You need to provide a clear and detailed solution for the following questions: Question 1 : a) : Verify that the differential equation is exact: (-y sin(x)+7x6y³)dx+(8y7 cos(x)+3x7y²)dy = 0. b) : Find the general solution to the above differential equation. Question 2 : a) : Solve the following linear system in detailed, by using Gauss-Jordan elimination: x-3y - 5z = 2 2x + 5y-z = 1 x + 3y - 3z = -5 b) Is the system homogeneous and consistent? What about the solution type? Is it unique ? Question 3 : Let -3x - 6y=k² + 3k - 18 -6x - 3v = k²-9k +18 Question 3 : Let -3x - 6y = k² + 3k - 18 -6x - 3y = k² - 9k + 18 be a system of equations. a) : If the system is homogeneous, what is the value(s) for k ? b) : Solve the homogeneous system. Is the solution trivial? Is the solution unique ?

Answers

Answer 1

1a: The given differential equation is not exact.

1b: The general solution to the above differential equation is y = (x^7 - C)/(7x^6), where C is an arbitrary constant.

2a: The solution to the linear system using Gauss-Jordan elimination is x = 1, y = -1, z = -1.

2b: The system is homogeneous and consistent. The solution is unique.

For Question 1a, to determine if a differential equation is exact, we need to check if the partial derivatives of the coefficients with respect to the variables satisfy a certain condition. In this case, the equation is not exact because the partial derivative of (-y sin(x)+7x^6y³) with respect to y is not equal to the partial derivative of (8y^7 cos(x)+3x^7y²) with respect to x.

Moving on to Question 1b, we can find the general solution by integrating the equation. Integrating the terms with respect to their respective variables, we obtain y = (x^7 - C)/(7x^6), where C is the constant of integration. This represents the family of solutions to the given differential equation.

In Question 2a, we are asked to solve a linear system using Gauss-Jordan elimination. By performing the necessary row operations, we find the solution x = 1, y = -1, and z = -1.

Regarding Question 2b, the system is homogeneous because the right-hand side of each equation is zero. The system is consistent because it has a solution. Furthermore, the solution is unique since there are no free variables in the system after performing Gauss-Jordan elimination.

Learn more about differential equation

brainly.com/question/32645495

#SPJ11


Related Questions

You are dealt 6 cards from a standard deck of 52 cards. How many
ways can you receive 2 pairs and 2 singletons?

Answers

There are 32,606,080 ways to receive 2 pairs and 2 singletons from a standard deck of 52 cards.

To calculate the number of ways to receive 2 pairs and 2 singletons from a standard deck of 52 cards, we can break it down into steps:

Step 1: Choose the two ranks for the pairs.

There are 13 ranks in a deck of cards, and we need to choose 2 of them for the pairs. This can be done in C(13, 2) = 13! / (2! * (13-2)!) = 78 ways.

Step 2: Choose the suits for each pair.

Each pair can have any of the 4 suits, so there are 4 choices for the first pair and 4 choices for the second pair. This gives us 4 * 4 = 16 ways.

Step 3: Choose the ranks for the singletons.

We have already chosen 2 ranks for the pairs, so we have 11 ranks left to choose from for the singletons. This can be done in C(11, 2) = 11! / (2! * (11-2)!) = 55 ways.

Step 4: Choose the suits for the singletons.

Each singleton can have any of the 4 suits, so there are 4 choices for the first singleton and 4 choices for the second singleton. This gives us 4 * 4 = 16 ways.

Step 5: Choose the positions for the cards.

Out of the 6 cards dealt, the two pairs can be placed in any 2 out of the 6 positions, and the singletons can be placed in any 2 out of the remaining 4 positions. This can be calculated as C(6, 2) * C(4, 2) = 6! / (2! * (6-2)!) * 4! / (2! * (4-2)!) = 15 * 6 = 90 ways.

Step 6: Multiply the results.

Finally, we multiply the results from each step to get the total number of ways:

78 * 16 * 55 * 16 * 90 = 32,606,080.

Therefore, there are 32,606,080 ways to receive 2 pairs and 2 singletons from a standard deck of 52 cards.

Learn more about singleton set here:brainly.com/question/31922243

#SPJ11

A regular polygon of (2p+1) sides has 140 degrees as the size of each interior angle,find p​

Answers

For a regular polygon with (2p + 1) sides and each interior angle measuring 140 degrees, the value of p is 4.

In a regular polygon, all interior angles have the same measure. Let's denote the measure of each interior angle as A.

The sum of the interior angles in any polygon can be found using the formula: (n - 2) * 180 degrees, where n is the number of sides of the polygon. Since we have a regular polygon with (2p + 1) sides, the sum of the interior angles is:

(2p + 1 - 2) * 180 = (2p - 1) * 180.

Since each interior angle of the polygon measures 140 degrees, we can set up the equation:

A = 140 degrees.

We can find the value of p by equating the measure of each interior angle to the sum of the interior angles divided by the number of sides:

A = (2p - 1) * 180 / (2p + 1).

Substituting the value of A as 140 degrees, we have:

140 = (2p - 1) * 180 / (2p + 1).

To solve for p, we can cross-multiply:

140 * (2p + 1) = 180 * (2p - 1).

Expanding both sides of the equation:

280p + 140 = 360p - 180.

Moving the terms involving p to one side and the constant terms to the other side:

280p - 360p = -180 - 140.

-80p = -320.

Dividing both sides by -80:

p = (-320) / (-80) = 4.

Therefore, the value of p is 4.

For more such question on polygon. visit :

https://brainly.com/question/29425329

#SPJ8

2.1. The following is a recipe for making 18 scones: 1 cup white sugar, 2
1
​ cup butter, 2 teaspoons vanilla essence, 1 2
1
​ cups flour, 2 eggs, 1 4
3
​ teaspoons baking powder, 2
1
​ cup of milk. On your birthday you decide to use this recipe to make scones for the staff at your school. How would you adjust the recipe so that you can make 60 scones? (10) 2.2. Carol, a Grade 3 learner, has a heart rate of 84 beats per minute. Calculate how many times her heart will beat in: 2.2.1. 5 minutes (2) 2.2.2. 30 seconds (3) 2.2.3. 1 hour 2.3. Mr Thupudi travelled in his car for 5 hours from Johannesburg to Durban at an average speed of 120 km/h (kilometres per hour). How long will it take Mr Thupudi's to travel from Johannesburg to Durban if the car travels at an average speed of 100 km/h ? (4)

Answers

It will take Mr. Thupudi 6 hours to travel from Johannesburg to Durban at 100 km/h.

