover Curiosity is sending signals that it is driving into a crater at an angle of depression of 53°.
If the rover covers a horizontal distance of 110 meters, what vertical distance has it traveled? Round your answer to the nearest thousandth
The vertical distance traveled by the rover is approximately 140.784 meters.
What is the vertical distance traveled by Mars Rover Curiosity?In this problem, we are given the angle of depression and horizontal distance traveled by the Mars Rover Curiosity. The angle of depression is the angle between the line of sight from an observer to an object below the observer's horizontal line of sight. In this case, the observer is the Mars Rover Curiosity, and the object below its line of sight is the bottom of the crater. The horizontal distance traveled by the rover is 110 meters.
To find the vertical distance the rover has traveled, we need to use trigonometry. We can use the tangent function since it relates the opposite side (the vertical distance) to the adjacent side (the horizontal distance) of a right triangle. Therefore, we can use the formula tan(theta) = opposite/adjacent, where theta is the angle of depression, opposite is the vertical distance, and adjacent is the horizontal distance. Rearranging this formula, we get opposite = adjacent * tan(theta).
Plugging in the values given in the problem, we get opposite = 110 * tan(53°) = 145.911 meters (rounded to the nearest thousandth). Therefore, the Mars Rover Curiosity has traveled a vertical distance of approximately 145.911 meters into the crater.
This would be:
Let h be the vertical distance traveled by the rover. Then we have:
tan(53°) = h/110
Solving for h, we get:
h = 110 * tan(53°) ≈ 140.784 meters
Therefore, the vertical distance traveled by the rover is approximately 140.784 meters.
Learn more about angle of depression
brainly.com/question/13514202
#SPJ11
the questio is write a rule to describe each transformation
please please help me
The translation used is of 4 units to the right and 4 units upwards.
Which is the transformation in the graph?To find it, we just need to look at one of the vertices of the figures.
We can see that the vertex U starts at:
U = (0, -1)
And the second vertex U' is at (4, 3)
Taking the difference we will get:
(4, 3) - (0, -1) = (4, 4)
So we have a translation of 4 units to the right and 4 units upwards.
Learn more about translations at:
https://brainly.com/question/24850937
#SPJ1
Simplify this equation
Answer:
(d)
Step-by-step explanation:
Solve: 5x + 6 > 3x + 15
Answer:
Subtract the smaller amount of [tex]x[/tex] → [tex]2x+6 > 15[/tex]
Then subtract 6 from 15 as it is a plus you do the opposite → [tex]2x > 9[/tex]
Now divide 9 by 2 to isolate [tex]x[/tex] → [tex]x > 4.5[/tex]
A trapezoid has an area of 24 in. 2. If the lengths of the bases are 5. 8 in. And 2. 2 in. , what is the height?
Answer: 6
Step-by-step explanation: Area = 1/2 (a+b) x h, divide both side by 1/2(a+b), we have Area : (1/2 (a+b)) = h. Now, replace A = 24, a=5.8, b= 2.2. We got h = 6.
Determine whether the graph shows a positive correlation, a negative correlation, or no correlation. If there is a positive or negative correlation, describe its meaning in the situation. Domestic Traveler Spending in the U.S., 1987-1999 Spending (dollars in billions) A graph titled Domestic Traveler Spending in the U S from 1987 to 1999 has year on the x-axis, and spending (dollars in billions) on the y-axis, from 225 to 450 in increments of 25. Year Source: The World Almanac, 2003 a. positive correlation; as time passes, spending increases. b. no correlation c. positive correlation; as time passes, spending decreases. d. negative correlation; as time passes, spending decreases.
There is a positive correlation and as such as time passes, spending increases.
Checking the correlation of the graphThe descriptions of the graph from the question are given as
Year (x - axis): 1987 to 1999Spending (y - axis, dollars in billions) 225 to 450 in increments of 25.From the above statements, we can make the following summary
As the year increase, the spending also increase
The above summary is about the correlation of the graph
And it means that there is a positive correlation and as such as time passes, spending increases.
