In circle S with m∠RST= 56 and RS = 19 units, the length of arc RT ≈ 8.87 units (rounded to two decimal places).
Describe Arc of Circle?An arc of a circle is a portion of the circumference of the circle. It is defined by two endpoints and the collection of all points on the circle's circumference that lie between these endpoints. The length of an arc is proportional to the measure of its corresponding central angle. The formula to find the length of an arc of a circle is L = (m/360) x 2πr, where L is the length of the arc, m is the measure of the central angle, and r is the radius of the circle. The symbol for an arc is a segment of the circle with a curved line over it.
We know that in a circle with radius r, the measure of the arc of a central angle with measure θ degrees is (θ/360) × 2πr units.
In circle S with center S, we are given that RS = ST = r (say) and m∠RST = 56 degrees. So, the measure of minor arc RT is also 56 degrees.
Therefore, the length of arc RT = (56/360) × 2πr = (7/45) × 2πr.
We are also given that RS = 19 units. Since RS = ST = r, we have r = 19 units.
Substituting this value of r, we get:
Length of arc RT = (7/45) × 2πr = (7/45) × 2π(19) ≈ 8.87 units (rounded to two decimal places).
To know more about radius visit:
https://brainly.com/question/15448382
#SPJ1
Answer:
RT= 18.57
Step-by-step explanation:
TRUST THE PROCESS
8. describe the center and spread of the chi-square distributions. 9. what is the chi-square test statistic? is it on the formula sheet? what does it measure? 10. how many degrees of freedom does the chi-square distribution have? 11. what is the rule of thumb for all expected counts in a chi-square goodness of fit test?
8. Spread = SD = sqrt(2*df)
9. The difference between the observed and expected frequencies of the outcomes of a set of events or variables.
10. Degrees of 1 freedom does the chi-square distribution.
11. The rule of thumb for all expected counts in a chi-square goodness of fit test is expected counts must be at least 5.
8. Describe the center and spread of the chi-square distributions.
Shape - skewed right because can't be zero
µ = df = tipping point
mode = df - 2 = peak
spread = SD = sqrt(2*df)
9. Chi-square test is a non-parametric test (a non-parametric statistical test is a test whose model does not specify conditions about the parameter of the population from which the sample is drawn.). It is used for identifying the relationship between a categorical variable and denoted by χ2.
10. A chi-squared distribution constructed by squaring a single standard normal distribution is said to have 1 degree of freedom. Thus, as the sample size for a hypothesis test increases, the distribution of the test statistic approaches a normal distribution.
11. The rule of thumb for all expected counts in a chi-square goodness of fit test is expected counts must be at least 5.
Learn more about Chi- square distribution at:
https://brainly.com/question/30259945
#SPJ4
What is the percent of wolves that are neither female nor hunt in medium‑sized packs?
Number of wolves hunting in medium-sized packs) to perform these calculations and obtain the percentage.
To find the percent of wolves that are neither female nor hunt in medium-sized packs, follow these steps:
1. Determine the total number of wolves.
2. Identify the number of female wolves and those that hunt in medium-sized packs.
3. Subtract the number of wolves that fit into either category from the total number of wolves.
4. Divide the remaining number of wolves by the total number and multiply by 100 to get the percentage.
Please provide the necessary data (total number of wolves, number of female wolves, and number of wolves hunting in medium-sized packs) to perform these calculations and obtain the percentage.
for such more question on percentage
https://brainly.com/question/24877689
#SPJ11
The triangles are similar. Find the value of x.
Since the triangles are similar, the value of x is equal to: C. 18 units.
What are the properties of similar triangles?In Mathematics, two (2) triangles are said to be similar when the ratio of their corresponding side lengths are equal and their corresponding angles are congruent.
By applying the properties of similar triangles, we have the following ratio of corresponding side lengths;
AC/RS = AB/RT
By substituting the given side lengths into the above equation, we have the following:
x/24 = 24/32
By cross-multiplying, we have the following;
32x = 24(24)
32x = 576
x = 576/32
x = 18 units.
