We can use the ideal gas law to solve this problem:
PV = nRT
where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in kelvins.
First, we need to calculate the number of moles of CO2 using its molar mass:
molar mass of CO2 = 12.01 + 2(15.99) = 44.01 g/mol
moles of CO2 = 20.0 g / 44.01 g/mol = 0.454 mol
Next, we can rearrange the ideal gas law to solve for V:
V = (nRT) / P
V = (0.454 mol)(8.31 J/(mol·K))(298 K) / (105 kPa) = 10.5 L
Therefore, 20.0 g of CO2 would occupy a volume of 10.5 L at a temperature of 25°C and a pressure of 105 kPa.
1 m 1 m 1 m Cube Square cube has volume Fach face of the cube has area. The square Im
what is the area of each face of the cube?
Each face of the cube has an identical area, which is the same as a square whose side length is equal to the cube's edge length.
The cube's area on each face is given by its 1 meter-long edges as follows:
The cube's face area is equal to the product of its edge length and a square of one meter.
As a result, the cube's faces each have an area of 1 square meter.
What is the size of a cube's faces, individually?Squaring the side's length yields the area of each face. To get the cube's total surface area, multiply the area of each face by the number of faces.
To know more about volume visit:-
brainly.com/question/11676583
#SPJ9
clerice midter
The diagram below is the Bohr model of an atom.
Which best describes this atom?
OA. It has 6 electrons.
OB. It has a positive charge.
O c. It has 6 valence electrons.
OD.
has a full outermost energy level.
The correct option is (A) - This Bohr Model of atom describes that there are a total of 6 electrons in the given figure.
What is Bohr Model of atom?The electrons are positioned in circular orbitals at particular distances from the central nucleus in the Bohr model of the atom. These orbits create electron shells or energy levels, which allow us to see how many electrons are present in each shell. The number and the letter "n" are used to identify these energy levels. The first energy level nearest to the nucleus, for instance, is represented by the 1n shell. Normally, an electron resides in the shell with the lowest energy, which is the one closest to the nucleus. A photon of light's energy can raise it to a higher energy shell, but this is an unstable position, and the electron quickly returns to the ground state.
Learn more about atom here:
https://brainly.com/question/30898688
#SPJ1
How many calories of heat were added to 449.1 g of water to raise its temperature from 25 degrees C to 55 degrees C? (standard notation)
13473 calories of heat were added to 449.1 g of water to raise its temperature from 25 degrees C to 55 degrees C.
To calculate the heat added to water, we can use the following formula:
Q = m * c * ΔT
Q = heat added (in calories)
m = mass of water (in grams)
c = specific heat of water (1 calorie/gram degree Celsius)
ΔT = change in temperature (in degrees Celsius)
Using the given values:
m = 449.1 g
ΔT = (55 - 25) = 30 degrees C
Substituting these values into the formula, we get:
Q = 449.1 g * 1 cal/g °C * 30°C
Q = 13473 calories
Calories are a unit of measurement for energy. They are used to quantify the amount of energy in food and the amount of energy that our bodies burn through physical activity. One calorie is defined as the amount of energy required to raise the temperature of one gram of water by one degree Celsius
Learn more about calories here:
https://brainly.com/question/22374134
#SPJ1
When CO2 combines with water it forms carbonic acid. How does this explain the phenol red result?
nitrogen gas and xenon gas are placed into a chamber at the same temperature and pressure. how much faster will the nitrogen effuse?
Nitrogen gas will effuse about 2.16 times faster than xenon gas under these conditions.
The rate of effusion of a gas will be inversely proportional to square root of its molar mass. This is known as Graham's law of effusion. Mathematically, we will express this relationship as:
rate of effusion ∝ 1/√(molar mass)
Let's assume that the temperature and pressure of the gases are kept constant. The molar mass of nitrogen gas (N₂) is 28 g/mol, and the molar mass of xenon gas (Xe) is 131 g/mol. Therefore, the ratio of their molar masses will be;
molar mass of Xe / molar mass of N₂ = 131 g/mol / 28 g/mol = 4.68
According to Graham's law of effusion, the ratio of their effusion rates is the inverse of the ratio of their square roots of their molar masses. This can be expressed as;
rate of effusion of N₂ / rate of effusion of Xe = √(molar mass of Xe) / √(molar mass of N₂) = √4.68 = 2.16
Therefore, 2.16 times faster will the nitrogen effuse.