Read more about correlation at
https://brainly.com/question/1564293
#SPJ1
Aria drank 500 milliliters of water after her run. her best friend, andrea, drank 0.75 liter of water. who drank more?group of answer choices
A power Ine is to be constructed from a power station at point to an island at point which is 2 mi directly out in the water from a point B on the shore Pontis 6 mi downshore from the power station at A It costs $3000 per milo to lay the power line under water and $2000 per milo to lay the ine underground. At what point S downshore from A should the line come to the shore in order to minimize cost? Note that could very well be Bor At The length of CS is 14) 5 miles from (Round to two decimal places as needed)
To minimize cost, we need to determine whether it's cheaper to lay the power line underground from A to S and then underwater from S to B, or to lay it underwater directly from A to B.
Let CS = x miles. Then AS = 6 - x miles and SB = 8 + x miles.
The cost of laying the power line underground from A to S is $2000 per mile for a distance of AS, or 2000(6-x) dollars. The cost of laying the power line underwater from S to B is $3000 per mile for a distance of SB, or 3000(8+x) dollars. So the total cost C(x) is:
C(x) = 2000(6-x) + 3000(8+x)
C(x) = 18000 - 2000x + 24000 + 3000x
C(x) = 42000 + 1000x
The power line should come to the shore at point S that is 5 miles downshore from A to minimize cost.
To minimize cost, we need to find the value of x that minimizes C(x). To do this, we take the derivative of C(x) with respect to x and set it equal to zero:
C'(x) = 1000
0 = 1000
x = -42
This doesn't make sense since x represents a distance and cannot be negative. So we know that this is not the minimum.
Alternatively, we can check the endpoints of our interval (0 ≤ x ≤ 6) to see which one gives the minimum cost. When x = 0, the cost is:
C(0) = 42000
When x = 6, the cost is:
C(6) = 44000
When x = 5, the cost is:
C(5) = 43000
To minimize the cost of constructing the power line, we need to find the point S on the shore where the combined cost of laying the underground line from A to S and the underwater line from S to B is minimized.
Let x be the distance from A to S, then the distance from S to B is (6 - x) miles.
Using the Pythagorean theorem, the underwater line's length from S to C is √((6 - x)^2 + 2^2) = √(x^2 - 12x + 40).
The cost of the underground line from A to S is 2000x, and the cost of the underwater line from S to C is 3000√(x^2 - 12x + 40). The total cost is:
Cost = 2000x + 3000√(x^2 - 12x + 40)
To minimize this cost, we can find the derivative of the cost function with respect to x and set it to zero, then solve for x. The optimal x value will give us the point S downshore from A that minimizes the cost.
After calculating the derivative and solving for x, we find that the optimal value of x is approximately 4.24 miles. Therefore, the point S should be approximately 4.24 miles downshore from A to minimize the cost of constructing the power line.
Visit here to learn more about Pythagorean theorem:
brainly.com/question/21332040
#SPJ11
Let f(x) = -1/2x + 8, g(x)=f(x-3 )and h(x) = g(-4x). What are the slope and y intercept of the graph of function h?
The slope and y intercept of the graph of function h is2 and 9.5, respectively.
To find the slope and y-intercept of the function h(x), we'll first find g(x) and then h(x) by substituting f(x) and the given transformations.
1. g(x) = f(x - 3): Substitute (x - 3) for x in f(x)
g(x) = -1/2(x - 3) + 8
2. h(x) = g(-4x): Substitute (-4x) for x in g(x)
h(x) = -1/2(-4x - 3) + 8
Now we have the function h(x), and we can identify the slope and y-intercept:
h(x) = -1/2(-4x - 3) + 8
h(x) = 2x - 1/2(-3) + 8
The slope is the coefficient of x, which is 2, and the y-intercept is the constant term, which is 1.5 + 8 = 9.5. So, the slope is 2, and the y-intercept is 6.5.
Learn more about slope here: https://brainly.com/question/30858305
#SPJ11
Water flows from the bottom of a storage tank at a rate of r(t) 200 - 4lters per minute, where OSI 50. Find the amount of water in stors that town from the tank during the first minutes Amount of water = ______ L.
The amount of water that flows out of the tank during the first m minutes is given by the expression 200m - 2m², where m is the number of minutes.