Read more on triangle here: brainly.com/question/22891315
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
Chang needs to drive 11 miles to work. So far, he has driven 4.7 miles. How many more miles must he drive?
Answer:
6.3 miles
Step-by-step explanation:
11-4.7 = 6.3 hope this helps
He requires to travel 6.3 miles more to reach work.
Distance is the measure of how far apart two points are. It is a scalar quantity that is typically measured in units such as meters, kilometers, miles, feet, or inches.
Since the total distance required to be traveled by Chang is 11 miles.
Let S = total distance = 11
given distance traveled is 4.7 miles
take this traveled distance of 4.7 miles as x
now let S = x+y
replacing the given values where S = 11, x = 4.7
11= 4.7+y
y=11-4.7
y= 6.3
hence the remaining distance required to be traveled by Chang is 6.3 miles.
For more about distance please refer to: https://brainly.com/question/30510042
7. in model 1, if the length of the arrow represents time, then for those cancerous cells, what hap pens to the time that is necessary for the cell cycle? what implication might this have for doctors who are treating cancer patients?
The time necessary for the cell cycle for cancerous cells is significantly shorter compared to normal cells.
This implies that cancerous cells reproduce faster and therefore are able to spread more quickly. Doctors should be aware of this accelerated process so that they can provide more effective treatment options to their patients.
Explanation: In Model 1, the length of the arrow represents the time necessary for a cell to complete its cell cycle. For cancerous cells, the cell cycle is significantly shorter compared to normal cells.
This implies that cancerous cells can reproduce more quickly, and therefore spread more quickly. It is important for doctors to be aware of this so that they can make more informed decisions when it comes to treating cancer patients.
They should have an understanding of the accelerated process of cancerous cells, and use this to create better treatment plans for their patients.
This may include more aggressive methods of treatment such as chemotherapy and radiation, in order to try and stop the rapid spread of cancerous cells.
To know more about cancerous cells click on below link:
https://brainly.com/question/436553#
#SPJ11
siona bought 10 outfits to wear to church. the shirt has a price of $3.50 and a pair of shorts has a price of $4.00. how many shirts and pairs of shorts did she buy when she spent a total of $36.50?
Siona bought 7 shirts and 3 pairs of shorts when she spent a total of $36.50. The problem can be solved using a system of equations.
Let's use a system of equations to solve this problem:
Let x be the number of shirts that Siona bought, and y be the number of pairs of shorts that she bought. Then we have:
Equation 1: x + y = 10 (Siona bought 10 outfits in total)
Equation 2: 3.50x + 4.00y = 36.50 (The total cost of the outfits is $36.50)
To solve for x and y, we can use substitution or elimination. Let's use substitution:
From Equation 1, we can solve for x in terms of y:
x = 10 - y
Substitute this expression for x into Equation 2:
3.50(10 - y) + 4.00y = 36.50
Simplify and solve for y:
35 - 3.50y + 4.00y = 36.50
0.50y = 1.50
y = 3
Now we can substitute y = 3 back into Equation 1 to solve for x:
x + 3 = 10
x = 7
Therefore, Siona bought 7 shirts and 3 pairs of shorts when she spent a total of $36.50.
Learn more about algebraic equations here: brainly.com/question/953809
#SPJ4
Seth is analyzing the number of students in his class and
The least likely event from given events is Option B: A randomly selected student who is freshmen owns a skateboard.
The event whose occurence is minimum is least likely event.
Suppose there are finite elementary events in sample space of considered experiment and all are equally likely.
Then, we want to find the probability of an event E.
Then, its probability is given as
P(E) = Number of favourable cases/ Number of total cases = n(E)/n(S)
where favorable cases are the elementary events who belong to E, and total cases are size of sample space.
For two events A and B, by chain rule, we have:
P(A∩B) = P(B)P(A|B) = P(A)P(A|B)
How to find the conditional probability:
Suppose that there are two events A and B. Then suppose the conditional probability are:
P(A|B) = probability of occurrence of A given B has already occurred.