2.1. To make 18 scones we need:

1 cup of white sugar

2 1/2 cups of butter

2 teaspoons of vanilla essence

1 1/2 cups of flour

2 eggs

1 1/4 teaspoons of baking powder

2 1/2 cups of milk.

Now, to make 60 scones, we need to multiply the ingredients by 60/18, which is 3.3333333333. Since we cannot add one-third of an egg, we must round up or down for each item. Thus, we will need:

3 cups of white sugar

7 cups of butter

6.67 teaspoons of vanilla essence (rounded to 6 or 7)

3 cups of flour

6 eggs

1 teaspoon of baking powder

7 cups of milk.

2.2. The number of heartbeats in a given time period is calculated as:

Heartbeats = Heart rate × Time

2.2.1. 5 minutes:

Heartbeats = 84 × 5 = 420

2.2.2. 30 seconds:

Heartbeats = 84 × 0.5 = 42

2.2.3. 1 hour:

Heartbeats = 84 × 60 = 5040

2.3. We can use the formula for speed, distance, and time to answer this question:

Distance = Speed × Time

If we know the distance from Johannesburg to Durban, we can find out how long it takes Mr. Thupudi to travel at a speed of 120 km/h.

Using speed, distance, and time formulas, we can write two equations:

Distance1 = Speed1 × Time1

Distance2 = Speed2 × Time2

Since the distance between Johannesburg and Durban is constant, we can write the following equation:

Distance1 = Distance2

Speed1 × Time1 = Speed2 × Time2

We know that the distance from Johannesburg to Durban is D km. We can solve for D using the formula above:

D/120 = 5

D = 600 km

Now we can calculate the time it will take to travel at 100 km/h using the same formula:

D = Speed × Time

Time = Distance/Speed

Time = 600/100

Time = 6 hours

Thus, it will take Mr. Thupudi 6 hours to travel from Johannesburg to Durban at 100 km/h.

Learn more about Heartbeats

https://brainly.com/question/30870831

#SPJ11

Discuss the continuity of function f(x,y)=(y^2-x^2/y^2+x^2)^2. Be sure to state any type of discontinuity.

Answers

The function f(x,y) = (y² - x² / y² + x²)² is discontinuous at the origin (0,0) but continuous along any smooth curve that does not pass through the origin.

The function f(x,y) = (y² - x² / y² + x²)² is defined for all values of x and y except where the denominator is equal to 0, since division by 0 is undefined.

Thus, the function is discontinuous at the points where y² + x² = 0,

Which corresponds to the origin (0,0) in the plane.

However, we can check the continuity of the function along any curve that does not pass through the origin.

In fact, we can show that the function is continuous along any smooth curve that does not intersect the origin by using the fact that the function is the composition of continuous functions.

To see this, note that f(x,y) can be written as f(x,y) = g(h(x,y)), where h(x,y) = y² - x² and g(t) = (t / (1 + t))².

Both h(x,y) and g(t) are continuous functions for all values of t, and h(x,y) is continuously differentiable (i.e., smooth) for all values of x and y.

Therefore, by the chain rule for partial derivatives, we can show that f(x,y) is also continuously differentiable (i.e., smooth) along any curve that does not pass through the origin.
This implies that f(x,y) is continuous along any curve that does not pass through the origin.

To learn more about the function visit:

https://brainly.com/question/8892191

#SPJ4

Problem 13 (15 points). Prove that for all natural number n, 52 - 1 is divisible by 8.

Answers

To prove that for all natural numbers n, 52 - 1 is divisible by 8, we need to show that (52 - 1) is divisible by 8 for any value of n.

We can express 52 - 1 as (51 + 1). Now, let's consider the expression (51 + 1) modulo 8, denoted as (51 + 1) mod 8.

Using modular arithmetic, we can simplify the expression as follows:

(51 mod 8 + 1 mod 8) mod 8

Since 51 divided by 8 leaves a remainder of 3, we can write it as:

(3 + 1 mod 8) mod 8

Similarly, 1 divided by 8 leaves a remainder of 1:

(3 + 1) mod 8

Finally, adding 3 and 1, we have:

4 mod 8

The modulus operator returns the remainder of a division operation. In this case, 4 divided by 8 leaves a remainder of 4.

Therefore, (52 - 1) modulo 8 is equal to 4.

Now, since 4 is not divisible by 8 (as it leaves a remainder of 4), we can conclude that the statement "for all natural numbers n, 52 - 1 is divisible by 8" is false.

Learn more about natural numbers here:brainly.com/question/2228445

#SPJ11



Find the surface area of the sphere or hemisphere. Round to the nearest tenth.

sphere: area of great circle ≈32ft²

Answers

The surface area of the sphere is approximately 128.7 ft², and the surface area of the hemisphere is approximately 64.4 ft².

Here is a step-by-step explanation of calculating the surface area of the sphere and hemisphere:

⇒ Given that the area of the great circle is approximately 32 ft², we can find the radius of the sphere using the formula for the area of a circle: Area = πr².

⇒ Rearrange the formula to solve for r:

r² = Area / π.

⇒ Substitute the known area value:

r² = 32 ft² / π.

⇒ Calculate the value of r:

r ≈ √(32 ft² / π).

⇒ Use the radius value to calculate the surface area of the sphere using the formula: Surface Area = 4πr².

Surface Area ≈ 4π(√(32 ft² / π))².

⇒ Divide the surface area of the sphere by 2 to obtain the surface area of the hemisphere, since a hemisphere is half of a sphere.

Surface Area of Hemisphere = Surface Area of Sphere / 2.

⇒ Substitute the calculated value of the surface area of the sphere into the formula:

Surface Area of Hemisphere ≈ (4π(√(32 ft² / π))²) / 2.

⇒ Simplify the expression to find the approximate value of the surface area of the hemisphere.

Therefore, the surface area of the sphere is approximately 128.7 ft², and the surface area of the hemisphere is approximately 64.4 ft².

To know more about calculating the surface area of a sphere, refer here:

https://brainly.com/question/32920264#

#SPJ11

Air at 17 N/s, 25 deg C, and 109 kPa flows inside a 142 mm x 314
mm rectangular duct, Solve for the volume flux if R = 29.1 m/K.
Express your answer in 3 decimal places.

Answers

the volume flux is 1.73 m³/s (rounded to 3 decimal places).

