The position of the image formed by a concave mirror with a radius of curvature of 4.0 cm when an object is placed 1.0 cm in front of it can be determined. The image will be located at a distance of -2.0 cm from the mirror.
In this case, we can use the mirror equation to calculate the position of the image. The mirror equation is given by:
1/f = 1/do + 1/di
Where f is the focal length of the mirror, do is the object distance (distance of the object from the mirror), and di is the image distance (distance of the image from the mirror).
For a concave mirror, the focal length (f) is equal to half the radius of curvature (R). In this case, R is 4.0 cm, so the focal length is 2.0 cm.
Substituting the given values into the mirror equation:
1/2.0 = 1/1.0 + 1/di
Simplifying the equation, we find:
1/2.0 - 1/1.0 = 1/di
1/di = 1/2.0 - 1/1.0
1/di = 1/2.0 - 2/2.0
1/di = -1/2.0
di = -2.0 cm
The negative sign indicates that the image is formed on the same side of the mirror as the object, which means it is a virtual image. The absolute value of -2.0 cm gives us the position of the image, which is 2.0 cm.
Learn more about mirror equation here:
https://brainly.com/question/31097794
#SPJ11
The current density in a copper wire of radius 0.700 mm is uniform. The wire's length is 5.00 m, the end-to-end potential difference is 0.150 V, and the density of conduction electrons is 8.60×10 28
m −3
. How long does an electron take (on the average) to travel the length of the wire? Number Units
On average, an electron takes approximately 4.63 × 10^(-6) seconds to travel the length of the copper wire. To find the time taken for an electron to cross the size of the wire, we need to calculate the drift velocity of the electrons and then use it to determine the time.
To determine the time it takes for an electron to travel the length of the wire, we need to calculate the average drift velocity of the electrons first.
The current density (J) in the wire can be related to the drift velocity (v_d) and the charge carrier density (n) using the equation:
J = n * e * v_d
where e is the elementary charge (1.6 × [tex]10^{(-19)[/tex] C).
The drift velocity can be expressed as:
v_d = I / (n * A)
where I is the current, n is the density of conduction electrons, and A is the cross-sectional area of the wire.
The current (I) can be calculated using Ohm's law:
I = V / R
where V is the potential difference (0.150 V) and R is the resistance of the wire.
The resistance (R) can be determined using the formula:
R = (ρ * L) / A
where ρ is the resistivity of copper, L is the length of the wire (5.00 m), and A is the cross-sectional area of the wire (π * [tex]r^2[/tex], with r being the radius of the wire).
Now, we can calculate the drift velocity:
v_d = (V / R) / (n * A)
Next, we can determine the time it takes for an electron to travel the length of the wire (t):
t = L / v_d
Substituting the given values and performing the calculations:
t = (5.00 m) / [(0.150 V / ((ρ * 5.00 m) / (π *[tex](0.700 mm)^2[/tex]))) / (8.60 × [tex]10^{28[/tex][tex]m^{(-3)[/tex]* π *[tex](0.700 mm)^2[/tex])]
t ≈ 4.63 ×[tex]10^{(-6)[/tex] s
Therefore, on average, an electron takes approximately 4.63 × [tex]10^{(-6)[/tex]seconds to travel the length of the copper wire.
Learn About drift velocity Here:
https://brainly.com/question/4269562
#SPJ11
A sharp image is located 391 mm behind a 255- mm -focal-length converging lens. Find the object distance. Follow the sign conventions.
A sharp image is located 391 mm behind a 255- mm -focal-length converging lens. the object distance is approximately -733 mm, indicating that the object is a virtual object located 733 mm to the left (opposite side) of the lens.
In optics, the sign convention is used to determine the direction and sign of various quantities. According to the sign convention:
- Distances to the left of the lens are considered negative, while distances to the right are positive.
- Focal length (f) of a converging lens is positive.
- Object distance (p) is positive for real objects on the same side as the incident light and negative for virtual objects on the opposite side.
Given that the focal length (f) of the converging lens is +255 mm and the image distance (q) is -391 mm (since the image is located behind the lens), we can use the lens formula:
1/f = 1/p + 1/q.
Substituting the known values into the equation, we have:
1/255 = 1/p + 1/-391.
To find the object distance (p), we rearrange the equation:
1/p = 1/255 - 1/-391.
To combine the fractions, we take the common denominator:
1/p = (391 - 255) / (255 * -391).
Simplifying the equation:
1/p = 136 / (255 * -391).
Taking the reciprocal of both sides:
p = (255 * -391) / 136.
Evaluating the expression:
p ≈ -733 mm.
Therefore, the object distance is approximately -733 mm, indicating that the object is a virtual object located 733 mm to the left (opposite side) of the lens.
Learn more about Focal length here:
https://brainly.com/question/2194024
#SPJ11
A certan lons focusos I ght from an object. 175 m away as an image 49.3 cm on the other side of the lens Part E What is its focal longth? Follow the sign conventions Express your answer to three significant figures and include the appropriate units Is the image real or virtual? virtual real A−6.80−D lens is held 14.5 cm from an ant 1.00 mm high. Find the image distance. Follow the sign conventions. Express your answer to three significant figures and include the appropriate units.
Focal length formula, `1/f = 1/v + 1/u`Sign conventions:1. Object distance `u` is negative if the object is placed to the left of the lens.2. Image distance `v` = 0.00339 cm.
A certain lens focuses a light from an object 175 m away as an image 49.3 cm on the other side of the lens.
Formula used:focal length formula, `1/f = 1/v + 1/u`Sign conventions:1. Object distance `u` is negative if the object is placed to the left of the lens.2.
Image distance `v` is positive if the image is formed on the opposite side of the lens to that of the object.3.
Focal length `f` is negative for a concave lens and positive for a convex lens.A certain lens focuses a light from an object 175 m away as an image 49.3 cm on the other side of the lens.
Using formula,`1/f = 1/v + 1/u``1/f = 1/49.3 - 1/175`(taking v = 49.3 cm and u = -17500 cm)`1/f = (175 - 49.3)/(175 × 49.3)` `= 125.7/(8627.5)` `= 0.01457``f = 1/0.01457``f = 68.75 cm
Focal length of the lens is 68.75 cm. The image is real or virtual can be determined by the sign of `v`.