To know more about rate of effusion here
https://brainly.com/question/12221871
#SPJ4
What change occurs when a liquid evaporates?
A The particles absorb heat and get closer together.
B The particles absorb heat and spread farther apart.
C The particles release heat and spread farther apart.
D The particles release heat and get closer together.
The correct answer is B) The particles absorb heat and spread farther apart.
When a liquid evaporates, the particles at the surface of the liquid gain enough energy (usually in the form of heat) to overcome the attractive forces between them and escape into the air as a gas. This energy breaks the intermolecular bonds between the liquid particles and allows them to move more freely.
The absorption of heat causes an increase in the kinetic energy of the particles, which makes them move faster and collide with each other more frequently. These collisions help to break the intermolecular bonds between the liquid particles.
As more and more particles escape from the surface of the liquid, the concentration of the liquid decreases, and eventually, the liquid can completely evaporate into a gas. The escaped particles also carry away some of the energy from the liquid, which is why the evaporation process cools down the remaining liquid and its surroundings.
Learn more about evaporates here:
https://brainly.com/question/11845221
#SPJ1
oxymercuration-demercuration of 2-methyl-2-butene affords which product? select answer from the options below 3-methyl-1-butanol 3-methyl-2-butanol 2-methyl-2-butanol mercuric acetate
oxymercuration-demercuration of 2-methyl-2-butene gives the product 2-methyl-2-butanol.
Oxymercuration-demercuration is the process involving electrophilic activation of an alkene by a mercuric acetate group. It is followed by the addition of water firstly and secondly, reductive demercuration by sodium borohydride.
In the first step, an electrophilic HgOAc+ ion is added to the double bond which gives a mercurinium ion .
In the second step, the species reacts with a nucleophilic water molecule. Due to this nucleophilic attack, there forms a bonding of an HgOAc group and a OH group on the adjacent carbon atoms.
The final product involves Markovnikov addition reaction where the OH group is bonded to the more substituted carbon atom of the alkene.
To know more about Oxymercuration-demercuration here
https://brainly.com/question/30829890
#SPJ4
A camper walked from point A to point B taking the path shown by the dotted line. What is the approximate distance the camper walked? a. 2.0 miles downhill b. 30 miles downhill c. 2.0 miles uphill d. 30 miles uphill
a. 2.0 miles downhill
This is because the path taken by the camper appears to go primarily downhill and is relatively short in distance. However, the actual distance may be more or less than 2.0 miles depending on the scale of the diagram.
If you wanted to make Kool-Aid ice cubes would you need to be slightly above or slightly below 0c? Why?
Answer:
To make Kool-Aid ice cubes, you must be slightly below 0°C (32°F) to freeze the liquid into solid ice cubes. The freezing point of water is 0°C (32°F), but adding Kool-Aid powder to water lowers its freezing point. However, the exact freezing point would depend on the Kool-Aid mix's sugar content and other ingredients. In general, the more sugar and other additives in the Kool-Aid mix, the lower the freezing point of the liquid.
if a gas at 25.0 C occupies 3.60 Liters at a pressure of 1.00 atm, what will be it’s volume at a pressure of 15.33 psi?
Answer:
The volume of the gas at a pressure of 15.33 psi is 3.28 liters.