Given:

Mass flow rate = 17 N/s

Temperature = 25 °C

Pressure = 109 kPa

Rectangular duct dimensions = 142 mm x 314 mm

Gas constant = R = 29.1 m/K

Volume flux is defined as the volume of air flowing through a unit area per unit time. To solve for volume flux, we need to first find the velocity of air flowing through the duct and then multiply it with the area of the duct.

Here's how we can do it:

First, we need to find the density of air using the Ideal Gas Law.

pV = nRT where, p = pressure, V = volume, n = number of moles of gas, R = gas constant, T = temperature

We can find the density of air using the formula:

ρ = p / RT where, ρ is the density of air at the given conditions of temperature and pressure

Substituting the values given,

ρ = 109 x 10^3 Pa / (29.1 J/Kg.K x (25 + 273) K)

  = 1.11 kg/m³

Next, we can find the velocity of air using the mass flow rate and the density of air.

= ρAV

where, = mass flow rate, ρ = density, A = area of the duct, V = velocity of air

V = /ρA = (142 x 10^-3 m) x (314 x 10^-3 m)

   = 0.0446 m²

V = 17 / (1.11 x 0.0446)

   = 38.8 m/s

Finally, we can find the volume flux using the velocity of air and the area of the duct.

Q = AV

where, Q = volume flux, A = area of the duct

Q = 38.8 x 0.0446

   = 1.73 m³/s

To learn more on volume flux:

https://brainly.com/question/14007482

#SPJ11

Given U(1,-9),V(5,7),W(-8,-1), and X(x,7). Find x such that UV parallel XW

Answers

The value of x that makes UV parallel to XW is x = -6.

To determine the value of x such that line UV is parallel to line XW, we need to compare the slopes of these two lines.

The slope of line UV can be found using the formula: slope = (change in y)/(change in x).

For UV, the coordinates are U(1, -9) and V(5, 7), so the change in y is 7 - (-9) = 16, and the change in x is 5 - 1 = 4. Therefore, the slope of UV is 16/4 = 4.

Since UV is parallel to XW, the slopes of these two lines must be equal.

The slope of line XW can be determined using the coordinates W(-8, -1) and X(x, 7). Since the y-coordinate of W is -1, and the y-coordinate of X is 7, the change in y is 7 - (-1) = 8.

For two lines to be parallel, their slopes must be equal. Therefore, we equate the slopes:

4 = 8/(x - (-8))

4 = 8/(x + 8)

To solve for x, we can cross-multiply:

4(x + 8) = 8

4x + 32 = 8

4x = 8 - 32

4x = -24

x = -24/4

x = -6

Learn more about UV parallel here :-

https://brainly.com/question/32577924

#SPJ11

Which of the following correlation coefficients represents the strongest relationship between two variables? -.75 +.60 .00 +.30

Answers

The correlation coefficient that represents the strongest relationship between two variables is -0.75.

In correlation coefficients, the absolute value indicates the strength of the relationship between variables. The strength of the association increases with the absolute value's proximity to 1.

The maximum absolute value in this instance is -0.75, which denotes a significant negative correlation. The relevance of the reverse correlation value of -0.75 is demonstrated by the noteworthy unfavorable correlation between the two variables.

To know more about correlation coefficients, visit,

https://brainly.com/question/4219149

#SPJ4

For each expression, first write the expression as a single logarithm. Then, evaluate the expression. (a) log12 (27) + log 12 (64) Write the expression as a single logarithm. 0912( × ) Evaluate the expression. (b) log3(108) log3(4) (c) Write the expression as a single logarithm. 093( [× ) Evaluate the expression. log (1296) - - 3 log6 √6) 2 Write the expression as a single logarithm. log X Evaluate the expression. X

Answers

(a) The expression log₁₂  (27) + log₁₂  (64) can be written as log₁₂  (27 × 64). Evaluating the expression, log₁₂  (27 × 64) equals 4.

(b) The expression log₃ (108) / log₃(4) can be written as log₃ (108 / 4). Evaluating the expression, log₃ (108 / 4) equals 3.

(c) The expression log (1296) - 3 log₆(√6)² can be written as log (1296) - 3 log₆ (6). Evaluating the expression, log (1296) - 3 log₆ (6) equals 4.

(a) In this expression, we are given two logarithms with the same base 12. To combine them into a single logarithm, we can use the property of logarithms that states log base a (x) + log base a (y) equals log base a (xy). Applying this property, we can rewrite log₁₂ (27) + log₁₂ (64) as log₁₂  (27 × 64). Evaluating the expression, 27 × 64 equals 1728. Therefore, log₁₂  (27 × 64) simplifies to log₁₂  (1728).

(b) In this expression, we have two logarithms with the same base 3. To write them as a single logarithm, we can use the property log base a (x) / log base a (y) equals log base y (x). Applying this property, we can rewrite log3 (108) / log₃  (4) as log₄ (108). Evaluating the expression, 108 can be expressed as 4³ × 3. Therefore, log₄ (108) simplifies to log₄ (4³ × 3), which further simplifies to log₄ (4³) + log₄ (3). The logarithm log₄(4³) equals 3, so the expression becomes 3 + log₄ (3).

(c) In this expression, we need to simplify a combination of logarithms. First, we can simplify √6²  to 6. Then, we can use the property log base a [tex](x^m)[/tex]equals m log base a (x) to rewrite 3 log6 (6) as log6 (6³). Simplifying further, log₆ (6³) equals log₆ (216). Finally, we can apply the property log a (x) - log a (y) equals log a (x/y) to combine log (1296) and log6 (216). This results in log (1296) - log₆ (216), which simplifies to log (1296 / 216). Evaluating the expression, 1296 / 216 equals 6. Hence, the expression log (1296) - 3 log₆ (√6)²  evaluates to log (6).

Learn more about log

brainly.com/question/32621120

#SPJ11

Integers between-1 to +1

Answers

There will be only one integer between these two and that is 0
The integers between -1 to +1 should be 0

consider the lines l1 : ⟨2 −4t, 1 3t, 2t⟩ and l2 : ⟨s 5, s −3, 2 −4s⟩. (a) show that the lines intersect. (b) find an equation for the the plane which contains both lines. (c) [c] find the acute angle between the lines. give the exact value of the angle, and then use a calculator to approximate the angle to 3 decimal places.

Answers

a. Both the line intersect each other.

b. The equation of the plane containing both the lines is -6x+-14y+9z=d.

c. The acute angle between the lines is 0.989

Consider the lines l1 and l2 defined as ⟨2 −4t, 1+3t, 2t⟩ and ⟨s, 5s, 2−4s⟩, respectively. To show that the lines intersect, we can set the x, y, and z coordinates of the lines equal to each other and solve for the variables t and s. By finding values of t and s that satisfy the equations, we can demonstrate that the lines intersect.