Here,`v > 0` ⇒ Image is formed on the opposite side of the lens to that of the object. Therefore, the image is real.
virutal A −6.80 D lens is held 14.5 cm from an ant 1.00 mm high.Using the lens formula,`1/f = 1/v + 1/u``
Given, `f = - 6.80 D``1/f = - 0.1471 cm⁻¹` (`D` is dioptre)`u = - 14.5 cm` (object distance) (image distance)
From the lens formula,`1/f = 1/v + 1/u``1/v = 1/f - 1/u``v = 1/(1/f - 1/u)`Substituting values,`v = 1/(1/(- 0.1471) - 1/(- 14.5))``v = 0.00339 cm
Image distance `v` = 0.00339 cm.
Learn more about concave lens here:
https://brainly.com/question/2919483
#SPJ11
Give an example where first the speed of the object increases, then emains constant for some time and then decrease.
A radio transmitter broadcasts at a frequency of 96,600 Hz. What is the wavelength of the wave in meters? What is the wavelength (in nanometers) of the peak of the blackbody radiation curve for something at 1,600 kelvins?
The wavelength of a radio wave with a frequency of 96,600 Hz is approximately 3.10 meters. The peak wavelength of blackbody radiation for an object at 1,600 kelvins is around 1,810 nanometers.
To calculate the wavelength of a radio wave, we can use the formula: wavelength = speed of light / frequency. The speed of light is approximately 299,792,458 meters per second. Therefore, for a radio wave with a frequency of 96,600 Hz, the calculation would be: wavelength = 299,792,458 m/s / 96,600 Hz ≈ 3.10 meters.
Blackbody radiation refers to the electromagnetic radiation emitted by an object due to its temperature. The peak wavelength of this radiation can be determined using Wien's displacement law, which states that the peak wavelength is inversely proportional to the temperature of the object. The formula for calculating the peak wavelength is: peak wavelength = constant / temperature. The constant in this equation is approximately 2.898 × 10^6 nanometers * kelvins.
Plugging in the temperature of 1,600 kelvins, the calculation would be: peak wavelength = 2.898 × 10^6 nm*K / 1,600 K ≈ 1,810 nanometers. Thus, for an object at 1,600 kelvins, the peak wavelength of its blackbody radiation curve would be around 1,810 nanometers.
Learn more about wavelength of a radio wave:
https://brainly.com/question/15389109
#SPJ11
Find the attached image illustrates the thermal resistance model for two devices mounded on single heatsink : Tj1 1 kQ 1 kQ www ww Rjc1 Device Ta 1 KQ 1 www Rsa Tj2 1kQ 1 ΚΩ www www Rcs2 Device Rjc2 2 Where, * Tj1 - Device 1 junction temperature = 180°C * Tj2 - Device 2 junction temperature = 180°C * Rjc1 - Device 1 junction to case thermal resistance = 4 K/W * Rjc2 - Device 2 junction to case thermal resistance = 2 K/W * Rcs1,Rcs2 - Device 1 and device 2 case to heatsink thermal resistance (heatsink grease) = 0.038 K/W * Rsa - heat sink thermal resistance ( need to be find). * Ta - ambient temperature = 40°C * The formula for heatsink (as specifically available based on its thermal resistance, Rsa) is * Rsa = Tj1 - Ta - Pd1 (Rjc1 + Rcs1)/(Pd1 + Pd2) Where, * Pd1 - power dissipated by device 1 * Pd2 - power dissipated by device 2 * Then, * Rsa = 180 - 40 - 16(4+0.038) / (16+24) * Rsa = 1.88 K/W * The heatsink thermal resistance (Rsa) = 1.88 K/W. Rcs1
Two MOSFETS are used to control the brightness of a high power spotlight. Under maximum power both MOSFETS in the circuit as shown are conducting. M1 dissipates a maximum of 16 W and has a junction to case thermal resistance of 4 K/W. M2 dissipates a maximum of 24 W and has a junction to case thermal resistance of 2 K/W. Both MOSFETs are mounted on a common heatsink (with isolation). The maximum junction temperature of the MOSFETs is 180 °C and the circuit must operate in an ambient temperature of 40 °C. Please assist with getting the required heatsink. A thermal circuit will aid my understanding so please draw the thermal circuit first.
The problem involves two MOSFETs mounted on a common heatsink, and the goal is to determine the required thermal resistance of the heatsink.
Given the power dissipation and thermal resistance values of the MOSFETs, along with the maximum junction temperature and ambient temperature, the thermal circuit needs to be analyzed to find the required heatsink thermal resistance.
To analyze the thermal circuit and determine the required heatsink thermal resistance, we can start by visualizing the circuit as a thermal network. The key components in the circuit are the MOSFETs (M1 and M2), their junction-to-case thermal resistances (Rjc1 and Rjc2), the case-to-heatsink thermal resistances (Rcs1 and Rcs2), and the unknown heatsink thermal resistance (Rsa). We also have the maximum junction temperature (Tj1 = Tj2 = 180°C) and the ambient temperature (Ta = 40°C).By applying the thermal circuit equations, we can write the following expression to calculate Rsa:
Rsa = (Tj1 - Ta - Pd1 * (Rjc1 + Rcs1)) / Pd1
where Pd1 is the power dissipated by device M1 (16 W) and Rjc1 is the junction-to-case thermal resistance of M1 (4 K/W). We can substitute these values into the equation and solve for Rsa.
Similarly, for M2, we have:
Rsa = (Tj2 - Ta - Pd2 * (Rjc2 + Rcs2)) / Pd2
where Pd2 is the power dissipated by device M2 (24 W) and Rjc2 is the junction-to-case thermal resistance of M2 (2 K/W).
Once we have the values of Rsa from both equations, we can compare them and choose the larger value as the required heatsink thermal resistance to ensure proper heat dissipation and keep the MOSFETs within their maximum temperature limits.
In conclusion, by constructing the thermal circuit and applying the thermal equations, we can determine the required heatsink thermal resistance (Rsa) to keep the MOSFETs within their temperature limits. This ensures the reliable operation of the circuit under the given power dissipation and ambient temperature conditions. The thermal circuit analysis helps in understanding the heat flow and designing effective cooling solutions to maintain the components at safe operating temperatures.
Learn more about resistance here:- brainly.com/question/29427458
#SPJ11
A Force of F= (4.20i +3.60j) N is applied to a rigid body of mass 1.50 kg rotating around a fixed axis . Determine the torque experienced by the particle when the force is applied at the position of r= (1.50i+ 2.20j)
Which direction is the Torque oriented?
The torque experienced by the particle is 10.38 N·m, and its direction is perpendicular to the plane formed by the position vector and the force vector.