P(B|A) = probability of occurrence of B given A has already occurred.
We can then use the chain rule to find them, or Bayes theorem also helps in finding these probabilities.
We are given the table of joint relative frequency:
We take events as A, A' and B and B'
Important probabilities which will be used are evaluated as:
P(A) = n(A)/n(S) = 150/1200 = 1/8
P(B) = n(B)/n(S) = 250/1200 = 5/24
P(A') = 1 - P(A) = 7/8
P(B') = 1 - P(B) = 1 - 5/24 = 19/24
P(A∩B) = n(A∩B) / n(S) = 40/1200 = 1/30
P(A'∩B') = n(A'∩B') / n(S) = 840/1200 = 7/10
P(A'∩B) = n(A'∩B) / n(S) = 210/1200 = 7/40
Evaluating probabilities of choices given, we get:
Case 1: E = A random selected student who owns skateboard is freshmen
P(E) = ?
P(E) = P(B|A) = P(A∩B) / P(A) = 1/30 ÷ 1/8 = 4/15
Case 2: E = A random selected student who is freshmen owns skateboard:
P(E) = P(A|B) = P(A∩B) / P(B) = 1/30 ÷ 5/24 = 4/25
Case 3: E = A random selected student who doesn't owns skateboard is freshmen
P(E) = P(B|A') = P(A'∩B) / P(A') = 7/40 ÷ 19/24 = 21/95
Case 4: E = A randomly selected student who doesn't owns skateboard is not freshmen
P(E) = P(B'|A') = P(A'∩B') / P(A') = 7/10 ÷ 19/24 = 84/95
So, the least probability is for second case.
Question - Seth is analyzing number of students in class and high school who own skateboards. He puts the data in table shown. Given information in table, which event is least likely?
Learn more about probability here: brainly.com/question/24756209
#SPJ4
The sine is negative between 180 and 360 degrees true or false
Answer:
true
Step-by-step explanation:
3rd quadrant sine is (-)
4th quadrant sine is (-)
the two figures shown are made of unit squares. what is the positive difference of the perimeters, in units?
The two figures shown are made of unit squares. The positive difference of the perimeters, in units, is 8.
Perimeter is the total distance around the boundary of the shape. Since each square has a side length of 1 unit, the perimeter is equal to the number of sides.
1. Figure A: Counting the number of unit squares on the boundary of the shape, the perimeter of the first shape is: 8+4+4+4+4=24 units.
2. Figure B:Counting the number of unit squares on the boundary of the shape, the perimeter of the second shape is: 10+2+10+2=24 units.
The positive difference of the perimeters in units = |24 - 24| = 0 units. Therefore, the positive difference of the perimeters, in units is 0.
Know more about perimeters here:
https://brainly.com/question/397857
#SPJ11
PLEASE HELP SOMEONE NEED TO DRAW A NUMBER LINE!!!
Answer=30 I think
Step-by-step explanation:
Blue card chances: 5/25=%20 Afterwards: 4/25=%16/2=%8
Red card chances: 12/25=%48 Afterwards: 11/25=%44/2=%22
Green card chances: 8/25=%32
Red and Blue card chances: %68
Answer=30 I think
In ΔSTU, u = 980 inches, t = 700 inches and ∠T=161°. Find all possible values of ∠U, to the nearest degree.
Answer:<U=27.1
Step-by-step explanation:
undoing the law of sines to find <U:
[tex]\frac{sin161}{700} =\frac{sinU}{980}[/tex]
[tex]sin U 700=980sin161[/tex]
[tex]Sin U =\frac{980sin161}{700}[/tex]
[tex]< U=27.1[/tex]
Han is cycling at a speed of -8 miles per hour; if he starts at the same zero point what will his position be after 45 minutes?
Answer:
3.6 miles
Step-by-step explanation:
hope this helps!
a chord is drawn perpendicular to the radius of the circle. if the radius is 5 inches and the point of intersection between the chord and the radius is 2 inches away from the circumference of the circle, find the length of the chord.