Additionally, to find the equation for the plane containing both lines, we can use the cross product of the direction vectors of the lines. Lastly, to determine the acute angle between the lines, we can apply the dot product formula and solve for the angle using trigonometric functions.

(a) To show that the lines intersect, we set the x, y, and z coordinates of l1 and l2 equal to each other:

2 - 4t = s       (equation 1)

1 + 3t = 5s      (equation 2)

2t = 2 - 4s     (equation 3)

By solving this system of equations, we can find values of t and s that satisfy all three equations. This would indicate that the lines intersect at a specific point.

(b) To find the equation for the plane containing both lines, we can calculate the cross product of the direction vectors of l1 and l2. The direction vector of l1 is ⟨-4, 3, 2⟩, and the direction vector of l2 is ⟨1, 5, -4⟩. Taking the cross product of these vectors, we obtain the normal vector of the plane. The equation of the plane can then be written in the form ax + by + cz = d, using the coordinates of a point on one of the lines. The equation of the plane is -6x+-14y+9z=d.

(c) To find the acute angle between the lines, we can use the dot product formula. The dot product of the direction vectors of l1 and l2 is equal to the product of their magnitudes and the cosine of the angle between them. The dot product is 3

and cosine(3) = 0.989

So, the acute angle will be 0.989

Learn more about Acute Angle here:

brainly.com/question/16775975

#SPJ11

X is a negative integer
Quantity A Quantity B
(2^x)^2 (x^2)^x
o Quantity A is greater
o Quantity B is greater
o The two quantities are equal
o The relationship cannot be determined from the information given.

Answers

The relationship between Quantity A and Quantity B cannot be determined from the information given.

The relationship between Quantity A and Quantity B cannot be determined without knowing the specific value of the negative integer, x. The expressions [tex](2^x)^2[/tex] and [tex](x^2)^x[/tex] involve exponentiation with a negative base, which can lead to different results depending on the value of x. Without knowing the value of x, we cannot determine whether Quantity A is greater, Quantity B is greater, or if the two quantities are equal.

To know more about relationship,

https://brainly.com/question/30080690

#SPJ11

Find the general solution of xy′′−(2x+1)y′+(x+1)y=0, given that y1​=x is a solution. Explain in detail. b) Can you find the general solution of xy′′−(2x+1)y′+(x+1)y=x2, using methods studied in class? Explain in detail.

Answers

A. The find the general solution, we can use the method of reduction of order. The general solution of the differential equation[tex]xy'' - (2x+1)y' + (x+1)y = 0[/tex], with y1 = x as a solution, is given by [tex]y = Cx + xln|x|,[/tex] where C is an arbitrary constant.

B. Using method of reduction of order.

Since y1 = x is a solution, we can assume a second linearly independent solution of the form [tex]y2 = v(x)y1,[/tex] where v(x) is a function to be determined.

Differentiating y2, we get [tex]y2' = v'x + v,[/tex] and differentiating again, [tex]y2'' = v''x + 2v'.[/tex]

Substituting these derivatives into the differential equation, we have:

[tex]x(v''x + 2v') - (2x + 1)(v'x + v) + (x + 1)(vx) = 0.[/tex]

Expanding and simplifying, we get:

[tex]x^2v'' + (2x - 1)v' + xv = 0.[/tex]

Since y1 = x is a solution, we substitute this into the equation:

[tex]x^2v'' + (2x - 1)v' + xv = 0, where,y1 = x.[/tex]

Substituting y1 = x, we have:

[tex]x^2v'' + (2x - 1)v' + xv = 0.[/tex]

We can simplify this equation by dividing throughout by [tex]x^2:[/tex]

[tex]v'' + (2 - 1/x)v' + v/x = 0.[/tex]

Next, we let [tex]v = u/x[/tex], which gives [tex]v' = u'/x - u/x^2[/tex] and [tex]v'' = u''/x - 2u'/x^2 + 2u/x^3.[/tex]

Substituting these derivatives back into the equation and simplifying, we get:

[tex]u'' = 0.[/tex]

The resulting equation is a second-order linear homogeneous differential equation with constant coefficients.

Solving it, we find that u = C1x + C2, where C1 and C2 are arbitrary constants.

Finally, substituting v = u/x and y2 = vx into the general solution form, we have:

[tex]y = Cx + Dxe^(-x)[/tex], where C and D are arbitrary constants.

Note: For part (b), the equation [tex]xy′′ - (2x + 1)y′ + (x + 1)y = x^2[/tex] is not in the form of a homogeneous linear differential equation, and the methods studied in class for solving homogeneous equations may not directly apply.

Additional techniques, such as variations of parameters or power series solutions, may be needed to find the general solution in this case.

Learn more about differential equations:

brainly.com/question/32607880

#SPJ11



What is the sixth term in the expansion of (2 x-3 y)⁷?

(F) 21 x² y⁵

(G) -126 x² y⁵

(H) -20,412 x² y⁵

(I) 20,412 x² y⁵

Answers

The sixth term in the expansion of (2x - 3y)⁷ is (H) -20,412x²y⁵.

When expanding a binomial raised to a power, we can use the binomial theorem or Pascal's triangle to determine the coefficients and exponents of each term.

In this case, the binomial is (2x - 3y) and the power is 7. We want to find the sixth term in the expansion.

Using the binomial theorem, the general term of the expansion is given by:

[tex]C(n, r) = (2x)^n^-^r * (-3y)^r[/tex]

where C(n, r) represents the binomial coefficient and is calculated using the formula C(n, r) = n! / (r! * (n-r)!)

In this case, n = 7 (the power) and r = 5 (since we want the sixth term, which corresponds to r = 5).

Plugging in the values, we have:

[tex]C(7, 5) = (2x)^7^-^5 * (-3y)^5[/tex]

C(7, 5) = 7! / (5! * (7-5)!) = 7! / (5! * 2!) = 7 * 6 / (2 * 1) = 21

Simplifying further, we have:

21 * (2x)² * (-3y)⁵ = 21 * 4x² * (-243y⁵) = -20,412x²y⁵

Therefore, the sixth term in the expansion of (2x - 3y)⁷ is -20,412x²y⁵, which corresponds to option (H).

Learn more about binomial here:

https://brainly.com/question/30339327

#SPJ11

Problem 13 (15 points). Prove that for all natural number n, 52n-1 is divisible by 8.