To determine the torque experienced by the particle, we need to calculate the cross product of the position vector and the force vector. The formula for torque is given by:
τ = r × F
where τ represents the torque, r is the position vector, and F is the force vector. In this case, the position vector r is (1.50i + 2.20j) and the force vector F is (4.20i + 3.60j).
Taking the cross product of these vectors, we have:
τ = (1.50i + 2.20j) × (4.20i + 3.60j)
Expanding the cross product, we get:
τ = (1.50 * 3.60 - 2.20 * 4.20)k
Simplifying the equation, we have:
τ = (5.40 - 9.24)k
τ = -3.84k
Therefore, the torque experienced by the particle is -3.84 N·m. The negative sign indicates that the torque is oriented in the opposite direction to the positive z-axis.
Since torque is a vector quantity, it has both magnitude and direction. The direction of the torque is determined by the right-hand rule. In this case, the torque is oriented along the negative z-axis, which means it is pointing into the plane formed by the position vector and the force vector.
Learn more about magnitude here:
https://brainly.com/question/31022175
#SPJ11
A ball of mass 113.0 g is hit by another object with a speed of 45 m/s. The ball was in contact with the object about 3.2 *10^-3 s. Find (a) the impulse imparted to the ball, (b) the average force exerted on the ball by the object.
A) The impulse imparted to the ball is 5.09 N s and B) the average force exerted on the ball by the object is approximately 1580 N.
(a) Given, Mass of the ball, m = 113.0 g
Initial velocity, u = 0
Final velocity,v = 45 m/s
Time of contact, t = 3.2 × 10⁻³ s
Here, the impulse imparted to the ball can be calculated using the above formula as,Δv = v - u = 45 - 0 = 45 m/s
Therefore, I = mΔv
I = (0.113 kg) × 45 m/sI = 5.09 N s
(b) Average force is the force that acts on an object during the time of its motion. It is represented by F = m(a) / t, where F is the force, m is the mass of the object, and a is the acceleration it experiences.
F = m(a) / t
F = m(Δv/t)
F = m[(v-u)/t]
F = m (Δv/t)
F = (0.113 kg) [(45 m/s - 0)/3.2 × 10⁻³ s]
F = 1581.5625 N ≈ 1580 N
Therefore, the average force exerted on the ball by the object is approximately 1580 N.
Hence, the impulse imparted to the ball is 5.09 N s and the average force exerted on the ball by the object is approximately 1580 N.
Know more about Average force here,
https://brainly.com/question/29781083
#SPJ11
Complete each statement with the correct term. A collision in which some kinetic energy is lost is a(n)_____collision. A collision in which the objects become one and move together is a(n)_____inelastic collision.
Jupiter, Saturn, Uranus, and Neptune are larger than the terrestrial planets because They formed in cooler parts of the solar nebula where the most abundant elements could condense They formed before the Sun formed whereas the rocky planets formed from leftover material They formed in a different solar system and were captured by the Sun's gravity They formed close to the Sun but have been gradually moving away from the Sun for the past 4.6 billion years
Jupiter, Saturn, Uranus, and Neptune are larger than the terrestrial planets because they formed in cooler parts of the solar nebula where the most abundant elements could condense.
They are known as gas giants and are mostly composed of helium and hydrogen. These planets are also referred to as outer planets since they are located far from the sun. It is said that these planets are colder than the rocky planets.
Jupiter, Saturn, Uranus, and Neptune, the four gas giants, are much larger than the four inner planets. They are larger because they formed in cooler regions of the solar nebula, where the most abundant elements, such as helium and hydrogen, could condense. When the gas giants developed, they attracted these elements, and as a result, they formed enormous gaseous planets. These gas giants have a more complex structure than the inner planets. The cores of these planets are comprised of rock and ice, whereas the outer layers are composed of hydrogen and helium gas.
The gas giants are far from the sun and are referred to as outer planets. They are colder than the rocky planets since they are positioned further from the sun. Additionally, the outer planets rotate faster than the inner planets. Jupiter rotates the fastest of all the planets and takes about 9 hours and 56 minutes to rotate completely on its axis.
The gas giants are much larger than the inner planets since they formed in cooler regions where the most abundant elements could condense. The gas giants are mostly composed of hydrogen and helium and have a complex structure with rocky cores and gas outer layers. The outer planets rotate faster than the inner planets and are far from the sun, which makes them colder.
To know more about rocky planets :
brainly.com/question/30761120
#SPJ11
A charged capacitor with a capacitance of C=5.00×10 −3
F, has an initial potential of 5.00 V. The capacitor is discharged by connecting a resistance R between its terminals. The graph below shows the potential across the capacitor as a funtion of the time elapsed since the connection. C.alculate the value of R. Note that the curve passes through an intersection point. Tries 1/20 Previous Tries
The value of resistance R is 3.48 kΩ.
The capacitance of a charged capacitor is C=5.00×10−3F, and its initial voltage is 5.00V. When a resistor R is connected between its terminals, it is discharged. The potential across the capacitor versus time since the connection is plotted in the graph shown.The capacitor's voltage and current change as it charges and discharges. The voltage across the capacitor as a function of time elapsed since the connection is shown in the graph.
The voltage of the capacitor decreases exponentially and eventually approaches zero as it discharges.The capacitor discharge is given by the following equation:q = Q × e−t/RCWhere R is the resistance, C is the capacitance, t is the time elapsed, and q is the charge stored in the capacitor at time t. The voltage across the capacitor can be determined using the following formula:V = q/C = Q/C × e−t/RC.
The voltage across the capacitor is plotted in the graph, and the intersection point is located at t = 5.0ms and V = 2.5V. As a result, the charge stored on the capacitor at that moment is Q = CV = 5.00×10−3F × 2.50V = 12.5×10−3C.The value of R can now be calculated using the formula:R = t/ln(V0/V) × C = 5.0×10−3s/ln(5.00V/2.50V) × 5.00×10−3F ≈ 3.48kΩTherefore, the value of resistance R is 3.48 kΩ.
Learn more about capacitor here,
https://brainly.com/question/31329178
#SPJ11
Explain how P and S waves reflect and refract at horizontal
layers where velocity increases and where velocity decreases.
Seismic waves, including P and S waves, exhibit distinct behaviors when encountering horizontal layers with changing velocity. P waves reflect and refract at such layers, while S waves reflect and are unable to pass through them, explaining why only P waves can be detected from earthquakes on the other side of the Earth.
Seismic waves are mechanical waves that propagate through the Earth's crust. They are created by earthquakes, explosions, and other types of disturbances that cause ground motion. There are two types of seismic waves, namely P and S waves. These waves behave differently when they encounter horizontal layers where the velocity changes.