Explanation:
To solve this problem, we need to use the combined gas law, which relates the pressure, volume, and temperature of a gas:P1V1/T1 = P2V2/T2where P1, V1, and T1 are the initial pressure, volume, and temperature, respectively, and P2, V2, and T2 are the final pressure, volume, and temperature, respectively.We can rearrange this equation to solve for V2:V2 = (P1V1T2)/(P2T1)Let's plug in the values given in the problem:P1 = 1.00 atm
V1 = 3.60 L
T1 = 25.0 C + 273.15 = 298.15 K
P2 = 15.33 psi
T2 = 25.0 C + 273.15 = 298.15 KWe need to convert the pressure to the same units as P1, which is atm:1 psi = 0.068046 atm
15.33 psi = 15.33 x 0.068046 atm = 1.044 atmNow we can calculate V2:V2 = (P1V1T2)/(P2T1)
V2 = (1.00 atm x 3.60 L x 298.15 K)/(1.044 atm x 298.15 K)
V2 = 3.28 L
Which of the following is a possible way to describe the H₂O component in the reaction below? 2HCl(aq) + Ca(OH)₂ (aq) → A. 2 molecules H₂O B. 1 molecule H₂O C. 2 LH₂O D. 4 moles H₂ 2H₂O(1) + CaCl₂(aq) 4
This equation shows that when hydrochloric acid (HCl) reacts with calcium hydroxide (Ca(OH)2), calcium chloride (CaCl2) and water (H2O) are produced.
Therefore, the H2O component in the reaction can be described as 2 molecules of water (2H2O), as shown in the balanced equation. Option A, "2 molecules H2O", is the correct way to describe the H2O component in the reaction.
2HCl(aq) + Ca(OH)₂ (aq) ⇒ A. 2 molecules H₂O B.
Option B, "1 molecule H2O", is incorrect as two molecules of water are produced in the reaction, not one.
Option C, "2 LH2O", is also incorrect as the symbol "L" is not used to represent water molecules in chemical equations.
Option D, "4 moles H2" is also incorrect as hydrogen gas (H2) is not produced in this reaction.
To know more about calcium hydroxide , visit:
https://brainly.com/question/9584549
#SPJ1
lithium (li), sodium (na), potassium (k), rubidium (rb), cesium (cs), and francium (fr) are in the same column in the periodic table. why are these elements in the same column in the periodic table?
Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs), and Francium (Fr) are in the same column in the periodic table because they all belong to the alkali metal group (Group 1) and have similar chemical properties.
This is due to each of these elements having one electron in their outermost energy level (valence electron). As elements in the same column share the same number of valence electrons, they exhibit similar reactivity and bonding patterns.
The elements in this group share several chemical properties, which is why they are all placed in the same column in the periodic table.
The alkali metals are all very reactive, meaning they have a tendency to react with other elements to form compounds. They are also all soft metals, meaning they can be easily cut or shaped. In terms of their physical properties, alkali metals have low melting and boiling points and are good conductors of heat and electricity.
In terms of their electronic configuration, the alkali metals all have one valence electron. This means that they all have similar chemical properties. For example, they are all very reactive with halogens such as chlorine and fluorine, and they all react with water to form hydrogen gas and an alkali metal hydroxide.
to know more about alkali metal refer here:
https://brainly.com/question/18153051#
#SPJ11
Bill nye the science guy phases of matter 10 things about that video
Answer:
Ah, I love Bill Nye the Science Guy! That video is a classic. Here are 10 things to take away from it: 1. Matter is anything that has mass and takes up space. 2. There are three phases of matter: solid, liquid, and gas. 3. In a solid, the particles are tightly packed together and vibrate in place. 4. In a liquid, the particles are farther apart and can move around each other. 5. In a gas, the particles are spread out and move freely. 6. Sublimation is when a solid turns directly into a gas, without becoming a liquid first. 7. Deposition is when a gas turns directly into a solid, without becoming a liquid first. 8. Plasma is another phase of matter that occurs at very high temperatures and consists of charged particles. 9. Bose-Einstein condensate is a fifth
0.155 moles of c is reacted with 0.117 moles of o2 to form co and co2. $$ using the balanced chemical equation, calculate the moles of co2 which could be produced based upon the moles of the each reagent. based on the theoretical production of co2 which reagent, if either, is the limiting reagent for this problem?
The balanced chemical equation for the reaction between carbon (C) and oxygen (O2) to form carbon monoxide (CO) and carbon dioxide (CO2) is below and the moles of CO2 produced is 0.117.
C + O2 → CO + CO2
According to the equation, for every 1 mole of C, we need 1 mole of O2 to produce 1 mole of CO and 1 mole of CO2.
Given that we have 0.155 moles of C and 0.117 moles of O2, we can use the mole ratio from the balanced equation to determine how many moles of CO2 could be produced:
Moles of CO2 = Moles of C = 0.155 moles
Therefore, based on the moles of each reagent, we could produce a maximum of 0.155 moles of CO2.