Answers

Answer:

false

Step-by-step explanation:

We can prove or disprove that (52n - 1) is divisible by 8 for every natural number n using mathematical induction.

Starting with the base case:

When n = 1,

(52n - 1) = ((52 · 1) - 1)

              = 52 - 1

              = 51

which is not divisible by 8.

Therefore, (52n - 1) is NOT divisible by 8 for every natural number n, and the conjecture is false.

Answer:

  25^n -1 is divisible by 8

Step-by-step explanation:

You want a proof that 5^(2n)-1 is divisible by 8.

Expand

We can write 5^(2n) as (5^2)^n = 25^n.

Remainder

The remainder from division by 8 can be found as ...

  25^n mod 8 = (25 mod 8)^n = 1^n = 1

Less 1

Subtracting 1 from 25^n mod 8 gives 0, meaning ...

  5^(2n) -1 = (25^n) -1 is divisible by 8.

__

Additional comment

Let 2n+1 represent an odd number for any integer n. Then consider any odd number to the power 2k:

  (2n +1)^(2k) = ((2n +1)^2)^k = (4n² +4n +1)^k

The remainder mod 8 will be ...

  ((4n² +4n +1) mod 8)^k = ((4n(n+1) +1) mod 8)^k

Recognizing that either n or (n+1) will be even, and 4 times an even number will be divisible by 8, the value of this expression is ...

  ≡ 1^k = 1

Thus any odd number to the 2n power, less 1, will be divisible by 8. The attachment show this for a few odd numbers (including 5) for a few powers.

<95141404393>

Alan, Betty, and Carol invested in a corporation in the ratio of 8 9 10 respectively if they divide the profit of $56.700 proportionally to their investment, how much will each receive Alan will receive S Betty will receive S Carol will receive C

Answers

Alan will receive $16,800, Betty will receive $18,900, and Carol will receive $21,000.

In order to calculate the amount each person will receive, we need to determine the total investment made by Alan, Betty, and Carol. The total ratio is 8+9+10=27.

To find Alan's share, we divide his ratio (8) by the total ratio (27) and multiply it by the total profit ($56,700). Therefore, Alan will receive (8/27) * $56,700 = $16,800.

For Betty, we follow the same process. Her ratio is 9, so her share will be (9/27) * $56,700 = $18,900.

Similarly, for Carol, her ratio is 10, so her share will be (10/27) * $56,700 = $21,000.

To summarize, Alan will receive $16,800, Betty will receive $18,900, and Carol will receive $21,000 from the total profit of $56,700 based on their respective investment ratios.

For more similar questions on investment ratios

brainly.com/question/28063973

#SPJ8

which of the following is an example of a conditioanl probability?

Answers

"the probability that a student plays video games given that the student is female." is an example of a conditional probability.The correct answer is option C.

A conditional probability is a probability that is based on certain conditions or events occurring. Out of the options provided, option C is an example of a conditional probability: "the probability that a student plays video games given that the student is female."

Conditional probability involves determining the likelihood of an event happening given that another event has already occurred. In this case, the event is a student playing video games, and the condition is that the student is female.

The probability of a female student playing video games may differ from the overall probability of any student playing video games because it is based on a specific subset of the population (female students).

To calculate this conditional probability, you would divide the number of female students who play video games by the total number of female students.

This allows you to focus solely on the subset of female students and determine the likelihood of them playing video games.

In summary, option C is an example of a conditional probability as it involves determining the probability of a specific event (playing video games) given that a condition (being a female student) is satisfied.

For more such questions probability,click on

https://brainly.com/question/251701

#SPJ8

Use Cramer's rule to compute the solution of the system. X₁ + X₂ - 4x1 X2 + - x₂ = X3 H 3 2x3 = 0 2x3 WHEN 2 x₁ = : X₂ = (Type integers or simplified fractions.)

Answers

A system of linear equations with as many equations as unknowns can be solved explicitly using Cramer's rule in linear algebra whenever the system has a single solution. Using Cramer's rule, we get:

x₁ = (-x₃) / 5
x₂ = (4x₃) / 5

as x₁ and x₂ are expressed as fractions in terms of x₃.

First, let's write the system of equations in matrix form:
| 1   1 | | x₁ |   | x₃ |
| -4  -1 | | x₂ | = | 0   |
| 3   2 |          | 2   |

Now, we'll calculate the determinant of the coefficient matrix, which is:
D = | 1   1 |
      | -4  -1 |
To calculate D, we use the formula: D = (a*d) - (b*c)
D = (1 * -1) - (1 * -4) = 1 + 4 = 5

Next, we'll calculate the determinant of the x₁ column matrix, which is:
D₁ = | x₃   1 |
       | 0   -1 |
D₁ = (a*d) - (b*c)
D₁ = (x₃ * -1) - (1 * 0) = -x₃

Similarly, we'll calculate the determinant of the x₂ column matrix, which is:
D₂ = | 1   x₃ |
       | -4  0  |
D₂ = (a*d) - (b*c)
D₂ = (1 * 0) - (x₃ * -4) = 4x₃

Finally, we can calculate the values of x₁ and x₂ by dividing D₁ and D₂ by D:
x₁ = D₁ / D = (-x₃) / 5
x₂ = D₂ / D = (4x₃) / 5

Therefore, x₁ = (-x₃) / 5 and x₂ = (4x₃) / 5

Learn more about Cramer's rule:

brainly.com/question/20354529

#SPJ11

A dietitian in a hospital is to arrange a special diet using three foods, L,M, and N. Each ounce of food L contains 20 units of calcium, 5 units of iron, 20 units of vitamin A, and 20 units of cholesterol. Each ounce of food M contains 10 units of calcium, 5 units of iron, 30 units of vitamin A, and 20 units of cholesterol. Each ounce of food N contains 10 units of calcium, 5 units of iron, 20 units of vitamin A, and 18 units of cholesterol. Select the correct choice below and fill in any answer boxes present in your choice. If the minimum daily requirements are 340 units of calcium, 110 units of iron, and 480 units of vitamin A, how many ounces of each food should be used to meet the minimum requirements and at the same time minimize the cholesterol intake? A. The special diet should include x1​= ounces of food L,x2​=4 ounces of food M, and x3​=6 ounces of food N. B. There is no way to minimze the cholesterol intake. Select the correct choice below and fill in any answer boxes present in your choice. What is the minimum cholesterol intake? A. The minimum cholesterol intake is units. B. There is no minimum cholesterol intake.

Answers

The special diet should include 3 ounces of food L, 4 ounces of food M, and 6 ounces of food N. The correct option is A. The minimum cholesterol intake is 248 units, and the correct option is A.

To minimize the cholesterol intake while meeting the minimum requirements, we need to find the combination of foods L, M, and N that provides enough calcium, iron, and vitamin A.

Let's set up the problem using a system of linear equations. Let x₁, x₂, and x₃ represent the number of ounces of foods L, M, and N, respectively.

First, let's set up the equations for the nutrients:
20x₁ + 10x₂ + 10x₃ = 340 (calcium requirement)
5x₁ + 5x₂ + 5x₃ = 110 (iron requirement)
20x₁ + 30x₂ + 20x₃ = 480 (vitamin A requirement)

To minimize cholesterol intake, we need to minimize the expression:
20x₁ + 20x₂ + 18x₃ (cholesterol intake)

Now we can solve the system of equations using any method such as substitution or elimination.

By solving the system of equations, we find that the special diet should include:
x₁ = 3 ounces of food L
x₂ = 4 ounces of food M
x₃ = 6 ounces of food N

Therefore, choice A is correct: The special diet should include 3 ounces of food L, 4 ounces of food M, and 6 ounces of food N.

To find the minimum cholesterol intake, substitute the values of x₁, x₂, and x₃ into the expression for cholesterol intake:
20(3) + 20(4) + 18(6) = 60 + 80 + 108 = 248 units

Therefore, the minimum cholesterol intake is 248 units, and the correct choice is A: The minimum cholesterol intake is 248 units.

To know more about system of linear equations, refer to the link below:

https://brainly.com/question/20379472#

#SPJ11

B=[1 2 3 4 1 3; 3 4 5 6 3 4]
Construct partition of matrix into 2*2 blocks

Answers

The partition of matrix B into 2x2 blocks is:

B = [1 2 | 3 4 ;

3 4 | 5 6 ;

------------

1 3 | 4 1 ;

3 4 | 6 3]

To construct the partition of the matrix B into 2x2 blocks, we divide the matrix into smaller submatrices. Each submatrix will be a 2x2 block. Here's how it would look:

B = [B₁ B₂;

B₃ B₄]

where:

B₁ = [1 2; 3 4]

B₂ = [3 4; 5 6]

B₃ = [1 3; 3 4]

B₄ = [4 1; 6 3]

Know more about matrix here:

https://brainly.com/question/29132693

#SPJ11

1. Let sequence (a) is defined by a₁ = 1, a+1=1+ (a) Show that the sequence (a) is monotone. (b) Show that the sequence (2) is bounded. 1 1+ an (n ≥ 1).

Answers

The given sequence is monotone and is bounded below but is not bounded above. Therefore, the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.

For the sequence (a), the definition is given by: a1 = 1 and a+1 = 1 + an (n ≥ 1).

Therefore,a₂ = 1 + a₁= 1 + 1 = 2

a₃ = 1 + a₂ = 1 + 2 = 3

a₄ = 1 + a₃ = 1 + 3 = 4

a₅ = 1 + a₄ = 1 + 4 = 5 ...

The given sequence is called a recursive sequence since each term is described in terms of one or more previous terms.

For the given sequence (a),

each term of the sequence can be represented as:

a₁ < a₂ < a₃ < a₄ < ... < an

Therefore, the sequence (a) is monotone.

(b)The given sequence is given by: a₁ = 1 and a+1 = 1 + an (n ≥ 1).

Thus, a₂ = 1 + a₁ = 1 + 1 = 2

a₃ = 1 + a₂ = 1 + 2 = 3

a₄ = 1 + a₃ = 1 + 3 = 4...

From this, we observe that the sequence is strictly increasing and hence it is bounded from below. However, the sequence is not bounded from above, hence (2) is not bounded

This means that the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.

This can be shown graphically by plotting the terms of the sequence against the number of terms as shown below:

Graphical representation of sequence(a)The graph shows that the sequence is monotone since the terms of the sequence continue to increase but the sequence is not bounded from above as the terms of the sequence continue to increase indefinitely.

The given sequence (a) is monotone and (2) is bounded below but is not bounded above. Therefore, the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.

To know more about strictly increasing visit:

brainly.com/question/30098941

#SPJ11

In 1-2 pages, explain the difference between burglary and larceny. Provide and example of each. Are these types of cases easy to solve? What is the success rate of solving these types of cases in your jurisdiction?

Answers

Burglary and larceny are both criminal offences however, burglary refers to the illegal entry of a structure with criminal intent while larceny us taking someone's personal property without consent.

Burglary and larceny are two distinct types of criminal activities that differ in terms of the nature of the act, the intent, and the location of the offense. Burglary is generally defined as the unlawful entry of a building with the intent to commit a crime, whereas larceny refers to the illegal taking of someone else's personal property with the intent to deprive the owner of it.

Burglary refers to the illegal entry of a structure with the intent to commit a crime, such as theft, assault, or vandalism. The act of breaking into someone else's home, for example, is a common form of burglary. The offense of burglary is not limited to residential areas, as it may also occur in commercial structures, such as office buildings or stores.

Larceny, on the other hand, refers to the illegal taking of someone else's personal property without their consent and with the intent to deprive the owner of it. The act of shoplifting or pickpocketing, for example, is a common form of larceny. Larceny may also occur when someone steals someone else's vehicle or breaks into their home to take something without permission.

An example of burglary would be a thief breaking into a jewelry store at night to steal valuable items. An example of larceny would be a person stealing someone else's purse off a park bench.

The success rate of solving these types of cases in a particular jurisdiction would depend on various factors, including the level of law enforcement resources, the expertise of the investigating officers, and the cooperation of the community.

In general, burglary cases may be more challenging to solve than larceny cases, as they often involve more complex investigations, such as the use of forensic evidence and surveillance footage. Larceny cases, on the other hand, may be easier to solve, as they typically involve straightforward investigations based on witness statements and physical evidence.

Learn more about Burglary:

https://brainly.com/question/10411138

#SPJ11

When written in stand form, the product of (3 + x ) and (2x-5) is

Answers

To write the product of (3 + x) and (2x - 5) in standard form, we must multiply the two expressions and simplify the result.

Step-by-step explanation:

(3 + x) (2x - 5)

Using the distributive property of multiplication, we can expand the expression:

[tex]=3(2x)+3(-5)+x(2x)+x(-5)[/tex]

[tex]= 6x-15+2x^2-5x[/tex]

Next, we combine like terms:

[tex]=2x^2+6x-5x-15[/tex]

[tex]= 2x^2+x-15[/tex]

Answer:

Therefore, the product of (3 + x) and (2x - 5) in standard form is [tex]2x^2+x-15[/tex]



If T S=2 x, P M=20 , and Q R=6 x , find x .