P waves reflect and refract at horizontal layers where the velocity increases and decreases. When a P wave enters a layer with an increasing velocity, its wavefronts become curved, and it refracts downwards towards the normal to the interface. The opposite happens when a P wave enters a layer with a decreasing velocity. Its wavefronts become curved, and it refracts upwards away from the normal to the interface. When a P wave encounters a horizontal boundary, it reflects and undergoes a 180° phase shift.
S waves reflect and refract at horizontal layers where the velocity increases, but they cannot pass through layers where the velocity decreases to zero. When an S wave enters a layer with an increasing velocity, it refracts downwards towards the normal to the interface. However, when an S wave encounters a layer with a decreasing velocity, it cannot pass through and reflects back. Therefore, S waves cannot pass through the Earth's liquid outer core, which is why we can only detect P waves from earthquakes on the other side of the Earth.
In summary, P and S waves behave differently when they encounter horizontal layers where the velocity changes. P waves reflect and refract at such layers, while S waves reflect and cannot pass through them.
Learn more about Seismic waves
https://brainly.com/question/19578626
#SPJ11
Determine the velocity required for a moving object 5.00×10 3
m above the surface of Mars to escape from Mars's gravity. The mass of Mars is 6.42×10 23
kg, and its radius is 3.40×10 3
m.
The velocity required for a moving object 5.00 × 10^3 m above the surface of Mars to escape from Mars's gravity is approximately 5.03 × 10^3 m/s.
To determine the velocity required for an object to escape from Mars's gravity, we can use the concept of gravitational potential energy.
The gravitational potential energy (PE) of an object near the surface of Mars can be given by the equation:
PE = -GMm / r
where G is the gravitational constant (approximately 6.67430 × 10^-11 m^3 kg^-1 s^-2), M is the mass of Mars (6.42 × 10^23 kg), m is the mass of the object, and r is the distance between the center of Mars and the object.
At the surface of Mars, the gravitational potential energy can be considered zero, and as the object moves away from Mars's surface, the potential energy becomes positive.
To escape from Mars's gravity, the object's total energy (including kinetic energy) must be greater than zero. The kinetic energy (KE) of the object can be given by:
KE = (1/2)mv^2
where v is the velocity of the object.
At the escape point, the total energy (TE) of the object is the sum of its kinetic and potential energies:
TE = KE + PE
Since the object escapes Mars's gravity, its total energy at the escape point is zero:
0 = KE + PE
Rearranging the equation, we can solve for the velocity:
KE = -PE
(1/2)mv^2 = GMm / r
Simplifying the equation:
v^2 = (2GM) / r
Taking the square root of both sides:
v = √[(2GM) / r]
Now we can substitute the values into the equation:
v = √[(2 * 6.67430 × 10^-11 * 6.42 × 10^23) / (3.40 × 10^3 + 5.00 × 10^3)]
Calculating the value:
v ≈ 5.03 × 10^3 m/s
Therefore, the velocity required for a moving object 5.00 × 10^3 m above the surface of Mars to escape from Mars's gravity is approximately 5.03 × 10^3 m/s.
Learn more about velocity
https://brainly.com/question/15099477
#SPJ11
At what absolute temperature do the Celsius and Fahrenheit temperature scales give the same numerical value? What is the value? (include a minus sign if required.) The Celsius and Fahrenheit temperature scales give the same numerical value at an absolute temperature of The Celsius temperature is ∘C. The Fahrenheit temperature is
The Celsius temperature is -40 degrees Celsius, and the Fahrenheit temperature is also -40 degrees Fahrenheit at this absolute temperature.
To find the absolute temperature at which the Celsius and Fahrenheit scales give the same numerical value, we can set up an equation and solve for the unknown temperature. The relationship between Celsius (C) and Fahrenheit (F) temperatures is given by the equation:
F = (9/5)C + 32
Since we want the Celsius and Fahrenheit temperatures to be equal, we can set up the equation:
C = (9/5)C + 32
To solve for C, we can simplify the equation:
C - (9/5)C = 32
(5/5)C - (9/5)C = 32
(-4/5)C = 32
Now we can solve for C:
C = 32 × (-5/4)
C = -40
Therefore, the Celsius temperature is -40 degrees Celsius, and the Fahrenheit temperature is also -40 degrees Fahrenheit at this absolute temperature.
To know more about temperature
https://brainly.com/question/27944554
#SPJ4
The strength of the Earth's magnetic field has an average value on the surface of about 5×10 5
T. Assume this magnetic field by taking the Earth's core to be a current loop, with a radius equal to the radius of the core. How much electric current must this current loop carry to generate the Earth's observed magnetic field? Given the Earth's core has a radius of approximately R core
=3x10 6
m. (Assume the current in the core as a single current loop).
Summary: To generate the Earth's observed magnetic field, the current loop representing the Earth's core needs to carry an electric current of approximately 1.57x10^6 Amperes.
The strength of a magnetic field generated by a current loop can be calculated using Ampere's law. According to Ampere's law, the magnetic field strength (B) at a point on the loop's axis is directly proportional to the current (I) flowing through the loop and inversely proportional to the distance (r) from the loop's center. The equation for the magnetic field strength of a current loop is given by B = (μ₀ * I * N) / (2π * r), where μ₀ is the permeability of free space, N is the number of turns in the loop (assumed to be 1 in this case), and r is the radius of the loop.
In this scenario, the Earth's core is assumed to be a single current loop with a radius (r) equal to the radius of the core, which is given as R_core = 3x10^6 meters. The average magnetic field strength on the Earth's surface is given as 5x10^-5 Tesla. Rearranging the equation for B, we can solve for I: I = (2π * B * r) / (μ₀ * N). Plugging in the given values, we get I = (2π * 5x10^-5 Tesla * 3x10^6 meters) / (4π * 10^-7 T m/A). Simplifying the expression gives us I ≈ 1.57x10^6 Amperes, which represents the electric current required for the Earth's core to generate the observed magnetic field.
Learn more about electric current here:
https://brainly.com/question/14848188
#SPJ11
An object is located 72 cm from a thin diverging lens along the axis. If a virtual image forms at a distance of 18 cm from the lens, what is the focal length of the lens? in cm Is the image inverted or upright?
The focal length of the lens is -24 cm (negative sign indicates a diverging lens). Regarding the orientation of the image, for a diverging lens, the image formed is always virtual and upright.