The length of the chord is approximately 7.62 inches.
Let's call the center of the circle point O, the radius of the circle 5 inches, the point where the chord intersects the radius point A, and the point where the chord intersects the circle point B.
Since the chord is perpendicular to the radius, we know that angle AOB is a right angle. Also, since OA is 5 inches and AB is 2 inches, we can use the Pythagorean theorem to find the length of OB
OB^2 = OA^2 + AB^2
OB^2 = 5^2 + 2^2
OB^2 = 25 + 4
OB^2 = 29
OB = sqrt(29) ≈ 5.39 inches
Now that we know the length of OB, we can use it to find the length of the chord. Let's call the length of the chord CD, where C and D are the points where the chord intersects the circle. Since OB is perpendicular to CD, we can use the Pythagorean theorem again to find the length of CD
CD^2 = 2OB^2
CD^2 = 2(29)
CD^2 = 58
CD = sqrt(58) ≈ 7.62 inches
Learn more about Pythagorean theorem here
brainly.com/question/14930619
#SPJ4
i need help i cant figure out math
Answer:
See below.
Step-by-step explanation:
to find the change in temperature from 2:00 PM to 10:00 PM, you need to subtract the final temperature from the initial temperature. In other words,
Change in temperature = Final temperature - Initial temperature
In your problem, the final temperature is -9°F and the initial temperature is 18°F. Therefore,
Change in temperature = -9°F - 18°F
Change in temperature = -27°F
So, the change in temperature from 2:00 PM to 10:00 PM is -27°F.
tickets for a raffle cost 5. there were 833 tickets sold. one ticket will be randomly selected as the winner, and that person wins 1400 and also the person is given back the cost of the ticket. for someone who buys a ticket, what is the expected value (the mean of the distribution)?
The expected value (the mean of the distribution) for someone who buys a ticket can be calculated by adding up the total amount of money in the raffle and then dividing that by the number of tickets sold, which in this case in $6.68.
In this scenario, a ticket costs $5. The prize for winning the raffle is $1400 plus the cost of the ticket, which is $5.
The total value of the raffle is equal to the sum of the prize and the total amount of money raised from the tickets. The amount raised from the tickets is the number of tickets sold multiplied by the cost of the ticket.
Therefore, the total value of the raffle is equal to: $1400 + ($5 × 833) = $1400 + $4165 = $5565
The expected value of a ticket is the total value of the raffle divided by the number of tickets sold.
Therefore, the expected value of a ticket is:$5565 / 833 = $6.68
Therefore, the expected value (the mean of the distribution) for someone who buys a ticket is $6.68.
To know more about expected value refer here:
https://brainly.com/question/29574962#
#SPJ11
If Pythagoras, the Greek mathematician, was born in 582 BCE and died on his birthday in 497 BCE, how old was he when he died?
Born: 582 BCE
Died: 497 BCE
582-497= 85
Answer: 85 years old
the weights of steers in a herd are distributed normally. the standard deviation is 300lbs and the mean steer weight is 1100lbs . find the probability that the weight of a randomly selected steer is between 1279 and 1609lbs
The probability that the weight of a randomly selected steer is between 1279 and 1609 lbs is 0.2288.
Given that the weights of steers in a herd are distributed normally.
The standard deviation is 300 lbs and the mean steer weight is 1100 lbs.
We are required to find the probability that the weight of a randomly selected steer is between 1279 and 1609 lbs.
Here, it is given that the mean weight of the herd is 1100 lbs and the standard deviation is 300 lbs.
We need to find the probability of the weight of a randomly selected steer between 1279 lbs and 1609 lbs.
It can be written as;
P (1279 ≤ X ≤ 1609)
We can standardize this distribution by subtracting the mean and dividing it by the standard deviation.
The standardized form is given by
Z = (X-μ)/σ
where X is the given value, μ is the mean and σ is the standard deviation.
Substituting the values we get,
for X = 1279
[tex]Z_1[/tex] = (1279 - 1100)/300 = 0.5967 and
for X = 1609
[tex]Z_2[/tex] = (1609 - 1100)/300 = 1.6967
We are required to find the probability of Z between [tex]Z_1[/tex] and [tex]Z_2[/tex].
P([tex]Z_1[/tex] ≤ Z ≤ [tex]Z_2[/tex]) To find this probability,
we use the standard normal distribution table,
We get P(Z ≤ 1.70) = 0.9545 and P(Z ≤ 0.60) = 0.7257
Now, P ([tex]Z_1[/tex] ≤ Z ≤ [tex]Z_2[/tex]) = P(Z ≤ 1.70) - P(Z ≤ 0.60) = 0.9545 - 0.7257 = 0.2288.
For similar question on probability.
https://brainly.com/question/25870256
#SPJ11
find n 3ft area=33 sq ft
The dimensions of the rectangle are 6 ft by 5.5 ft, and n = 6.
What is the area of the rectangle?
To find the area of a rectangle, we multiply the length of the rectangle by the width of the rectangle.
We know that the area of a rectangle is given by:
Area = Length x Width
Since the problem does not specify the shape of the rectangle, we cannot assume that it is a square. Therefore, we need to find two numbers whose product is 33.
The factors of 33 are 1, 3, 11, and 33. None of these factors is equal to 3, so we cannot simply multiply 3 by a factor of 33 to get the length of the rectangle. Therefore, we need to use a different approach.
One way to find two numbers whose product is 33 is to start with the square root of 33 and round up and down to the nearest integer. The two resulting integers will be close to the factors of 33 and will multiply to give 33.
The square root of 33 is approximately 5.74. Rounding up and down to the nearest integer gives:
Length = 6 ft
Width = 33 ÷ 6 = 5.5 ft (approximately)
The product of these two numbers is:
6 ft x 5.5 ft ≈ 33 sq ft
Therefore, the dimensions of the rectangle are 6 ft by 5.5 ft, and n = 6.
To learn more about the area of the rectangle visit:
brainly.com/question/2607596
#SPJ1
PLEASE HELP!!
Decomposing a Fraction with a Repeated Irreducible Quadratic Factor
Find the partial fraction decomposition of 2x^ 3 -x^ 2 +5x (x^ 2 +1)^ 2
Please show work
Answer:
[tex]\dfrac{2x^3-x^2+5x}{(x^2+1)^2}\equiv \dfrac{2x-1}{(x^2+1)}+\dfrac{3x+1}{(x^2+1)^2}[/tex]
Step-by-step explanation:
As the denominator has a repeated irreducible quadratic factor, and the degree of the denominator is greater than the degree of the numerator, the partial fraction form is:
[tex]\boxed{\dfrac{N(x)}{(x^2+c)^2} \equiv\dfrac{Ax+B}{(x^2+c)}+\dfrac{Cx+D}{(x^2+c)^2}}[/tex]
Therefore, the given algebraic fraction can be written as partial fractions of the form:
[tex]\dfrac{2x^3-x^2+5x}{(x^2+1)^2}\equiv \dfrac{Ax+B}{(x^2+1)}+\dfrac{Cx+D}{(x^2+1)^2}[/tex]
Add the partial fractions:
[tex]\dfrac{2x^3-x^2+5x}{(x^2+1)^2}\equiv \dfrac{(Ax+B)(x^2+1)+Cx+D}{(x^2+1)^2}[/tex]
Cancel the denominators from both sides of the original identity, so the numerators are equal:
[tex]2x^3-x^2+5x = (Ax+B)(x^2+1)+Cx+D[/tex]
Expand the right side of the equation:
[tex]2x^3-x^2+5x=Ax^3+Ax+Bx^2+B+Cx+D[/tex]
Group elements according to the powers of x:
[tex]2x^3-x^2+5x=Ax^3+Bx^2+(A+C)x+B+D[/tex]
Equate the coefficients of the terms in x³ and x² to solve for A and B:
[tex]\implies A=2[/tex]
[tex]\implies B=-1[/tex]
Substitute the found values of A and B into the equation:
[tex]2x^3-x^2+5x=2x^3-x^2+(2+C)x-1+D[/tex]
Equate the coefficients of the terms in x and the constant to solve for C and D:
[tex]\implies 5=2+C \implies C=3[/tex]
[tex]\implies 0=-1+D \implies D=1[/tex]
Replace A, B, C and D in the original identity:
[tex]\dfrac{2x^3-x^2+5x}{(x^2+1)^2}\equiv \dfrac{2x-1}{(x^2+1)}+\dfrac{3x+1}{(x^2+1)^2}[/tex]
After we planted flowers in 2/5 of our garden, 24m squared remained unplanted. How many square meters is this garden in total? if the total area of the garden is 1 the proportion of the remaining area is?
Thus, total garden area calculated in square meters is found to be 40 sq. m.
Explain about the one-variable linear equation?If the degree n in the equation is equal to 1, then a linear equation only contains ONE variable. The highest exponent a single variable can have is referred to as the equation's degree. Any arbitrary variable, such as x, y, or z, may be used as long as the linear equation is homogeneous.
Given data:
Let x be the total area of land.
Area of planted flowers : 2/5 x
Remaining area = 24 sq. m.
Thus,
Total area = Area of planted flowers + Remaining area
x = 2/5 x + 24
x - 2/5 x = 24
(5 -2)/5 x = 24
3x/5 = 24
x = 24*5 / 3
x = 8*5
x = 40
Thus, total area of the garden calculated in square meters is found to be 40 sq. m.
Know more about the one-variable linear equation,
https://brainly.com/question/28555579
#SPJ1
Solve Systems of Equations
Y= 1/2x
3y= x-1
David has a coin collection. He keeps 11 of the coins in his box, which is 5% of the
collection. How many total coins are in his collection?
Insert the values given in the problem then scale up or down
to find the missing value.
coins
percent
100
Scaling up, David has 220 coins in his collection with 5% of 11 of the coins kept in his box.
What is a scale up?A scale up represents an increase or growth.
Scale factors are ratios comparing two quantities or values.
Proportionately, if 5% represent 11 coins, 100% will be 220 coins.
The number of coins David keeps in his box = 11
The percentage of the coins kept in the box = 5%
Thus, proportionately, 11 = 5%; therefore, 100% = 220 (11 ÷ 5%).
Learn more about ratios, scale factors, and proportions at https://brainly.com/question/29285928.
#SPJ1
15 - (p + 1) where p = 3 and 4 = 10 calculate
Answer:
11
Step-by-step explanation:
15 - (p + 1)
Let p=3
15 - (3 + 1)
Parentheses first
15 - (4)
11
Answer:
11
Step-by-step explanation:
Given that,
p = 3
So, to find the value of the expression you have to solve it by replacing p with 3.
15 - ( p + 1 )
15 - ( 3 + 1 )
15 - 4
11
what is the approximate probability that the actual proportion requiring aid will exceed that value? (round your answer to four decimal places.)
The approximate probability that the actual proportion requiring aid will exceed 0.08 is 0.5 (or 50%) rounded to four decimal places.
Given: The number of members in town = 400
The number of members requiring aid = 32
The proportion of members requiring aid = (number of members requiring aid) / (total number of members) = 32 / 400 = 0.08
To find the approximate probability that the actual proportion requiring aid will exceed this value, we need to assume a distribution for the proportion of members requiring aid. Assuming a normal distribution, we can use the Central Limit Theorem to approximate the sampling distribution of the sample proportion.
The standard error of the sample proportion is given by:
SE = √[p(1-p)/n]
where p is the population proportion and n is the sample size.
Substituting the values, we get:
SE = sqrt [(0.08 × 0.92) / 32] = 0.043
To find the probability that the actual proportion requiring aid will exceed 0.08, we can standardize the distribution using the z-score formula:
z = (x - p) / SE
where x is the value of the proportion we are interested in, p is the population proportion, and SE is the standard error of the sample proportion.
Substituting the values, we get:
z = (0.08 - 0.08) / 0.043 = 0
The probability that the actual proportion requiring aid will exceed 0.08 is equal to the probability of observing a z-score greater than 0, which is 0.5 (or 50%).
Learn more about probability at
https://brainly.com/question/30034780
#SPJ4
The question is -
The towing service in town contracts with the club to come to the aid of up to 32 members in the next 12-month period. What proportion is that of the 400 members in town? .08 What is the approximate probability that the actual proportion requiring aid will exceed that value? (Round your answer to four decimal places.)
how many ways are there to seat six people around a cir- cular table where two seatings are considered the same when everyone has the same two neighbors without re- gard to whether they are right or left neighbors?
the number of distinct seating arrangements when two seatings are considered the same when everyone has the same two without neighbors regard to whether they are right or left neighbors is:5!6⋅2=10.6⋅25! = 10
There are $(6-1)! = 5! = 120$ ways to seat six people around a circular table if the seatings are considered distinct. However, we must divide this number by $6$ to account for the fact that rotations of the same seating arrangement are considered the same. We also must divide by $2$ to account for the fact that reflections (i.e., reversing the order of people) of the same seating arrangement are also considered the same.
Therefore, the number of distinct seating arrangements when two seatings are considered the same when everyone has the same two neighbors without regard to whether they are right or left neighbors is:
5!6⋅2=10.6⋅25! = 10
learn more about number here
https://brainly.com/question/10547079
#SPJ4
architects often create scale models before the actual building is constructed. if a scale model has a length of 24 inches and a width of 36 in., which dimensions are geometrically similar to the model buildings?
Architects often create scale models before the actual building is constructed. if a scale model has a length of 24 inches and a width of 36 in., 2:3 the dimensions are geometrically similar to the model buildings
Geometrically similar to the model buildings are those whose ratio of corresponding dimensions are the same as those of the model.
The ratio of the dimensions of the scale model is:
length:width = 24:36 = 2:3
There are two ratios to compare in a building with dimensions L and W:
length : width = L:W and
width : length = W:L
The ratio of the dimensions of a building must be in proportion to the ratio of the dimensions of the scale model for geometric similarity.
Since the dimensions of the model are 2:3, the dimensions of the building must also be in a 2:3 ratio.
Therefore, we have: L : W = 2:3
L = (2/3)W
The ratio of the length to the width of the building is 2:3.
For similar question on dimensions
https://brainly.com/question/28107004
#SPJ11
Which of the following best explains why regional identities have led to independence movements in the United Kingdom but not in Mexico?
A history of the regions' existence as separate states in the United Kingdom.
Regional identities have led to independence movements in the United Kingdom but not in Mexico because of the history of the regions' existence as separate states in the United Kingdom.
Reason of regional identities:
In the United Kingdom, there are four countries with distinct regional identities: England, Scotland, Wales, and Northern Ireland. Each of these countries has a unique culture, language, and history, which has led to a sense of national pride and identity.Regional identities in the United Kingdom have played a significant role in independence movements.
For example, Scotland has a long history of wanting independence from the United Kingdom. The country was an independent state until it joined the United Kingdom in 1707.
However, many Scottish people feel that their cultural and political identity is different from the rest of the United Kingdom and have called for a referendum on Scottish independence.Mexico, on the other hand, is a unitary state with a strong central government. The country has a long history of political and cultural unity, which has led to a sense of national identity.
Therefore, the history of the regions' existence as separate states in the United Kingdom best explains why regional identities have led to independence movements in the United Kingdom but not in Mexico.
To know more about independence:
https://brainly.com/question/4273396
#SPJ11
the 98.4% confidence interval for snapdragons grown in compost is (20.91, 38.43). what is the margin of error of this confidence interval?
The margin of error of the 98.4% confidence interval for snapdragons is 3.71.
The midpoint of the range is calculated by adding the upper and lower bounds and then dividing by two. So, the sample mean is `(20.91 + 38.43) / 2 = 29.67`.
The margin of error is calculated by multiplying the critical value of z* (1.96 for a 98.4% confidence level) by the standard error of the mean. The formula for calculating the margin of error is:
`Margin of error z*(standard deviation/√n`).
The formula is `range/4 = 1.96 * standard deviation/√n`.Now, solve for the standard deviation:
`standard deviation = (range/4) * √n / 1.96`
Substituting the values: `(38.43 - 20.91)/4 = 1.96 * standard deviation/√n`
Simplifying the equation: `4.26 = (1.96*standard deviation)/√n`
Squaring both sides: `4.26^2 = 3.8416 = (1.96^2 * standard deviation^2)/n`
Substituting the value of the standard deviation: `3.8416 = (1.96^2 * ((38.43 - 20.91)/4)^2) / n`
Solving for n: `n = ((1.96^2 * ((38.43 - 20.91)/4)^2) / 3.8416) = 31.54`
Now that we know the sample size, we can calculate the standard error of the mean:
`standard error = standard deviation/√n = ((38.43 - 20.91)/4)/√31.54 = 1.89`.
The margin of error is `1.96 * 1.89 = 3.71`.
The 98.4% confidence interval for snapdragons grown in compost is (20.91, 38.43). The margin of error of this confidence interval is 3.71.
Know more about error here:
https://brainly.com/question/28771966
#SPJ11
assume that the salaries of elementary school teachers in a particular country are normally distributed with a mean of $38,000 and a standard deviation of $4,000. what is the cutoff salary for teachers in the top 10%? round your answer to the nearest dollar.
As per the standard deviation, the cutoff salary for teachers in the top 10% of earners in this country is approximately $43,120.
Now, we need to determine the cutoff salary for teachers in the top 10% of earners in this country. To do this, we need to find the salary that corresponds to the 90th percentile of the distribution.
The 90th percentile represents the point below which 90% of the data falls. In other words, if we arrange all the salaries in ascending order, the 90th percentile is the value that is greater than 90% of the salaries.
We can use a standard normal distribution table or a calculator to find the z-score that corresponds to the 90th percentile. The z-score represents the number of standard deviations away from the mean that corresponds to a particular percentile.
Using the standard normal distribution table, we can find that the z-score for the 90th percentile is approximately 1.28. This means that the cutoff salary for teachers in the top 10% of earners is:
Cutoff salary = Mean + (Z-score x Standard deviation)
Cutoff salary = $38,000 + (1.28 x $4,000)
Cutoff salary = $43,120
To know more about standard deviation here
https://brainly.com/question/16555520
#SPJ4
26. In the given figure, OP || RS. ZPQR = 60° and QRS = 130°. Then what is the measure of ZOPQ? S P 60% R 130⁰
Answer: The answer is 60.
Step-by-step explanation:
Using the fact that OP || RS, we know that∠RWV = 180° − 130° 1. ∠RWV = 50° We know that,∠PWQ = ∠RWV = 50° (Since, opposite angles of intersecting lines are equal) Also, for line OP∠OQP + θ = 180° θ = 180° − ∠OPQ = 180° − 110° 2. θ = 70°
Answer:
The measure of ∠OPQ is 110°.
Step-by-step explanation:
Draw a line parallel to OP from point Q. Label a point on the line T. (See attached diagram).
Angles SRQ and TQR are alternate interior angles, and so according to the Alternate Interior Angles Theorem, they are congruent.
⇒ m∠TQR = m∠SRQ = 130°
Given m∠PQR = 60° and m∠TQR = 130° then:
⇒ m∠TQP + m∠PQR = m∠TQR
⇒ m∠TQP + 60° = 130°
⇒ m∠TQP = 70°
Angles OPQ and TQP are same-side interior angles, and so according to the Same-side Interior Angles Theorem, they are supplementary (sum to 180°).
⇒ m∠OPQ + m∠TQP = 180°
⇒ m∠OPQ + 70° = 180°
⇒ m∠OPQ = 110°
Therefore, the measure of ∠OPQ is 110°.