Answers

The value of x is 10.

To find the value of x, we can set up an equation using the given information. We have T S = 2x, P M = 20, and Q R = 6x.

Since P M = 20, we can substitute this value into the equation, giving us T S = 2x = 20.

To solve for x, we divide both sides of the equation by 2: 2x/2 = 20/2.

This simplifies to x = 10, which means the value of x is 10.

By substituting x = 10 into the equation Q R = 6x, we find that Q R = 6(10) = 60.

Therefore, the value of x that satisfies the given conditions is 10.

Learn more about Value

brainly.com/question/30145972

brainly.com/question/30035551

#SPJ11

The table below represents an object thrown into the air.

A 2-column table with 7 rows. Column 1 is labeled Seconds, x with entries 0.5, 1, 1.5, 2, 2.5, 3, 3.5. Column 2 is labeled Meters, y with entries 28, 48, 60, 64, 60, 48, 28.

Is the situation a function?

Answers

No, the situation represented by the table is not a function.

In order for a relation to be a function, each input value (x) must correspond to exactly one output value (y). If there is any input value that has more than one corresponding output value, the relation is not a function.

Looking at the table, we can observe that the input values (seconds) are repeated in multiple rows. For example, the input value 2 appears twice with corresponding output values of 64 and 60. Similarly, the input value 3 appears twice with corresponding output values of 48 and 28.

Since there are multiple y-values associated with the same x-value, we can conclude that the relation represented by the table violates the definition of a function. It fails the vertical line test, which states that a relation is not a function if there exists a vertical line that intersects the graph of the relation at more than one point.

In the given situation, the object thrown into the air seems to follow a certain trajectory, but the table provided does not accurately represent a mathematical function to describe that trajectory. Additional information or a different representation is needed to determine a function that describes the object's motion accurately.

For more question on function visit:

https://brainly.com/question/11624077

#SPJ8

Use the half-life infomation from this table to work the exercise. Geologists have determined that a crater was formed by a volcanic eruption. Chemical analysis of a wood chip assumed to be from a tree that died during the eruption has shown that it contains approximately 300 of its original carboh-14. Estimate how:leng ago the velcanic erupti bn occurred

Answers

According to given information, the volcanic eruption occurred about 11,400 years ago.

The half-life information from the given table can be used to estimate the time since the volcanic eruption. Geologists determined that a crater was formed by a volcanic eruption.

A wood chip from a tree that died during the eruption has been analyzed chemically. The analysis has shown that it contains approximately 300 of its original carbon-14.

It is required to estimate how long ago the volcanic eruption occurred.

Carbon-14 has a half-life of 5,700 years. This means that after every 5,700 years, half of the carbon-14 atoms decay. So, the remaining half of the carbon-14 will decay after the next 5,700 years.

Therefore, it can be inferred that after two half-lives (2 x 5,700 years), only one-fourth of the carbon-14 will remain in the wood chip.

Let's assume that initially, the wood chip contained 100% of the carbon-14 atoms. But after the first half-life (5,700 years), only 50% of the carbon-14 atoms will remain.

After the second half-life (another 5,700 years), only 25% of the carbon-14 atoms will remain in the wood chip. But the given problem states that approximately 300 of its original carbon-14 remains in the wood chip.

This means that there is one-fourth (25%) of the original carbon-14 atoms in the wood chip. This implies that the eruption happened two half-lives (2 x 5,700 years) ago.

Now, we can calculate the time since the volcanic eruption occurred using the formula:

t = n x t1/2 where,

t = time elapsed since the volcanic eruption

n = number of half-lives

t1/2 = half-life of carbon-14

From the above discussion, it is inferred that n = 2.

Also, t1/2 = 5,700 years.

Substituting the given values in the formula: t = 2 x 5,700t = 11,400 years

Therefore, the volcanic eruption occurred about 11,400 years ago.

To know more about half-life information, visit:

https://brainly.com/question/31494557

#SPJ11

A positive integer is 7 less than another. If 5 times the reciprocal of the smaller integer is subtracted from 3 times the reciprocal of the larger integer, then the result is Find all pairs of integers that satisfy this condition Select the correct answer below: O 12,19 O 12,5 19,26 no solutions

Answers

Let's represent the smaller integer by x. Larger integer is 7 more than the smaller integer, so it can be represented as (x+7). The reciprocal of an integer is the inverse of the integer, meaning that 1 divided by the integer is taken. The reciprocal of x is 1/x and the reciprocal of (x+7) is 1/(x+7). The smaller integer is 6 and the larger integer is (6+7) = 13.

Now we can use the information given in the problem to form an equation. 3 times the reciprocal of the larger integer subtracted by 5 times the reciprocal of the smaller integer is equal to 4/35.(3/x+7)−(5/x)=4/35

Multiplying both sides by 35x(x+7) to eliminate fractions:105x − 15(x+7) = 4x(x+7)

Now we have an equation in standard form:4x² + 23x − 105 = 0We can solve this quadratic equation by factoring, quadratic formula or by completing the square.

After solving the quadratic equation we can find two integer solutions:

x = -8, x = 6.25Since we are given that x is a positive integer, only the solution x = 6 satisfies the conditions.

Therefore, the smaller integer is 6 and the larger integer is (6+7) = 13.

The only pair of integers that satisfy the given condition is (6,13).Answer: One pair of integers that satisfies the given condition is (6,13).

To know more about integer visit :

https://brainly.com/question/490943

#SPJ11

The line L1 has an equation r1=<6,4,11>+n<4,2,9> and the line L2 has an equation r2=<−3,10,,2>+m<−5,8,0> Different values of n give different points on line L1. Similarly, different values of m give different points on line L2. If the two lines intersect then r1=r2 at the point of intersection. If you can find values of n and m.which satisfy this condition then the two lines intersect. Show the lines intersect by finding these values n and m hence find the point of intersection. n= ?

Answers

The values of n and m that satisfy the condition for intersection are n = -1 and m = -1.

The point of intersection for the lines L1 and L2 is (2, 2, 2).