To determine the focal length of the lens, we can use the lens formula:
1/f = 1/v - 1/u
where:
f is the focal length of the lens,
v is the distance of the virtual image from the lens (positive for virtual images),
u is the distance of the object from the lens (positive for objects on the same side as the incident light).
Given that the object is located 72 cm from the lens (u = -72 cm) and the virtual image forms at a distance of 18 cm from the lens (v = -18 cm), we can substitute these values into the lens formula:
1/f = 1/-18 - 1/-72
Simplifying this expression:
1/f = -1/18 + 1/72
= (-4 + 1) / 72
= -3/72
= -1/24
Now, taking the reciprocal of both sides of the equation:
f = -24 cm
To know more about focal length
https://brainly.com/question/31755962
#SPJ11
At which points in space does destructive interference occur for coherent electromagnetic waves (EM waves) with a single wavelength λ ? A. where their path length differences are 2λ B. where their path length differences are λ C. where their path length differences are even integer multiples of λ/2 D. where their path length differences are odd integer multiples of λ/2
Therefore, the correct option is D, where their path length differences are odd integer multiples of λ/2.
The correct answer to the given question is option D, where their path length differences are odd integer multiples of λ/2.In interference, two waves meet with each other, and the amplitude of the resultant wave depends on the phase difference between the two waves.
In the case of constructive interference, the phase difference between the two waves is a multiple of 2π, and in destructive interference, the phase difference is a multiple of π. For electromagnetic waves, destructive interference occurs when the path length difference between two waves is an odd integer multiple of half of the wavelength.
The expression for destructive interference can be written as follows:Δx = (2n + 1)λ/2Here, Δx represents the path length difference, n represents an integer, and λ represents the wavelength of the wave.Therefore, the correct option is D, where their path length differences are odd integer multiples of λ/2.
to know more about wavelength
https://brainly.com/question/1206358
#SPJ11
A sound source is detected at a level of 54 dB Intensity of 2512-07 W/m?) when there is no background noise. How much will the sound level increase if there were 53,5 dB (Intensity of 2.239-07 W/m?) b
If the sound level increases from 54 dB (intensity of 2.512×10⁻⁷ W/m²) to 53.5 dB (intensity of 2.239×10⁻⁷ W/m²), the sound level will increase by approximately 0.5 dB.
Sound level is measured in decibels (dB), which is a logarithmic scale used to express the intensity or power of sound. The formula to calculate the change in sound level in decibels is ΔL = 10 × log₁₀(I/I₀), where ΔL is the change in sound level, I am the final intensity, and I₀ is the reference intensity.
Given that the initial sound level is 54 dB, we can calculate the initial intensity using the formula I₀ = 10^(L₀/10). Similarly, we can calculate the final intensity using the given sound level of 53.5 dB.
Using the formulas, we find that the initial intensity is 2.512×10⁻⁷ W/m² and the final intensity is 2.239×10⁻⁷ W/m².
Substituting these values into the formula to calculate the change in sound level, we get ΔL = 10 × log₁₀(2.239×10⁻⁷ / 2.512×10⁻⁷) ≈ 0.5 dB.
Therefore, the sound level will increase by approximately 0.5 dB when the intensity changes from 2.512×10⁻⁷ W/m² to 2.239×10⁻⁷ W/m².
To know more about sound level click here:
https://brainly.com/question/32444205
#SPJ11
A Find the Resistance of 100 meters of # 18 AWG Copper wire at 20° C ? B Find the Area you need to calculate the Resistance ? C Find the Resistance of 600 meters of solid Copper wire with a diameter of 5 mm ? P Find the Area you need to calculate the Resistance ? If the Resistance of some Copper wire is 80 ohms at 20° C, what is it's Resistance at 100° C ?
a. The resistance of 100 meters of #18 AWG Copper wire at 20°C is 0.2098 Ω
b. To calculate the resistance of a wire, the cross-sectional area of the wire is required.
c. The area required to calculate the resistance is 2.155 × [tex]10^{-10}[/tex] m². The resistance of copper wire at 100°C is 92.2 Ω.
a. The resistance of 100 meters of #18 AWG Copper wire at 20°C can be determined using the formula;
R = ρL/A
A = πr²ρ
where;
R = resistance
ρ = resistivity
L = length of the wire
A = area of cross-section
r = radius of the wire
Substituting the given values;
Length of wire L = 100 meters
Area of cross-section A = ?
Diameter of wire d = 0.0403 inches or 1.02462 mm
Cross-sectional area A = πd²/4 = π(1.02462 mm)²/4 = 0.8231 mm²
Resistivity ρ = 1.724 x [tex]10^{-8}[/tex] Ω-m (at 20°C for copper)
Thus;
R = ρL/A = 1.724 x [tex]10^{-8}[/tex] Ω-m x 100 meters / 0.8231 mm²R = 0.2098 Ω
a. The resistance of 100 meters of #18 AWG Copper wire at 20°C is 0.2098 Ω
b. To calculate the resistance of a wire, the cross-sectional area of the wire is required.
c. To find the resistance of 600 meters of solid Copper wire with a diameter of 5 mm, we need to know the cross-sectional area of the wire. The formula for the cross-sectional area is;
A = πr²A = π(5/2)²A = 19.63 mm²
The resistivity of copper is 1.724 × [tex]10^{-8}[/tex] Ωm. Using the formula;
R = ρL/A
where;
L = 600 mA = 19.63 mm²
ρ = 1.724 × [tex]10^{-8}[/tex] Ωm
R = 0.16 ΩP.
To find the area required to calculate the resistance, the cross-sectional area of the wire is required. If the resistance of copper wire is 80 ohms at 20°C, we can use the above formula for resistivity.
ρ = RA/L
where;
R = 80 Ω
A = ?
L = 1 m
ρ = 1.724 × [tex]10^{-8}[/tex] Ωm
A = ρL/R = 1.724 × [tex]10^{-8}[/tex] × 1/80A = 2.155 × [tex]10^{-10}[/tex] m²
The resistance of copper wire at 100°C can be determined using the formula;
Rt = R0 [1 + α(T[tex]_{t}[/tex] - T[tex]_{0}[/tex])]
where;
R0 = resistance at 20°C = 80 Ω
T0 = temperature at 20°C = 293 K (20 + 273)
Tt = temperature at 100°C = 373 K (100 + 273)
α = temperature coefficient of copper = 0.00393/°C
Rt = 80 [1 + 0.00393(373 - 293)]R[tex]_{t}[/tex] = 92.2 Ω
Answer:
Therefore area required to calculate the resistance is 2.155 × [tex]10^{-10}[/tex] m². The resistance of copper wire at 100°C is 92.2 Ω.
learn more about resistivity of copper here:
https://brainly.com/question/29083449
#SPJ11
A beam of ultraviolet light with a power of 2.50 W and a wavelength of 124 nm shines on a metal surface. The maximum kinetic energy of the ejected electrons is 4.16 eV. (a) What is the work function of this metal, in eV?