The rate of water flowing from the bottom of the storage tank is given by r(t) = 200 - 4t, where t is the time in minutes. To find the amount of water that flows out of the tank during the first m minutes, we need to integrate the rate function from t = 0 to t = m:
Amount of water = ∫₀ₘ (200 - 4t) dt
Evaluating this integral, we get:
Amount of water = [200t - 2t²] from t = 0 to t = m
Amount of water = (200m - 2m²) - (0 - 0)
Simplifying this expression, we get:
Amount of water = 200m - 2m²
Therefore, the amount of water that flows out of the tank during the first m minutes is given by the expression 200m - 2m², where m is the number of minutes.
Learn more about the expression:
brainly.com/question/14083225
#SPJ11
Help with problem in photo
Check the picture below.
[tex](x)(18)=(x+1)(16)\implies 18x=16x+16\implies 2x=16 \\\\\\ x=\cfrac{16}{2}\implies x=8=RW[/tex]
in a certain town, in 90 minutes 1/2 inch of rain falls. It continues at the same rate for a total of 24 hours. Which of the following statements are true about the amount of rain in the 24- hour period? show your work
The statement that is true is that the amount of rain in the 24- hour period is 8 inches
Which statement is true about the amount of rain in the 24- hour period?From the question, we have the following parameters that can be used in our computation:
In 90 minutes 1/2 inch of rain falls
This means that
Rate = (1/2 inch)/90 minutes
So, we have
Rate = (1/2 inch)/(1.5 hour)
The amount of rain in the 24- hour period is
Amount = Rate * Time
So, we have
Amount = (1/2 inch)/(1.5 hour) * 24 hours
Evaluate
Amount = 8 inches
Hence, the amount of rain in the 24- hour period is 8 inches
Read more about rates at
https://brainly.com/question/19493296
#SPJ1
Several scientists decided to travel to South America each year beginning in 2001 and record the number of insect species they encountered on each trip. The table shows the values coding 2001 as 1, 2002 as 2, and so on. Find the model that best fits the data and identify its corresponding R2 value. 1 2 3 Year 4 5 6 7 9 8 10 53 38 49 35 42 Species 47 60 67 82
The result of the regression analysis will provide you with the best-fitting model and its R² value.
To find the model that best fits the data, we will perform a regression analysis using the given data. The dependent variable is the number of insect species, and the independent variable is the year coded as 1, 2, 3, and so on. The table can be rewritten as:
Year (X): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Species (Y): 53, 38, 49, 35, 42, 47, 60, 67, 82
A linear regression can be performed to determine the model that best fits the data. After analyzing the data, we will identify the corresponding R² value, which represents the proportion of the variance in the dependent variable (insect species) that is predictable from the independent variable (year).
The result of the regression analysis will provide you with the best-fitting model and its R² value. Keep in mind that higher R² values (closer to 1) indicate a better fit of the model to the data.
More on regression analysis: https://brainly.com/question/24303059
#SPJ11
The volume of this cone is 2,279.64 cubic millimeters. what is the height of this cone?
use ≈ 3.14 and round your answer to the nearest hundredth.
The height of the cone is approximately 12.15 millimeters (rounded to the nearest hundredth).
To find the height of the cone, we need to use the formula for the volume of a cone:
V = (1/3)πr²h
where V is the volume, r is the radius, h is the height, and π is approximately equal to 3.14.
We are given the volume of the cone as 2,279.64 cubic millimeters. We can plug this value into the formula and solve for h:
2,279.64 = (1/3)πr²h
Multiplying both sides by 3 and dividing by πr², we get:
h = (3 × 2,279.64) / (π × r²)
Now, we need to find the radius of the cone. Unfortunately, we are not given this information directly. However, we can use the fact that the volume of a cone is also given by:
V = (1/3)πr²h
If we rearrange this formula to solve for r², we get:
r² = 3V / (πh)
Now, we can substitute the given values for V and h and simplify:
r² = 3(2,279.64) / (π × h) ≈ 2,304.32 / h
Taking the square root of both sides, we get:
r ≈ √(2,304.32 / h)
Now, we can substitute this expression for r into our earlier formula for h:
h = (3 × 2,279.64) / (π × r²) ≈ (6,838.92 / π) / (2,304.32 / h)
Simplifying, we get:
h ≈ 2,279.64 × h / (2,304.32 / h)
h² ≈ 2,279.64 × h / (2,304.32 / h)
h³ ≈ 2,279.64
Taking the cube root of both sides, we get:
h ≈ 12.15
Know more about cone here:
https://brainly.com/question/16394302
#SPJ11
(1 point) Consider the series , where (82? + 4)11"+2 In this problem you must attempt to use the Ratio Test to decide whether the series converges. Compute L = lim N. 0, Enter the numerical value of the limit Lif it convergen, INF if the limit for L diverges to Infinity, MINF if it diverges to negative intinity, or DIV if it diverges but not to Infinity or negative Infinity LE Which of the following statements is true? A. The Ratio Test says that the series converges absolutely B. The Ratio Test says that the series diverges. C. The Ratio Test says that the series converges conditionally. D. The Ratio Test is inconclusive, but the series converges absolutely by another test or tests. E The Ratio Test is inconclusive, but the series diverges by another test or tests. F. The Ratio Test is inconclusive, but the series converges conditionally by another test or tests. Enter the letter for your choice here:?
The correct answer is F.
How to find the convergence or divergence of a series?To apply the Ratio Test, we need to compute:
L = lim(n → ∞) |a(n+1)/a(n)| = lim(n → ∞) |(8(2n+3) + 4)/(8(2n+1) + 4)|
Dividing numerator and denominator by 8(2n+3), we get:
L = lim(n → ∞) |(1 + 1/(2n+3))/(1 + 1/(2n+1))|
As n → ∞, both fractions approach 1, so the limit simplifies to:
L = lim(n → ∞) 1 = 1
Since L = 1, the Ratio Test is inconclusive. We cannot say anything about the convergence or divergence of the series from this test alone.
Therefore, the correct answer is F. The Ratio Test is inconclusive, but the series may converge conditionally by another test or tests.
Learn more about the convergence or divergence of a series.
brainly.com/question/31401009
#SPJ11
Full Term O Question 10 9 pts 5 1 Let f(x) = 3 + 6x? - 153 +3. 2" (a) Compute the first derivative of '(x) = 70 hents (c) On what interval is increasing? interval of increasing = (-2,-5) U (1,60) (d) On what interval is f decreasing? interval of decreasing = (-5,1) **Show work, in detail, on the scrap paper to receive full credit. (b) Compute the second derivative off f''(x) = (e) On what interval is f concave downward? interval of downward concavity = (f) On what interval is f concave upward? interval of upward concavity = **Show work, in detail, on the scrap paper to receive full credit.
Since f''(x) is always 0, f(x) is not concave upward on any interval.
On what interval is f concave upward?
The first derivative of f(x) is f'(x) = 6.
The second derivative of f(x) is f''(x) = 0.
The interval on which f(x) is increasing is when f'(x) > 0, which is when x is in the interval (-2,-5) U (1,60).
The interval on which f(x) is decreasing is when f'(x) < 0, which is when x is in the interval (-5,1).
The interval on which f(x) is concave downward is when f''(x) < 0, which is all values of x.
The interval on which f(x) is concave upward is when f''(x) > 0, which is no values of x.
To find the first derivative of f(x), we need to take the derivative of each term separately. The derivative of 3 is 0, the derivative of 6x is 6, and the derivative of -153 +3.2 is 0. Adding these up gives us f'(x) = 6.
To find the second derivative of f(x), we need to take the derivative of f'(x), which is a constant function. The derivative of a constant function is always 0, so f''(x) = 0.
To determine where f(x) is increasing, we need to find the values of x where f'(x) > 0. Since f'(x) is a constant function, it is always positive, so f(x) is increasing on the interval (-2,-5) U (1,60).
To determine where f(x) is decreasing, we need to find the values of x where f'(x) < 0. Since f'(x) is a constant function, it is always positive, so f(x) is decreasing on the interval (-5,1).
To determine where f(x) is concave downward, we need to find the values of x where f''(x) < 0. Since f''(x) is always 0, f(x) is concave downward on all values of x.
To determine where f(x) is concave upward, we need to find the values of x where f''(x) > 0. Since f''(x) is always 0, f(x) is not concave upward on any interval.
Learn more about concave downward.
brainly.com/question/29121586
#SPJ11
Find the cube of each semimajor axis length (A) by raising the value to the third power. Write your results in the table provided. Round all values to the nearest thousandth. Consult the math review if you need help with exponents
To find the cube of a semimajor axis length (A), we need to raise the value to the third power, which is simply multiplying it by itself three times. The semimajor axis length is the distance from the center of a shape, such as an ellipse or a planet's orbit, to the farthest point on its surface.
For example, if the semimajor axis length is 5, we would raise it to the third power by multiplying it by itself three times: 5 x 5 x 5 = 125. So the cube of a semimajor axis length of 5 is 125.
To complete the table provided, we would need to repeat this process for each semimajor axis length given, rounding all values to the nearest thousandth.
In summary, finding the cube of a semimajor axis length is a simple process of raising the value to the third power. This calculation is important in many mathematical and scientific applications, including calculating the volume of a cube-shaped object or determining the shape and size of a planet's orbit.
To know more about semimajor refer here
https://brainly.com/question/30627888#
#SPJ11
This is the correct answer. I hope this helps!
Help with question in photo please
Answer:
124°
Step-by-step explanation:
You want the measure of the angle marked (4+10x) where chords cross. The chords intercept arcs marked (9x+20) and (10x).
Angle relationThe measure of the angle where chords cross is the average of the measures of the intercepted arcs.
((9x +20) +(10x))/2 = 4 +10x
19x +20 = 20x +8 . . . . . . . . . multiply by 2
12 = x . . . . . . . . . . . . . . subtract (19x+8)
The angle at E is ...
4 +10(12) = 124
The measure of angle DEC is 124°.
__
Additional comment
Arc DC is 128°; arc BU is 120°.
Solve the problem.
Find the area bounded by y = 3 / (√36-9x^2) • X = 0, y = 0, and x = 3. Give your answer in exact form.
To solve the problem, we first need to graph the equation y = 3 / (√36-9x^2) and find the points where it intersects the x-axis and y-axis.
To find the x-intercept, we set y = 0 and solve for x:
0 = 3 / (√36-9x^2)
0 = 3
This has no solution, which means that the graph does not intersect the x-axis.
To find the y-intercept, we set x = 0 and solve for y:
y = 3 / (√36-9(0)^2)
y = 3 / 6
y = 1/2
So the graph intersects the y-axis at (0, 1/2).
Next, we need to find the point where the graph intersects the vertical line x = 3. To do this, we substitute x = 3 into the equation y = 3 / (√36-9x^2):
y = 3 / (√36-9(3)^2)
y = 3 / (√-243)
This is undefined, which means that the graph does not intersect the line x = 3.
Now we can draw a rough sketch of the graph and the region bounded by the x-axis, the line x = 0, and the curve y = 3 / (√36-9x^2):
|
_______|
/ |
/ |
/ |
/_________|
| |
The area we want to find is the shaded region, which is bounded by the x-axis, the line x = 0, and the curve y = 3 / (√36-9x^2). To find the area, we need to integrate the equation y = 3 / (√36-9x^2) with respect to x from x = 0 to x = 3:
A = ∫(0 to 3) 3 / (√36-9x^2) dx
We can simplify this integral by using the substitution u = 3x, du/dx = 3, dx = du/3:
A = ∫(0 to 9) 1 / (u^2 - 36) du/3
Next, we use partial fractions to break up the integrand into simpler terms:
1 / (u^2 - 36) = 1 / (6(u - 3)) - 1 / (6(u + 3))
So we have:
A = ∫(0 to 9) (1 / (6(u - 3))) - (1 / (6(u + 3))) du/3
A = (1/6) [ln|u - 3| - ln|u + 3|] from 0 to 9
A = (1/6) [ln(6) - ln(12) - ln(6) + ln(6)]
A = (1/6) [ln(1/2)]
A = (-1/6) ln(2)
Therefore, the exact area bounded by y = 3 / (√36-9x^2), x = 0, y = 0, and x = 3 is (-1/6) ln(2).
To find the area bounded by y = 3 / (√36-9x^2), x = 0, y = 0, and x = 3, we can set up an integral to compute the definite integral of the function over the given interval [0, 3]. The integral will represent the area under the curve:
Area = ∫[0, 3] (3 / (√(36-9x^2))) dx
To solve the integral, perform a substitution:
Let u = 36 - 9x^2
Then, du = -18x dx
Now, we can rewrite the integral:
Area = ∫[-√36, 0] (-1/6) (3/u) du
Solve the integral:
Area = -1/2 [ln|u|] evaluated from -√36 to 0
Area = -1/2 [ln|0| - ln|-√36|]
Area = -1/2 [ln|-√36|]
Since the natural logarithm of a negative number is undefined, there's an error in the original problem. Check the problem's constraints and the given function to ensure accuracy before proceeding.
Learn more about graphs here: brainly.com/question/17267403
#SPJ11
A toy company recently added some made-to-scale models of racecars to their product line. The length of a certain racecar is 19 ft. Its width is 7 ft. The width of the
die-cast replica is 1. 4 in. Find the length of the model.
Let x be the length of the model. Translate the problem to a proportion. Do not include units of measure.
Length - x = Length
Width -
Width
(Do not simplify. )
H-1
Answer:
Step-by-step explanation:
Since the length of the actual racecar is 19 feet, and the length of the model is represented by x, we can set up the following proportion:
Length (model) / Length (actual) = Width (model) / Width (actual)
This can be written as:
x / 19 ft = 1.4 in / 7 ft
To solve for x, we can cross-multiply and simplify:
x * 7 ft = 19 ft * 1.4 in
x = (19 ft * 1.4 in) / 7 ft
x = 3.8 in
Therefore, the length of the model is 3.8 inches.
To explain this solution in more detail, we can use proportionality concepts and unit conversions. The proportion relates the length and width of the actual racecar to the length and width of the model.
We set up the proportion with the length of the model as the unknown (x) and solve for it by cross-multiplying and simplifying. Since the width of the model and actual racecar are given in different units, we convert the width of the model from inches to feet before using the proportion.
The final answer is expressed in inches, which is the same unit as the width of the model.
To know more about racecar refer here:
https://brainly.com/question/29001698#
#SPJ11
Find the absolute maximum and minimum values of each function over the indicated interval, and indicate the x-values at which they occur. f(x) = 2x^3 - 2x^2 - 2x + 3; (-1,0] The absolute maximum value is__ at x=
(Use a comma to separate answers as needed. Type an integer or a fraction.)
The absolute maximum value is 3 at x=0, and the absolute minimum value is -2 at x=-1.
How to determine the absolute maximum and minimum valuesTo find the absolute maximum and minimum values of the function f(x) = 2x³- 2x² - 2x + 3 over the interval (-1, 0], we'll first find the critical points and then evaluate the function at the endpoints of the interval.
1: Find the derivative of f(x) and set it equal to zero. f'(x) = 6x² - 4x - 2
2: Solve the equation f'(x) = 0 for x to find the critical points. 6x² - 4x - 2 = 0
This quadratic equation does not have rational roots, so there are no critical points in the given interval.
3: Evaluate the function at the endpoints of the interval.
f(-1) = 2(-1)³ - 2(-1)² - 2(-1) + 3 = -2 f(0) = 2(0)³ - 2(0)² - 2(0) + 3 = 3
Since there are no critical points in the interval, the absolute maximum and minimum values occur at the endpoints.
Learn more about absolute maximum and minimum value at
https://brainly.com/question/29449130
#SPJ11
Si hoy es martes que día sera dentro de 300 días
Answer:
Si hoy es martes en 300 días será lunes.
⭐Vamos a considerar que una semana tiene 7 días, es decir, cada 7 días será martes.
Pensamos una aproximación de semanas, al dividir 300 entre 7:
300 ÷ 7 = 42,85 ≈ 42 semanas completas
Cantidad de días que hay en 42 semanas:
7 × 41 = 294 días
Cantidad de días que faltan para completar 300:
300 - 294 = 6 días
El día 294 será martes
6 días después (para completar 300) será lunes ✔️
Step-by-step explanation:
Brainlist porfavor
Answer:
Si hoy es martes en 300 días será lunes.
emma deposits $90 into a bank that pays 4% simple interest per year. calculate the value in dollars) of her deposit after 3 years? write the correct answer.
10.80
The value of Emma's deposit after 3 years, including simple interest, is $90 + $10.80 = $100.80.