To find the values of n and m that satisfy the condition for intersection, we need to equate the two equations for r1 and r2:

r1 = <6, 4, 11> + n<4, 2, 9>

r2 = <-3, 10, 2> + m<-5, 8, 0>

Setting the corresponding components equal to each other, we get:

6 + 4n = -3 - 5m --> Equation 1

4 + 2n = 10 + 8m --> Equation 2

11 + 9n = 2 --> Equation 3

Let's solve these equations to find the values of n and m:

From Equation 3, we have:

11 + 9n = 2

9n = 2 - 11

9n = -9

n = -1

Now substitute the value of n into Equation 1:

6 + 4n = -3 - 5m

6 + 4(-1) = -3 - 5m

6 - 4 = -3 - 5m

2 = -3 - 5m

5m = -3 - 2

5m = -5

m = -1

Therefore, the values of n and m that satisfy the condition for intersection are n = -1 and m = -1.

To find the point of intersection, substitute these values back into either of the original equations. Let's use r1:

r1 = <6, 4, 11> + n<4, 2, 9>

= <6, 4, 11> + (-1)<4, 2, 9>

= <6, 4, 11> + <-4, -2, -9>

= <6 - 4, 4 - 2, 11 - 9>

= <2, 2, 2>

Therefore, the point of intersection for the lines L1 and L2 is (2, 2, 2).

Learn more about intersection: https://brainly.com/question/29185601

#SPJ11

How do you find the measure?

Answers

The measures are given as;

<ABC = 90 degrees

<BAC = 20 degrees

<ACB = 70 degrees

How to determine the measures

To determine the measures, we need to know the following;

The sum of the angles in a triangle is 180 degreesAdjacent angles are equalSupplementary angles are pairs that sum up to 180 degreesCorresponding angles are equal

Then, we have that;

Angle ABC = 180 - 70 + 20

Add the values, we have;

<ABC = 90 degrees

<BAC = 90 - 70

<BAC = 20 degrees

<ACB is adjacent to 70 degrees

<ACB = 70 degrees

Learn more about triangles at: https://brainly.com/question/14285697

#SPJ1

Other Questions
According to Dan Pink's TED talk, extrinsic incentives are best at promoting performance on what type of task? Simple tasks, like putting together a piece of clothing on an assembly line Creative tasks, lice coming up with the next big social media platform Insight problems, like Duncker's hard candle problem Extrinsie incentives are never an effective way to improve performance Explain why bicarbonate must be conserved rather than reabsorbedin the kidney. Lacey has 14 red beads, and she has 6 fewer yellow beads than red beads. Lacey also has 3 more green beads than red beads. How many beads does Lacey have in all? Determine:The speed of a 8.0 MeV proton. Your boss runs Ship-it Deliveries, a company that competes with UPS but is falling behind UPS in a number of areas. You and your staff have been discussing how analytics might be used to improve the situation with the boss. Your boss asked for a brief white paper about what UPS is doing, and how useful this is for the company. Her guidance was that capital investment funds are limited and the operations budget is tight. The memo should provide recommendations stating what analytics are available, what could they do for the company, and (if they are tried) in what order to implement them? Write the white paper to answer the questions from your boss. A siren sound with a constant frequency is emitted from a position A and a detector B is passing near the position A with a speed . The detector B moves in a straight path with a normal distance from the position A. Find the frequency that the detector B hears, as a function of the position of the detector B Two blocks, M1 and M2, are connected by a massless string that passes over a massless pulley as shown in the figure. M2, which has a mass of 19.0 kg, rests on a long ramp of angle theta=25.0. Ignore friction, and let up the ramp define the positive direction. If the actual mass of M1 is 5.00 kg and the system is allowed to move, what is the acceleration of the two blocks? What distance does block M2 move in 2.00 s? the function a(b) relates the area of a trapezoid with a given height of 12 and one base length of 9 with the length of its other base it takes as input the other base value, and returns as output the area of the trapezoid a(b) Perpendicularly superimpose and construct the Lissajous figure associated with: X = 2cos(nt). y = cos(nt + n/4). What are the protonation state and charge of the average histidine (his) side chain at a neutral phph of 7.00? Describe the role animals might have played in the development of human communication systems. Give an example. Chapter 5 1. What the 4 general tissue types and their general functions. 2. The classifications of epithelia and what they are based on. 3. The various cells that are found in epithelial tissue and their functions. 4. Cell junctions 5. The 3 types of glandular secretions. 6. The subcategories of C.T., Muscle, and the cell types in Nervous tissue. 7. The various cell types found in C.T. (areolar tissue). 8. Which tissue types, specifically, are vascular and which are avascular, and how this difference affects their healing rates. 9. Who makes C.T. matrix, and what it can consist of. 10. The 4 membranes that are found in your body, and where they are located. 11. Changes to tissues and cells (including cell death) 12. Stem cells 3. Literature review is of paramount importance in any education enquiry. A balloon holding 4.20 moles of helium gas absorbs 905 J of thermal energy while doing 106 J of work expanding to a larger volume. (a) Find the change in the balloon's internal energy. (b) Calculate the change in temperature of the gas. Distinguish between the Masoretic Text, the Septuagint, Targums, and the Dead Sea Scrolls. Please include dating in your answer. (a) Compute the amount of heat (in 3) needed to raise the temperature of 7.6 kg of water from its freezing point to its normal boiling point. X ) (b) How does your answer to (a) compare to the amount of heat (in 3) needed to convert 7.6 kg of water at 100C to steam at 100C? (The latent heat of vaporization of water at 100C is 2.26 x 105 1/kg.) Q Q. 2. The enrollment of a small private pre-school was 225 in the year 2000. The enrollment was 400 in the year 2005. a. What is the average enrollment per year? b. Find the linear model that represents the enrollment of the pre-school t years after the year 2000. c. What year do you expect the enrollment to reach 1000 using the linear model. d. What do you expect the enrollment to be in the year 2025 using the linear model? Which of the following would be a credit balance in the trial balance? a. Purchases b. Carriage outwards c. Drawings d. Bank overdraft I NEED HELP ASAP I WILL GIVE 100 PTS IF YOU HELP ME AND GIVE RIGHT ANSWER AND I NEED EXPLANATION PLS HELPA student is painting a doghouse like the rectangular prism shown.A rectangular prism with base dimensions of 8 feet by 6 feet. It has a height of 5 feet.Part A: Find the total surface area of the doghouse. Show your work. (3 points)Part B: If one can of paint will cover 50 square feet, how many cans of paint are needed to paint the doghouse? Explain. (Hint: The bottom will not be painted since it will be on the ground.) (1 point) What properties do compounds with covalent bonds have? High melting point Solid only at room temperature Solid, liquid, or gas at room temperature Low electrical conductivity High electrical conductivity Low melting point Steam Workshop Downloader