To determine the limiting reagent, we need to calculate the amount of CO2 that would be produced if all of the limiting reagent were consumed. We can do this by comparing the amount of CO2 that would be produced by each reagent and identifying the one that produces the smaller amount:
Using C as the limiting reagent:
Moles of CO2 produced = Moles of C = 0.155 moles
Using O2 as the limiting reagent:
Moles of CO2 produced = Moles of O2 × (1 mole CO2 / 1 mole O2) = 0.117 moles × (1 mole CO2 / 1 mole O2) = 0.117 moles
Since the amount of CO2 produced by the reaction with C is greater than the amount produced by the reaction with O2, we can conclude that O2 is the limiting reagent for this problem. Therefore, only 0.117 moles of CO2 could be produced based on the available amount of O2, and any excess C would be left over after the reaction.
Learn more about Balanced chemical equations here:
brainly.com/question/28294176
#SPJ4
A local government agency wants to build a new office building. In order to do so, they will have to cut down a large area of forest. Before the city will approve this, they have asked the agency to hire scientists to study the impact on wildlife that clearing the forest might have. Which statement best describes why this study is important?
(A) The city needed to generate some income, and the local community is hoping this will bring in many employment opportunities.
(B)The city needs to make sure they understand the impact on wildlife. The study will provide them with the information they need to weigh the benefits and risks of this project.
(C) The project is big enough that the study is required by law. If they do not conduct the study, they will risk being sued or fined by the government.
(D) The local environmental group is against the project. The study will prove that there is no problem with clearing the land.
The answer is (B) The city must ensure that they are aware of the effects on animals. They will have the knowledge they need from the study to balance the project's advantages and disadvantages.
Does logging have an impact on wildlife? How?By removing trees from the forest, birds, reptiles, and insects lose their habitats and food supplies, which results in a fall in the number of wild creatures. Small mammals, a source of food for mid- and large-sized mammals, will be impacted by this. The extinction of species is the result of a chain reaction.
What takes place when woods are cut down?Soil erosion increases as a result of deforestation. The loss of crops and fertile land is just one of the devasting repercussions of soil erosion on the environment.
To learn more about deforestation visit:
brainly.com/question/11697527
#SPJ1
which acid and base react to form water and sodium sulfate? * (1) sulfuric acid and sodium hydroxide (2) sulfuric acid and potassium hydroxide (3) sulfurous acid and sodium hydroxide (4) sulfurous acid and potassium hydroxide
The reaction between Sulfuric Acid and Sodium Hydroxide forms Water and Sodium Sulphate. Therefore option (1) is the correct answer.
Neutralisation is a chemical reaction where an acid and a base react with each other quantitatively. It is also written as Neutralisation. The acid strength of the reactant gives the pH of the neutralised solution.
Ever experienced a burning sensation in your stomach after eating too much spicy food? This is due to the formation of acid in the stomach. This problem can be cured by the consumption of an antacid which neutralizes the effect of acid, and this reaction is called a neutralisation reaction.
Visit here to learn more about the Neutralisation: https://brainly.com/question/3645180
#SPJ4
48. Nitric acid (HNO3) reacts with aqueous potassium rubidium sulfide, forming hydrogen sulfide gas.
49. CHALLENGE Aqueous potassium iodide reacts with lead nitrate in solution. forming solid lead iodide.
Answer:
I'm sorry, but it's not correct to say that nitric acid (HNO3) reacts with aqueous potassium rubidium sulfide to form hydrogen sulfide gas.
Potassium rubidium sulfide is not a known compound. Potassium sulfide and rubidium sulfide are two different compounds, and they have different chemical formulas and properties. Also, neither of them reacts with nitric acid to form hydrogen sulfide gas.
If you have any other chemistry questions, I'd be happy to help!
Explanation:
A. given that the fermi energy for cu is 7.0 ev at absolute zero, calculate the ef at 300 k. what is the percentage change in ef and what is your conclusion?b. given the fermi energy for cu at absolute zero, calculate the average energy and mean speed per conduction electron at absolute zero and 300 k, and comment.