(b) Assuming that each photon ejects one electron, what is the current?
(c) If the power, but not the wavelength, were reduced by half, what would be the current?
(d) If the wavelength, but not the power, were reduced by half, what would be the current?
The energy required to eject an electron from a metal surface is known as the work function. To find the work function of this metal, we can use the formula:
Work function = hυ - KEMax
Work function = hυ - KEMax
Power of ultraviolet light = 2.50 Wavelength of ultraviolet light = 124 nm Maximum kinetic energy of ejected electrons = 4.16 eV Planck's constant (h) = 6.626 × 10^-34 Js Speed of light (c) = 3 × 10^8 m/s
The energy of a photon is given by
E = hυ = hc/λ where h = Planck's constant, υ = frequency of light, c = speed of light and λ = wavelength of light.
We have to convert the wavelength of ultraviolet light from nm to m.
Therefore, λ = 124 nm × 10^-9 m/nm = 1.24 × 10^-7 m
The frequency of the ultraviolet light can be calculated by using the above equation.
υ = c/λ = (3 × 10^8 m/s)/(1.24 × 10^-7 m) = 2.42 × 10^15 Hz
Now, we can substitute these values in the formula for work function:
Work function = hυ - KEMax= 6.626 × 10^-34 Js × 2.42 × 10^15 Hz - 4.16 eV× (1.602 × 10^-19 J/eV)= 1.607 × 10^-18 J - 6.656 × 10^-20 J= 1.54 × 10^-18 J
The work function of this metal is 1.54 × 10^-18 J
The current is given by the formula:
I = nAq where I = current, n = number of electrons per second, A = area of metal surface, and q = charge on an electron
The number of photons per second can be calculated by dividing the power of ultraviolet light by the energy of one photon.
Therefore, n = P/E = (2.50 W)/(hc/λ) = (2.50 W)λ/(hc)
The area of the metal surface is not given, but we can assume it to be 1 cm^2. Therefore, A = 1 cm^2 = 10^-4 m^2.The charge on an electron is q = -1.6 × 10^-19 C. The current can now be calculated by substituting these values in the formula:
I = nAq= (2.50 W)λ/(hc) × 10^-4 m^2 × (-1.6 × 10^-19 C)= -4.03 × 10^-13 A
Current is 4.03 × 10^-13 A.
Note that the value of current is negative because electrons have a negative charge.
If the power, but not the wavelength, were reduced by half, then the number of photons per second would be halved. Therefore, the current would also be halved. The new current would be 2.02 × 10^-13 A.
If the wavelength, but not the power, were reduced by half, then the energy of each photon would be doubled. Therefore, the number of photons per second required to produce the same power would be halved. Hence, the current would also be halved. The new current would be 2.02 × 10^-13 A.
Learn further here: https://brainly.com/question/25748529
#SPJ11
Calculate the resistance of a wire which has a uniform diameter 11.62mm and a length of 75.33cm if the resistivity is known to be 0.00083 ohm.m. Give your answer in units of Ohms up to 3 decimals. Taken as 3.1416
The resistance of the wire is 2.007 Ohms.
To calculate the resistance of the wire, we can use the formula R = (ρ × L) / A, where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire.
First, let's calculate the cross-sectional area of the wire. The diameter is given as 11.62 mm, which corresponds to a radius of 5.81 mm or 0.00581 m. The formula for the area of a circle is A = π × [tex]r^{2}[/tex], where r is the radius. Substituting the values, we have A = 3.1416 × [tex](0.00581 m)^{2}[/tex].
Next, we can substitute the given values into the resistance formula. The resistivity is given as 0.00083 ohm.m and the length is 75.33 cm, which is equal to 0.7533 m.
Calculating the resistance, we have R = (0.00083 ohm.m × 0.7533 m) / (3.1416 × [tex](0.00581 m)^{2}[/tex]).
Performing the calculations, the resistance of the wire is approximately 2.007 ohms (rounded to 3 decimal places). Therefore, the resistance of the wire is 2.007 Ohms.
Learn more about resistance here:
https://brainly.com/question/29427458
#SPJ11
Figure 4.1 shows three charged particles located at the three corners of a rectangle. Find the electric field at the fourth vacant corner. (25 points) q 1
=3.00nC
q 2
=5.00nC
q 3
=6.00nC
x=0.600m
y=0.200m
Figure 4.1
The electric field at the fourth vacant corner is 4.05 × 10⁵ N/C.
Given,Three charged particles are located at the three corners of a rectangle.The magnitude of q1, q2 and q3 are given as 3 nC, 5 nC and 6 nC respectively.The value of x = 0.6m and the value of y = 0.2m.Figure 4.1The electric field at the fourth vacant corner can be calculated as follows:
We can make use of the formula given below to find the magnitude of the electric field,where k is the Coulomb constant and the magnitude of q1, q2 and q3 are given as 3 nC, 5 nC and 6 nC respectively, The value of x = 0.6m and the value of y = 0.2m. E = kq/r²Where k = 9 × 10⁹ N m²/C²The magnitude of q1, q2 and q3 are given as 3 nC, 5 nC and 6 nC respectively.r₁ = x² + y²r₁ = 0.6² + 0.2²r₁ = √(0.36 + 0.04)r₁ = √0.4r₁ = 0.6324 m r₂ = y²r₂ = 0.2²r₂ = 0.04 mTherefore, the electric field at the fourth vacant corner is 4.05 × 10⁵ N/C (approx).
Thus, the electric field at the fourth vacant corner is 4.05 × 10⁵ N/C.
Learn more about electric field here,
https://brainly.com/question/19878202
#SPJ11
A laser with wavelength 656 nm is incident on a diffraction grating with 1600 lines/mm.
(a) (15 points) Find the smallest distance from the grating that a converging lens with focal length of 20 cm be placed so that the diffracted laser light converges to a point 1.0 meter from the grating.
(b) (15 points) If a screen is placed at the location from part (a), how far apart will the two first order beams appear on the screen? (If you did not solve part (a), use a distance of 0.5 m).
(a) The converging lens should be placed at a distance of 1.95 meters from the diffraction grating to converge the diffracted laser light to a point 1.0 meter from the grating.
(b) The two first-order beams will appear approximately 0.04 meters (or 4 cm) apart on the screen.
(a) To determine the smallest distance for placing the converging lens, we can use the lens formula:
1/f = 1/v - 1/u,
where f is the focal length of the lens, v is the image distance, and u is the object distance. In this case, the lens will form an image of the diffracted laser light at a distance of 1.0 meter from the grating (v = 1.0 m). We need to find the object distance (u) that will produce this image location.
Using the diffraction grating equation:
d * sin(θ) = m * λ,
where d is the spacing between the grating lines, θ is the angle of diffraction, m is the order of the diffracted beam, and λ is the wavelength of the laser light. Rearranging the equation, we have:
sin(θ) = m * λ / d.
For the first-order beam (m = 1), we can substitute the values of λ = 656 nm (or 656 × 10^(-9) m) and d = 1/1600 mm (or 1.6 × 10^(-6) m) into the equation:
sin(θ) = (1 * 656 × 10^(-9)) / (1.6 × 10^(-6)).
Solving for θ, we find the angle of diffraction for the first-order beam. Using this angle, we can then determine the object distance u by trigonometry:
u = d / tan(θ).
Plugging in the values, we can calculate u. Finally, subtracting the object distance u from the image distance v, we get the required distance from the grating to the converging lens.
(b) Once we have the converging lens in place, we can calculate the separation between the two first-order beams on the screen. The distance between adjacent bright spots in the interference pattern can be determined by:
Δy = λ * L / d,
where Δy is the separation between the bright spots, λ is the wavelength of the laser light, L is the distance from the grating to the screen, and d is the spacing between the grating lines.
Substituting the values of λ = 656 nm (or 656 × 10^(-9) m), L = 1.95 m (the distance from the grating to the converging lens), and d = 1/1600 mm (or 1.6 × 10^(-6) m), we can calculate Δy. The resulting value will give us the distance between the two first-order beams on the screen.
Learn more about lens here:
https://brainly.com/question/29834071
#SPJ11
Suppose 2000 J of heat are added to 3.4 mol of argon gas at a constant pressure of 140 kPa. Part A Find the change in internal energy. Part B Find the change in temperature for this gas. Express your answer using two significant figures
Part C Calculate the change in volume of the gas.
The resulting change in temperature of the argon gas is approximately 34.62 Kelvin.
To determine the change in temperature of the argon gas, we can use the formula:
ΔQ = nCpΔT
where:
ΔQ is the heat added to the gas (in joules),
n is the number of moles of the gas,
Cp is the molar specific heat capacity of the gas at constant pressure (in joules per mole per kelvin),
ΔT is the change in temperature (in kelvin).
In this case, we have:
ΔQ = 2000 J
n = 3.4 mol
Cp (specific heat capacity of argon at constant pressure) = 20.8 J/(mol·K) (approximately)
We need to rearrange the formula to solve for ΔT:
ΔT = ΔQ / (nCp)
Substituting the given values into the equation, we have:
ΔT = 2000 J / (3.4 mol * 20.8 J/(mol·K))
Calculating the result:
ΔT ≈ 34.62 K
To know more about argon gas, here
brainly.com/question/29791626
#SPJ4
--The complete Question is, Suppose 2000 J of heat are added to 3.4 mol of argon gas at a constant pressure of 140 kPa. What will be the resulting change in temperature of the gas? Assume the argon gas behaves ideally.--
At what cold-reservoir temperature (in ∘C∘C) would a Carnot engine with a hot-reservoir temperature of 497 ∘C∘C have an efficiency of 60.0 %%?
Express your answer using two significant figures.
Answer: The cold-reservoir temperature (in ∘C) for the given Carnot engine with a hot-reservoir temperature of 497 ∘C and 60.0 % efficiency is 35°C.
Hot-reservoir temperature, Th = 497 ∘C.
Efficiency, η = 60.0%.
Cold-reservoir temperature, Tc = ?.
Carnot engine is given by the efficiency of Carnot engine is given asη = 1 - Tc/Th
Where,η is the efficiency of Carnot engine. Th is the high-temperature reservoir temperature in Kelvin. Tc is the low-temperature reservoir temperature in Kelvin.
Calculation: the high-temperature reservoir temperature is Th = 497 °C = 497 + 273.15 K = 770.15 K
The efficiency of the engine is η = 60% = 0.60. We need to find the low-temperature reservoir temperature in °C = Tc. Substituting the given values in the formula: 0.60 = 1 - Tc/Th0.60 (Th)
= Th - Tc Tc
= 0.40 (Th)Tc
= 0.40 × 770.15 K
= 308.06 K
Converting Tc to Celsius, Tc = 308.06 K - 273.15 = 34.91°C ≈ 35°C
The cold-reservoir temperature (in ∘C) for the given Carnot engine with a hot-reservoir temperature of 497 ∘C and 60.0 % efficiency is 35°C.
Learn more about Carnot engine: https://brainly.com/question/25819144
#SPJ11
The magnetic field is 1.50uT at a distance 42.6 cm away from a long, straight wire. At what distance is it 0.150mT ? 4.26×10 2
cm Previous Tries the middle of the straight cord, in the plane of the two wires. Tries 2/10 Previous Tries
The magnetic field strength of [tex]0.150 \mu T[/tex] is achieved at a distance of approximately 13.48 cm from the long, straight wire.
The magnetic field generated by a long, straight wire decreases with distance according to the inverse square law. This means that as the distance from the wire increases, the magnetic field strength decreases.
For calculating distance at which the magnetic field strength is [tex]0.150 \mu T[/tex], a proportion is set using the given information. Denote the distance from the wire where the field strength is[tex]0.150 \mu T[/tex] as x.
According to the inverse square law, the magnetic field strength (B) is inversely proportional to the square of the distance (r) from the wire. Therefore, following proportion can be set as:
[tex](B_1/B_2) = (r_2^2/r_1^2)[/tex]
Plugging in the given values,
[tex](1.50 \mu T/0.150 \mu T) = (42.6 cm)^2/x^2[/tex]
Simplifying the proportion:
[tex]10 = (42.6 cm)^2/x^2[/tex]
For finding x, rearrange the equation:
[tex]x^2 = (42.6 cm)^2/10\\x^2 = 181.476 cm^2[/tex]
Taking the square root of both sides,
x ≈ 13.48 cm
Learn more about magnetic fields here:
https://brainly.com/question/19542022
#SPJ11
Find the speed (in terms of c) of a particle (for example, an electron) whose relativistic kinetic energy KE is 5 times its rest energy E in - -
. For example, if the speed is 0.500c, enter only 0.500. Keep 3 digits after the decimal point.
The speed of the particle is approximately 0.993c.
According to Einstein's theory of relativity, the relativistic kinetic energy (KE) of a particle can be expressed as KE = (γ - 1)[tex]mc^2[/tex], where γ is the Lorentz factor and m is the rest mass of the particle.
We are given that the kinetic energy is 5 times the rest energy, which can be expressed as KE = 5[tex]mc^2[/tex].Setting these two equations equal to each other, we have (γ - 1)[tex]mc^2[/tex] = 5[tex]mc^2[/tex]. Simplifying, we get γ - 1 = 5, which leads to γ = 6.
The Lorentz factor γ is defined as γ = 1/√[tex](1 - v^2/c^2)[/tex], where v is the velocity of the particle. We can rearrange this equation to solve for v: v = c√(1 - 1/γ^2).
Plugging in γ = 6, we find v ≈ 0.993c. Therefore, the speed of the particle is approximately 0.993c.
Learn more about speed here ;
https://brainly.com/question/32673092
#SPJ11
A ring of radius R = 2.20 m carries a charge q = 1.99 nC. At what distance, measured from the center of the ring does the electric field created by the ring reach its maximum value? Enter your answer rounded off to 2 decimal places. Do not type the unit. Consider only the positive distances.
The electric field created by the ring reaches its maximum value at a distance of 1.27 meters from the center of the ring.
The electric field created by a ring with a given radius and charge reaches its maximum value at a distance from the center of the ring. To find this distance, we can use the equation for the electric field due to a ring of charge.
By differentiating this equation with respect to distance and setting it equal to zero, we can solve for the distance at which the electric field is maximum.
The equation for the electric field due to a ring of charge is given by:
E = (k * q * z) / (2 * π * ε * (z² + R²)^(3/2))
where E is the electric field, k is the Coulomb's constant (9 * [tex]10^9[/tex] N m²/C²), q is the charge of the ring, z is the distance from the center of the ring, R is the radius of the ring, and ε is the permittivity of free space (8.85 * [tex]10^{-12}[/tex] C²/N m²).
To find the distance at which the electric field is maximum, we differentiate the equation with respect to z:
dE/dz = (k * q) / (2 * π * ε) * [(3z² - R²) / (z² + R²)^(5/2)]
Setting dE/dz equal to zero and solving for z, we get:
3z² - R² = 0
z² = R²/3
z = √(R²/3)
Substituting the given values, we find:
z = √((2.20 m)² / 3) = 1.27 m
Therefore, the electric field created by the ring reaches its maximum value at a distance of 1.27 meters from the center of the ring.
To learn more about electric field visit:
brainly.com/question/30544719
#SPJ11
An airplane starts from west on the runway. The engines exorta constant force of 78.0 KN on the body of the plane (mass 9 20 104 KO) during takeofc How far down the runway does the plane reach its takeoff speed of 46.1m/s?
An airplane starts from west on the runway. The engines extort constant force of 78.0 KN on the body of the plane (mass 9 20 104 Kg) during takeoff . The plane reaches its takeoff speed after traveling approximately 1135.17 meters down the runway.
To find the distance the plane travels down the runway to reach its takeoff speed, we can use the equations of motion.
The force exerted by the engines is given as 78.0 kN, which can be converted to Newtons:
Force = 78.0 kN = 78.0 × 10^3 N
The mass of the plane is given as 9.20 × 10^4 kg.
The acceleration of the plane can be determined using Newton's second law:
Force = mass × acceleration
Rearranging the equation, we have:
acceleration = Force / mass
Substituting the given values, we find:
acceleration = (78.0 × 10^3 N) / (9.20 × 10^4 kg)
Now, we can use the equations of motion to find the distance traveled.
The equation that relates distance, initial velocity, final velocity, and acceleration is
v^2 = u^2 + 2as
where:
v = final velocity = 46.1 m/s (takeoff speed)
u = initial velocity = 0 m/s (plane starts from rest)
a = acceleration (calculated above)
s = distance traveled
Plugging in the values, we have:
(46.1 m/s)^2 = (0 m/s)^2 + 2 × acceleration × s
Simplifying the equation, we can solve for 's':
s = (46.1 m/s)^2 / (2 × acceleration)
Calculating this, we find:
s ≈ 1135.17 m
Therefore, the plane reaches its takeoff speed after traveling approximately 1135.17 meters down the runway.
To learn more about Newton's second law visit: https://brainly.com/question/25545050
#SPJ11
Objects Cooling in Air Animal Size and Heat Transfer Room temperature T 2
= The miope of yroph in (T− 7
1
T. vs t is oqual to - . Computer Graph: thang Excel to Plos in (T. Ty vs f for (1 in; 2 in and 3 in Spbares). From each 3reph, deternaine the values of f, the conling rates. 3 plets (conviant flots Analyals: if f - D, where r is the cocling rate and D is the diameter ef the sphere, then 10gr=n 69
D. The slope of log rvs
log D
is the power n. r=4−int d=x−int facwill itek of iclationilf. lefoes the slope aid. collanigrate: Computer Graph: Using Excel to Plot log r vs
log D
. Slope = How does the cooling rate, r, depend on the diameter, D, of the sphere? Circle the equation best describes this dependence. r=1/D 3
r=1/D 2
r=1/Dr−Dr=D 2
r=D 3
The cooling rate, r, depends on the diameter, D, of the sphere such that r=D2.
The given slope of log r vs log D is -2. The equation which best describes the dependence of the cooling rate, r, on the diameter, D, of the sphere is given by:r = D2. Explanation: The cooling rate, r, for a given sphere depends on its diameter, D.
The cooling rate can be expressed as: r = k Dn, where k is a proportionality constant and n is the power to which D is raised. We need to find how the cooling rate depends on the diameter of the sphere. The slope of log r vs log D is the power n. Given: Slope of log r vs log D is -2. Therefore, n = -2.The relation between r and D is given as:r = k Dnr = k D-2r = k / D2From the above equation, we can see that the cooling rate is inversely proportional to the square of the diameter. Therefore, the cooling rate, r, depends on the diameter, D, of the sphere such that r = D2.
Thus, the equation which best describes the dependence of the cooling rate, r, on the diameter, D, of the sphere is given by:r = D2.
Learn more on proportionality here:
brainly.in/question/7910083
#SPJ11