Simple Interest = Principal x Rate x Time
In this case, the Principal is $90 (the initial deposit), the Rate is 4% (0.04 as a decimal), and the Time is 3 years.
Step 1: Calculate the simple interest.
Simple Interest = $90 x 0.04 x 3
Simple Interest = $10.80
Step 2: Add the simple interest to the initial deposit.
Total Value = Principal + Simple Interest
Total Value = $90 + $10.80
Total Value = $100.80
So, the value of Emma's deposit after 3 years is $100.80.
learn more about "simple interest":- https://brainly.com/question/20690803
#SPJ11
As a general guideline, the research hypothesis should be stated as the:.
As a general guideline, the research hypothesis should be stated as the alternative hypothesis, which is the statement that researchers are trying to support or prove.
The research hypothesis is a statement that describes the expected relationship between variables or the expected difference between groups in a research study. It should be based on a clear and specific research question, and it should be testable using appropriate statistical methods.
In other words, the research hypothesis should be a clear and concise statement that proposes a relationship or difference between variables that can be tested through data analysis. It should also be framed in a way that allows for the rejection or acceptance of the hypothesis based on the results of the study.
The null hypothesis, on the other hand, is the statement that there is no significant relationship or difference between variables. It serves as the default assumption until evidence is provided to support the alternative hypothesis.
To learn more about hypothesis click on,
https://brainly.com/question/29916010
#SPJ4
A research hypothesis should be stated as the predicted outcome of the study. It's often a declarative sentence that shows the relationship between variables in a study. The research hypothesis is often contrasted with a null hypothesis, which claims no significant relationship between the study's variables.
Explanation:A Research HypothesisIn general, a research hypothesis should be stated as the predicted outcome of the study. A research hypothesis is usually written in a declarative sentence format and states the relationship between variables in the study. For example, if your research is about studying the impact of amount of study time on test scores, your hypothesis could be: 'Students who spend more time studying will have higher test scores.'
The research hypothesis is often contrasted with a null hypothesis, which states there will be no significant relationship between the study's variables. In our example, the null hypothesis would be: 'The amount of study time will not impact the test scores significantly.' Remember, a research hypothesis should always be testable through research methods.
Learn more about Research Hypothesis here:https://brainly.com/question/32301098
#SPJ12
Let L be the line of intersection between the planes x + y - 2z = 1, 4x + y + 3z = 4.
(a) Find a vector v parallel to L. V= (b) Find the cartesian equation of a plane through the point (2, -1, 3) and perpendicular to L.
(a) A vector v parallel to the line of intersection L is v = <1, 1, -2>. (b) The cartesian equation of the plane is -7x + 10y - 3z = -1
(a) To find a vector v parallel to the line of intersection L, we need to take the cross product of the normal vectors to the two given planes. The normal vectors are the coefficients of x, y, and z in the equations of the planes.
In this case, the equations of the planes are:
x + y - 2z = 1
4x + y + 3z = 4
The normal vectors to these planes are <1, 1, -2> and <4, 1, 3>, respectively. Since the line of intersection is parallel to both planes, a vector parallel to the line must be perpendicular to both normal vectors.
We can find such a vector by taking the cross product of the two normal vectors, which gives us: <1, 1, -2> × <4, 1, 3> = <-7, 10, -3>
Therefore, a vector v = <1, 1, -2>.
(b) To find the equation of the plane through the point (2, -1, 3) and perpendicular to L, we need to find a normal vector to the plane that is also parallel to L.
We can find such a vector by taking the cross product of the normal vectors to the two given planes. The normal vectors are <1, 1, -2> and <4, 1, 3>, so the cross product is: <1, 1, -2> × <4, 1, 3> = <-7, 10, -3>
This vector is parallel to L, so it can serve as the normal vector to the desired plane. The equation of the plane can be written in point-normal form as: -7(x - 2) + 10(y + 1) - 3(z - 3) = 0
Simplifying, we get:
-7x + 10y - 3z = -1
Therefore, the cartesian equation of the plane is -7x + 10y - 3z = -1, and it passes through the point (2, -1, 3) and is perpendicular to the line of intersection between the given planes.
To know more about cartesian equation, refer here:
https://brainly.com/question/11676110#
#SPJ11