Answer:
Explanatidescribe everyday events such as shaving, ear peircing, and brushing teeth so that they do not sound like "primitive" customs.
on:
An unknown gas occupies 14.3L at a pressure of 30atm. What is the volume when the pressure is increased to 54atm?
Boyle's Law-
[tex]\:\:\:\:\:\:\:\:\:\:\:\star\:\sf \underline{ P_1 \: V_1=P_2 \: V_2}\\[/tex]
(Pressure is inversely proportional to the volume)
Where-
[tex]\sf V_1[/tex] = Initial volume[tex]\sf V_2[/tex] = Final volume[tex]\sf P_1[/tex] = Initial pressure[tex]\sf P_2[/tex] = Final pressureAs per question, we are given that -
[tex]\sf V_1[/tex] = 14.3L[tex]\sf P_1[/tex] =30atm[tex]\sf P_2[/tex] = 54 atmNow that we have all the required values and we are asked to find out the final volume, so we can put the values and solve for the final volume -
[tex]\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\star\:\sf \underline{ P_1 \: V_1=P_2 \: V_2}[/tex]
[tex]\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf 30 \times 14.3= 54\times V_2\\[/tex]
[tex] \:\:\:\:\:\:\:\:\:\:\longrightarrow \sf V_2 = \dfrac{30 \times 14.3 }{54}\\[/tex]
[tex] \:\:\:\:\:\:\:\:\:\:\longrightarrow \sf V_2 = \cancel{\dfrac{ 429}{54}}\\[/tex]
[tex]\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf V_2 =7.944..........\\[/tex]
[tex] \:\:\:\:\:\:\:\:\:\:\longrightarrow \sf \underline{V_2 = 7.94 \:L }\\[/tex]
Therefore, the volume will become 7.94 L when the pressure is increased to 54 atm.
Find the mass in grams of 3.10 × 10^23 molecules of F2
Answer:
19.56160744 g F2 = 19.6 grams F2
Explanation:
Molar mass of F2: 2(19.00)=38.00 g/mol
Atoms --avogadro's number--> moles --molar mass--> grams
the electronegativity is 2.1 for h and 2.5 for i. based on these electronegativities, hi would be expected to
Based on the electronegativities of 2.1 for H and 2.5 for I, we can predict that HI (hydrogen iodide) would be expected to be a polar covalent molecule, with the iodine atom having a partial negative charge (δ-) and the hydrogen atom having a partial positive charge (δ+).
This is because electronegativity is the measure of an atom's ability to attract shared electrons in covalent bond. In the HI molecule, the iodine atom has a higher electronegativity than the hydrogen atom, which means it has a greater ability to attract the shared electrons in the covalent bond toward itself.
As a result, the electrons in the HI molecule will be more strongly attracted to the iodine atom, causing the iodine atom to have a partial negative charge and the hydrogen atom to have a partial positive charge.
To know more about electronegativities here
https://brainly.com/question/14031645
#SPJ4
What is the frequency of green light that has a wavelength of 499 nm?
(c = 3.00 x 108 m/s)
Answer: ν= [tex]6.01 * 10^{20[/tex] hz
Explanation:
speed of light (c) = wavelength * frequency
[tex]3*10^8 = 499 * 10^{-9} *[/tex] ν
ν= [tex]6.01 * 10^{20[/tex] hz
The speed of light is described as the product of the wavelength and frequency of the light wave. Every color of the spectrum corresponds to a different wavelength and frequency.
To learn more about Frequency,
https://brainly.com/question/29213586
https://brainly.com/question/30466268
once a reaction system reaches equilibrium, the concentrations of reactants and products no longer change. group of answer choices true false
The concentration of reactants and products no longer change at equilibrium. The given statement is true.
Equilibrium in chemicals happens dynamically. Even after equilibrium has been achieved, the forward and reverse reactions still take place. The relative concentrations of reactants and products do not vary for a reaction that is at equilibrium, though, because the rates of the reactions are the same.
All reactions tend to reach a state of chemical equilibrium, or the time when the forward and backward processes are both happening at the same rate. The forward and reverse speeds are equal, which means that at equilibrium, the concentrations of the reactants and products are constant. Equilibrium in chemicals happens dynamically. Even after equilibrium has been achieved, the forward and reverse reactions still take place. Yet because the reaction rates are equivalent.
To know more about equilibrium
https://brainly.com/question/30807709
#SPJ4
in what volume ratio should you mix 1.0 m solutions of nh4cl and nh3 to produce a buffer solution having ph
To determine the volume ratio of NH4Cl and NH3 solutions required to make a buffer of a specific pH, we need to use the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
where:
pH = the desired pH of the buffer
pKa = the dissociation constant of the weak acid component of the buffer
[A-] = the concentration of the conjugate base (NH3) of the weak acid in the buffer
[HA] = the concentration of the weak acid component (NH4Cl) in the buffer
The pKa of NH4Cl is 9.25, so we can use this value in the Henderson-Hasselbalch equation. Let's assume that we want to make a buffer with a pH of 9.0.
At the pH of 9.0, we can calculate the ratio of [A-]/[HA] using the following equation:
[A-]/[HA] = 10^(pH - pKa)
[A-]/[HA] = 10^(9.0 - 9.25) = 0.562
Therefore, we need to mix the NH4Cl and NH3 solutions in a ratio of 0.562:1 to make a buffer with a pH of 9.0. This means that for every 0.562 units of NH3, we need 1 unit of NH4Cl to make the buffer.
To know more about component click here
brainly.com/question/17547547
#SPJ4
which compound has the shortest carbon-carbon bond length? group of answer choices hcch ch3ch3 ch2ch2 all bond lengths are the same.
Four different elements can form bonds with a carbon atom. So, HCCH equals CH. The triple bond is always the shortest bond length, followed by the double bond, and the single bond is the longest. HCCH (ethyne) compound has the shortest carbon-carbon bond length.
As bond order increases, bond length decreases. The distance separating the two nuclei that are joined together is known as the bond length. It varies according to hybridization, the quantity and kind of bonds, and the size of the atoms.
Since the length of a bond is inversely proportional to its strength, triple bonds, which are the strongest bonds, also have the shortest bond lengths. A triple bond length is shortened by the extra electrons' stronger attractive attractions on the nuclei. Bond lengths are listed in decreasing order: single bond ≥ double bond ≥ triple bond.
Learn more about Bond length, here:
https://brainly.com/question/24227967
#SPJ4
if the fe2 concentration in a saturated solution of iron (ii) oxalate is determined to be 5.47x10-4m, what is the calculated ksp for iron (ii) oxalate?
Answer:
If you dey Naija I get one thing for you
Explanation:
Just Dey Play na the thing wey I wan give you
(I) 5.30 × [tex]10^{-9}[/tex]The Ksp value for iron (II) oxalate is 5.30 × [tex]10^{-9}[/tex]
This is because iron (II) oxalate dissociates in water to form Fe2+ and oxalate ions, and then the solubility product constant (Ksp) can be calculated using the concentration of Fe2+ ions in a saturated solution of iron (II) oxalate. The solubility product constant (Ksp) expression for iron (II) oxalate is given by the equation below;FeC2O4 (s) → Fe2+ (aq) + C2O42- (aq)Ksp = [Fe2+][C2O42-]To calculate Ksp, the concentration of the dissociated ions (Fe2+ and C2O42-) in a saturated solution of FeC2O4 must be known. We know that the concentration of Fe2+ ions in a saturated solution of iron (II) oxalate is 5.47 x [tex]10^{-4}[/tex] M. Thus, substituting this value into the Ksp expression, we have;Ksp = [Fe2+][C2O42-] = (5.47 × [tex]10^{-4}[/tex] )(2 × 5.47 × [tex]10^{-4}[/tex] )Ksp = 5.30 × [tex]10^{-9}[/tex] .Therefore, the Ksp value for iron (II) oxalate is 5.30 × [tex]10^{-9}[/tex].
To know more about Ksp click here:
brainly.com/question/29492726
#SPJ11
A gas at 49.3 °C and 893 mm Hg
experiences a temperature
change and ends up with a
volume of 778 mm Hg.
What is the new temperature of the gas?
[?] °C
Question :-
A gas experiences a temperature of 49.3 °C and a pressure of 893 mm Hg. By changing the pressure If it is increased to 778 mm Hg, what is the new temperature of the gas?
Solution :-
Gay-Lussac's Law-[tex]\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf \underline{ \dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}}\\[/tex]
[tex] \:\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf \dfrac{T_2}{P_2} = \dfrac{T_1}{P_1}\\[/tex]
[tex]\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf \underline{T_2 = \dfrac{T_1}{P_1}\times P_2}\\[/tex]
(Volume is constant )
Where-
[tex]\sf P_1[/tex] = Initial pressure[tex]\sf P_2[/tex] = Final pressure[tex]\sf T_1[/tex] = Initial temperature[tex]\sf T_2[/tex] = Final temperatureAs per question, we are given -
[tex]\sf P_1[/tex] = 893 mmHg[tex]\sf T_1[/tex] = 49.3°C[tex]\sf P_2[/tex] = 778 mmHgWe are given the initial temperature in °C.So, we first have to convert the temperature in Celsius to kelvin by adding 273-
[tex]\sf T_1[/tex] = 49.3+ 273 = 322.3 K
Now that we have obtained all the required values, so we can put them into the formula and solve for T₂:
[tex]\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf\underline{ T_2 = \dfrac{T_1}{P_1}\times P_2}\\[/tex]
[tex]\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf T_2 = \dfrac{322.3}{893}\times 778\\[/tex]
[tex]\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf T_2 = 0.361 \times 778\\[/tex]
[tex] \:\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf T_2= 280.856...... K\\[/tex]
[tex] \:\:\:\:\:\:\:\:\:\:\:\:\longrightarrow \sf T_2= (280.86 - 273)\: °C\\[/tex]
[tex]\:\:\:\:\:\: \:\:\:\:\:\:\longrightarrow \sf \underline{T_2 = 7.8 \:°C}\\[/tex]
Therefore,the new temperature of the gas is 7.8°C.What is the pH of a solution with an OH- ion concentration of 3.94e-5?
The pH of a solution can be calculated from the concentration of hydroxide ions using the formula pH = -log[H+]. In this case, the pH of the solution with an [OH-] concentration of 3.94e⁻⁵ M is approximately 9.6.
The concentration of hydroxide ions [OH-] in the solution is 3.94e⁻⁵ M.
The pH of a solution can be calculated using the formula:
pH = -log[H+]
where [H+] is the concentration of hydrogen ions in the solution. To find [H+], we can use the fact that in any aqueous solution at room temperature,
[H+][OH-] = 1.0 × 10⁻¹⁴
Rearranging this equation to solve for [H+], we get:
[H+] = 1.0 × 10⁻¹⁴ / [OH-]
Substituting the given value for [OH-], we get:
[H+] = 1.0 × 10⁻¹⁴ / 3.94e⁻⁵
[H+] = 2.54 × 10⁻¹⁰ M
Now we can use this value to calculate the pH:
pH = -log[H+]
pH = -log(2.54 × 10⁻¹⁰)
pH = 9.595
Therefore, the pH of the solution is approximately 9.6.
To know more about pH please refer: https://brainly.com/question/3050345
#SPJ1
if you had a solution of an unknown ph and had to pick an indicator that you tested in your data, what indicator would be a good choice to use to determine the actual ph of the solution?
To determine the actual pH of a solution with an unknown pH, a good choice of indicator would be a universal indicator.
A universal indicator is a mixture of several different pH-sensitive dyes that change color over a wide pH range, typically from 1 to 14.
This allows for more precise pH determination than single indicators, which are usually limited to a smaller pH range. Here are the steps to use a universal indicator:
1. Obtain a small sample of the unknown solution.
2. Add a few drops of the universal indicator to the solution.
3. Observe the color change in the solution.
4. Compare the color with the provided pH color chart that comes with the universal indicator.
5. Determine the pH value of the solution based on the color observed. Using a universal indicator will allow you to accurately determine the actual pH of the unknown solution.
To know more about universal indicator, refer here:
https://brainly.com/question/26797119#
#SPJ11
At the end of the show, Bill Nye says, "If you'll excuse me, I've got some___________percolation range to compute.
Answer: Soil
Explanation: