How many moles of aluminium chloride, ALCL3 form when 142 g CL2 reacts with plenty of aluminium?

Answers

Answer 1

When 142 g Cl₂ combines with lots of aluminium, 1.33 moles of AlCl₃ are formed.

To determine the number of moles of AlCl₃ formed when 142 g Cl₂ reacts with plenty of aluminum, we first need to write a balanced chemical equation for the reaction:

2 Al + 3 Cl₂ → 2 AlCl₃

From the balanced equation, we can see that 3 moles of Cl₂ react with 2 moles of Al to form 2 moles of AlCl₃.

Next, we need to calculate the number of moles of Cl₂ present in 142 g:

n(Cl₂) = m/M

n(Cl₂) = 142 g / 70.9 g/mol

n(Cl₂) = 2.00 moles

Since the reaction consumes 3 moles of Cl₂ for every 2 moles of AlCl₃ formed, we can determine the number of moles of AlCl₃ formed as:

n(AlCl₃) = (2/3) x n(Cl₂)

n(AlCl₃) = (2/3) x 2.00 moles

n(AlCl₃) = 1.33 moles

Therefore, 1.33 moles of AlCl₃ form when 142 g Cl₂ reacts with plenty of aluminum.

To know more about the Aluminium, here

https://brainly.com/question/16088530

#SPJ1


Related Questions

You are placed in charge of building a brand new city in america. your fellow city planners do not want to use coal or gas to power the city. would you choose to use fission nuclear reactors or fusion nuclear reactors? what is your reasoning?
will give brainliest

Answers

In building a brand new city in America without using coal or gas, I would choose to use fission nuclear reactors over fusion nuclear reactors.

The reason behind choosing fission nuclear reactors is that they are currently more developed and widely used in practice than fusion nuclear reactors.

Fission reactors have proven their efficiency and safety in generating power for decades.

Fusion nuclear reactors, while having the potential for greater energy output and fewer radioactive waste issues, are still in the experimental stage and not yet commercially viable.

As a city planner, it's crucial to prioritize reliable and established energy sources for the city's needs. Therefore, using fission nuclear reactors would be a more feasible and practical choice for powering a new city in America.

To know more about nuclear fission visit:

https://brainly.com/question/29541275

#SPJ11

A 282. 8 g sample of copper releases 175. 1 calories of heat. The specific heat capacity of copper is 0. 092 cal/(g·°C). By how much did the temperature of this sample change, in degrees Celsius?

Answers

The temperature of this 282.8 g copper sample changed by approximately 6.78 degrees Celsius.

To find the temperature change of a 282.8 g sample of copper that releases 175.1 calories of heat with a specific heat capacity of 0.092 cal/(g·°C), we can use the following formula:
q = mcΔT

where:
q = heat released (calories)
m = mass of the sample (grams)
c = specific heat capacity (cal/(g·°C))
ΔT = temperature change (°C)

Step 1: Plug in the given values into the formula.
175.1 = (282.8)(0.092)(ΔT)

Step 2: Solve for ΔT.
ΔT = 175.1 / (282.8× 0.092)

Step 3: Calculate the value of ΔT.
ΔT ≈ 6.78 °C

So, the temperature of this 282.8 g copper sample changed by approximately 6.78 degrees Celsius.

To know more about specific heat capacity :

https://brainly.com/question/29766819

#SPJ11

In a boiling pot of water are a metal spoon and a wooden spoon of equal masses/size. Which spoon would likely be more painful (higher in temperature) to grab? Assume that both spoons have been in the same pot of boiling water for the same amount of time. Explain this phenomena using the following terms: Heat, Mass, Temperature, Specific Heat Capacity, Heat Flow. Consider all possible factors in your explanation

Answers

The metal spoon is hotter than the wooden spoon due to its higher mass,

Heat is the energy transferred from one body to another due to a temperature difference. The amount of heat transferred is proportional to the mass of the object and its specific heat capacity. Specific heat capacity is the amount of heat required to raise the temperature of one unit mass of the substance by one degree Celsius.

In this scenario, the two spoons are of equal size, but the metal spoon has a higher mass and specific heat capacity compared to the wooden spoon. When both spoons are placed in the boiling water, heat flows from the water to the spoons until they reach the same temperature as the water.

However, due to the higher mass and specific heat capacity of the metal spoon, it requires more heat energy to raise its temperature compared to the wooden spoon. As a result, the metal spoon takes a longer time to reach the same temperature as the wooden spoon.

Additionally, metals are better conductors of heat compared to wood. Therefore, the metal spoon conducts the heat more efficiently from the boiling water to the handle, making it hotter than the wooden spoon.

Overall, the metal spoon is hotter than the wooden spoon due to its higher mass, higher specific heat capacity, and better heat conduction properties. This is why it would be more painful to grab.

4NH3+6NO --> 5N2 + 6H20


How many liters of NH3 at 32. 6 °C and 4. 25 kPa are needed to react


completely with 30. 0L of NO at STP?

Answers

According to the question 19.2 liters of NH3 at 32.6°C and 4.25 kPa is required to react completely with 30.0L of NO at STP.

What is STP?

STP (Standard Temperature and Pressure) is an important concept in the physical sciences. It is the reference state for temperature and pressure in which most measurements are made. In chemistry, STP is used as a reference state for calculating the physical properties of various substances. It is also used in thermodynamics to calculate the physical state of a system. STP is defined as 0 °C (273.15 K) and a pressure of 1 atmosphere (101.325 kPa).

According to the balanced equation, for every 6 moles of NO, 5 moles of NH3 is required. Therefore, we need to calculate the number of moles of NO first.

1 mole of gas at STP occupies 22. 4 liters, so 30.0 liters of NO at STP is equal to 30.0/22.4 = 1.34 moles of NO.

Since we need 5 moles of NH3 for every 6 moles of NO, we need 5/6 x 1.34 = 1.12 moles of NH3.

At 32.6°C and 4.25 kPa, 1 mole of NH3 occupies 17.1 liters, so 1.12 moles of NH3 is equal to 1.12 x 17.1 = 19.2 liters of NH3.

Therefore, 19.2 liters of NH3 at 32.6°C and 4.25 kPa is required to react completely with 30.0L of NO at STP.

To learn more about STP

https://brainly.com/question/27100414

#SPJ4

4. An alkaline earth hydroxide, M(OH)2, was taken to lab for analysis. The unknown powder was poured into a flask and swirled in room temperature DI water until a saturated solution formed. This solution was then slowly filtered to remove the undissolved solid hydroxide. 28. 5 mL of this saturated solution was titrated with 0. 173 M HCl (aq). Endpoint required 25. 10 mL of the HCl (aq) solution. Calculate the Ksp for this alkaline earth hydroxide

Answers

The Ksp of a substance is the equilibrium constant for the reaction between the dissolved ions and the undissolved solid. In this case, the equation is M₂+(aq) + 2OH-(aq) ↔ M(OH)₂(s).

Knowing the volume of HCl required for the titration (25.10 mL) and the molarity of the HCl (0.173 M), the concentration of M₂+ and OH- ions in the saturated solution can be calculated. The Ksp can then be calculated using the concentration of M₂+ and OH- ions in the solution.

The Ksp can be expressed as Ksp = [M₂+][OH]⁻². To calculate the Ksp, the molarity of the HCl solution is multiplied by the volume used in the titration (25.10 mL) to get the moles of HCl used (4.35 x 10⁻³mol). This number is then divided by the volume of the saturated solution (28.5 mL) to get the concentration of M₂+ (1.53 x 10-2 M) and OH- (3.06 x 10⁻² M).

Finally, the Ksp can be calculated using the concentrations of M₂+ and OH- ions: Ksp = [1.53 x 10⁻²][3.06 x 10⁻²]2 = 4.94 x 10⁻⁵. Thus, the Ksp for this alkaline earth hydroxide is 4.94 x 10-5.

Know more about Equilibrium constant  here

https://brainly.com/question/10038290#

#SPJ11

2.
for the reaction c + 2h2 - ch4, how many grams of hydrogen are required
to produce 0.6 moles of methane, ch4 ?
cannu help em do the whole paper

Answers

1.21 grams of hydrogen are required to produce 0.6 moles of methane (CH₄) in the given reaction.

The given reaction is:

C + 2H₂ → CH₄

We can see that 2 moles of hydrogen (H₂) are required to produce 1 mole of methane (CH₄) according to the balanced chemical equation. Therefore, to produce 0.6 moles of methane, we will need 2 times as many moles of hydrogen, which is:

number of moles of hydrogen = 2 × number of moles of methane

number of moles of hydrogen = 2 × 0.6 moles

number of moles of hydrogen = 1.2 moles

To convert the number of moles of hydrogen to grams, we need to use the molar mass of hydrogen, which is approximately 1.008 g/mol. Thus, the mass of hydrogen required can be calculated as:

mass of hydrogen = number of moles of hydrogen × molar mass of hydrogen

mass of hydrogen = 1.2 moles × 1.008 g/mol

mass of hydrogen = 1.21 g

To learn more about hydrogen follow the link:

https://brainly.com/question/31018544

#SPJ4

The complete question is:

For the reaction C+2H₂ → CH₄, how many grams of hydrogen are required to produce 0.6 moles of methane, CH₄?

If you needed to make 2. 5 L of a 0. 2 M fruit drink solution from the 0. 7 M drink solution, how would you do it? (Hint: Use McVc = MdVd to find the amount of concentrated solution you need, then add water to reach 2. 5 L. )

Answers

The volume of the fruit drink comes out to be 0.712 L which is calculated in the below section.

Using the dilution law,

M1 V1 = M2 V2......(1)

Here, M represents the molarity and V represents the volume.

The given parameters are as follows-

M1 = 0.2 M

V1 = 2.5 L

M2  = 0.7 M

To calculate the volume of the fruit drink after dilution, substitute the known values in equation (1) as follows-

0.2 M x 2.5 L = 0.7 M x V2

V2 = (0.2 M x 2.5 L) / 0.7 M

    = 0.5 / 0.7 L

     = 0.7142 L

The volume comes out to be 0.712 L.

To learn more about molarity check the link below-

https://brainly.com/question/30404105

#SPJ4

How many grams of so2 are in 0. 410l of so2 gas at stp?

Answers

At STP (Standard Temperature and Pressure), one mole of any ideal gas occupies 22.4 liters of volume. The molar mass of SO2 (sulphur dioxide) is 64.06 g/mol.

To calculate the mass of SO2 in 0.410 L of SO2 gas at STP, we can first calculate the number of moles of SO2 using the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant (0.08206 L·atm/mol·K) and T is the temperature. At STP, the temperature is 273 K.

So, n = (PV)/(RT) = [(1 atm) x (0.410 L)]/[(0.08206 L·atm/mol·K) x (273 K)] = 0.0162 mol

Therefore, there are 0.0162 moles of SO2 in 0.410 L of SO2 gas at STP.

Finally, we can calculate the mass of SO2 using the molar mass of SO2:

mass = number of moles x molar mass

mass = 0.0162 mol x 64.06 g/mol = 1.04 g

Therefore, there are 1.04 grams of SO2 in 0.410 L of SO2 gas at STP.

To learn more about ideal gas law, click here: brainly.com/question/13821925

#SPJ11

What mass of KNO3 is needed to create a saturated solution at 60 °C in 240. 0 mL of distilled


water?

Answers

Approximately 148.8 g of KNO₃ is needed to create a saturated solution at 60°C in 240.0 mL of distilled water.

The mass of KNO₃ needed to create a saturated solution at 60°C in 240.0 mL of distilled water depends on the solubility of KNO₃ at that temperature.

The solubility of KNO₃ in water increases with temperature. At 60°C, the solubility of KNO₃ is approximately 62 g per 100 mL of water.

Thus, the quantity of KNO₃ required to form a saturated solution in 240.0 mL of water can be determined using the following procedure.:

Mass of KNO₃ = (62 g/100 mL) x (240.0 mL) = 148.8 g

To know more about price solubility, refer here:

https://brainly.com/question/17647006#

#SPJ11

A soft lump of clay has water run on top of it. After a long while the water is turned off and allowed to dry. There is no clay left; instead there are small pebbles and other types of components left on the table. Which natural process is this modeling?



A. Erosion



B. Deposition



C. Chemical weathering



D. Physical weathering

Answers

The natural process being modeled here is "Chemical weathering". The correct answer is option c.

Chemical weathering is the process by which rocks and minerals are broken down through chemical reactions with water, air, and other substances.

In this case, the clay is being broken down by the water, which is dissolving some of the minerals in the clay and carrying them away. As the water evaporates, the minerals are left behind, forming small pebbles and other components.

This process may occur over a long period of time, depending on the type of clay and the amount of water present. Chemical weathering is an important part of the Earth's natural processes, as it helps to shape the landscape and produce new materials that can be used for building and other purposes.

The correct answer is option c.

To know more about Chemical weathering refer to-

https://brainly.com/question/29616084

#SPJ11

What is the molar mass of H3PO4? (Molar mass of H = 1. 0079 g/mol; P = 30. 974 g/mol; O = 15. 999 g/mol) (3 points) a 72. 98 g/mol b 78. 22 g/mol c 88. 24 g/mol d 97. 99 g/mol

Answers

Answer: d. 97.99g/mol

Explanation:

We need to add the molar mass of each of the atoms from the formula:

H3PO4 has 3x H atoms, 1x P atom, and 4x O atoms

H 3x 1.0079= 3.0237g/mol

P 1x 30.974= 30.974g/mol

O 4x 15.999= 63.996g/mol

now add all of the totals for each type of atom

3.0237 + 30.974 + 63.996= 97.9937g/mol

our answer is d. 97.99g/mol

What is the mass in grams of strontium chloride that reacts with 300. 0g of sulfuric acid

Answers

To solve this problem, we first need to write and balance the chemical equation for the reaction between strontium chloride and sulfuric acid:

SrCl2 + H2SO4 → SrSO4 + 2HCl

According to the balanced chemical equation, one mole of strontium chloride reacts with one mole of sulfuric acid to produce one mole of strontium sulfate and two moles of hydrochloric acid.

Next, we need to calculate the number of moles of sulfuric acid we have:

moles of H2SO4 = mass of H2SO4 / molar mass of H2SO4

moles of H2SO4 = 300.0 g / 98.08 g/mol

moles of H2SO4 = 3.057 mol

Finally, we can use the stoichiometry of the balanced chemical equation to determine the number of moles of strontium chloride that will react with 3.057 moles of sulfuric acid:

moles of SrCl2 = moles of H2SO4

moles of SrCl2 = 3.057 mol

Now we can calculate the mass of strontium chloride using its molar mass:

mass of SrCl2 = moles of SrCl2 x molar mass of SrCl2

mass of SrCl2 = 3.057 mol x 158.53 g/mol

mass of SrCl2 = 485.1 g

Therefore, 485.1 grams of strontium chloride will react with 300.0 grams of sulfuric acid.

Explanation:

To solve this problem, we use stoichiometry, which is a method that relates the amount of reactants and products in a chemical reaction based on their balanced chemical equation. In this case, we first write and balance the chemical equation for the reaction between strontium chloride and sulfuric acid. Then, we calculate the number of moles of sulfuric acid given its mass and molar mass. Next, we use the stoichiometry of the balanced chemical equation to determine the number of ontium chloride that will react with the given amount of sulfuric acid. Finally, we calculate the mass of strontium chloride using its molar mass and the calculated number of moles. By following these steps, we can determine the mass of strontium chloride that will react with 300.0 grams of sulfuric acid.

How many grams of CaCO3 are produced when 98. 2 grams of CaO are reacted with an excess of Co2 according to the equation provided? CaO+CO2-->CaCO3

Answers

175.17 grams of CaCO₃ are produced when 98.2 grams of CaO are reacted with an excess of CO₂ according to the given equation.

To solve this problem, we need to use stoichiometry which deals with the quantitative relationships between reactants and products in chemical reactions.

The balanced chemical equation for the reaction is:

CaO + CO₂ → CaCO₃

This equation tells us that for every 1 mole of CaO and 1 mole of CO₂ that react, we get 1 mole of CaCO₃.

We are given the mass of CaO that is used in the reaction. To calculate the mass of CaCO₃ that is produced, we need to use stoichiometry and the molar mass of CaCO₃.

The molar mass of CaCO₃ is the sum of the atomic masses of one calcium atom (Ca), one carbon atom (C), and three oxygen atoms (O). Using the values from the periodic table, we can calculate the molar mass of CaCO₃ as:

molar mass of CaCO₃ = 1 × atomic mass of Ca + 1 × atomic mass of C + 3 × atomic mass of O

                                    = 1 × 40.08 g/mol + 1 × 12.01 g/mol + 3 × 16.00 g/mol

                                    = 100.09 g/mol

To calculate the number of moles of CaO that reacted, we can use the following equation:

n = m/M

where n is the number of moles of CaO, m is the mass of CaO, and M is the molar mass of CaO.

Using the given values, we get:

n = 98.2 g / 56.08 g/mol = 1.749 mol

This is the number of moles of CaO that reacted in the reaction.

Since the reaction is 1:1, meaning that one mole of CaO reacts with one mole of CO₂ to produce one mole of CaCO₃, we know that the number of moles of CaCO₃ produced is also 1.749 mol.

Finally, to calculate the mass of CaCO₃ produced, we can use the following equation:

m = n × M

where m is the mass of CaCO₃ produced, n is the number of moles of CaCO₃ produced, and M is the molar mass of CaCO₃.

Using the given values, we get:

m = 1.749 mol × 100.09 g/mol = 175.17 g

Learn more about CaCO₃ at https://brainly.com/question/30594488.

#SPJ11

How do paleontologists determine the placement of a fossil for display? Explain how diagnostic structure is used for the accurate placement of a fossil

Answers

Paleontologists use a variety of methods to determine the placement of a fossil for display. One important factor is the diagnostic structure of the fossil, which refers to unique features that help to identify the species and its evolutionary relationships. For example, if a fossil has a particular shape or pattern on its shell, this could indicate a specific genus or species.

To accurately place a fossil for display, paleontologists will carefully examine its diagnostic structures and compare them to other specimens in their collection or in published research. They may also consult with experts in the field or use advanced imaging techniques to better understand the fossil's characteristics.

Once the paleontologists have identified the species and determined its placement, they can design a display that showcases the fossil in a way that is both educational and visually appealing. This may involve creating a custom mount or exhibit case, selecting appropriate lighting and text labels, and considering the context in which the fossil was found.

Overall, the accurate placement of a fossil for display is crucial for conveying its scientific significance to the public and helping people to better understand the history of life on Earth. By using diagnostic structure as a key tool in this process, paleontologists can ensure that the fossils are correctly identified and presented in a way that is both informative and engaging.

To know more about Paleontologists   refer here

https://brainly.com/question/11805817#

#SPJ11

Assume a gallon of gasoline contains 2370. 0 grams of octane. How many grams of carbon dioxide would be


produced by the complete combustion of the octane in this gallon of gasoline?


In 2017, people in the US used about 143 billion gallons of gasoline. How many grams of carbon dioxide


were generated by the combustion of this gasoline, assuming the value you calculated in the first question


was accurate?

Answers

The complete combustion of one gallon of gasoline containing 2370.0 grams of octane produces 6888.2 grams of carbon dioxide.

In 2017, people in the US generated approximately 9.85 x 10¹⁴ grams of carbon dioxide by burning 143 billion gallons of gasoline.



1. Write the balanced chemical equation for the combustion of octane:
  2C₈H₁₈ + 25O₂ → 16CO₂ + 18H₂O

2. Determine the molecular weight of octane (C₈H₁₈) and carbon dioxide (CO₂):
  C₈H₁₈: (8 x 12.01) + (18 x 1.01) = 114.23 g/mol
 CO₂: (1 x 12.01) + (2 x 16.00) = 44.01 g/mol

3. Use stoichiometry to find the grams of CO₂ produced from the combustion of 2370.0 grams of octane:
  (2370.0 g octane) x (16 mol CO₂/ 2 mol octane) x (44.01 g CO₂ / mol CO₂) = 6888.2 g CO₂

4. Calculate the total grams of CO₂ generated by burning 143 billion gallons of gasoline in the US in 2017:
  (143 billion gallons) x (6888.2 g CO₂ / gallon) = 9.85 x 10¹⁴ grams of CO₂

To know more about balanced chemical equation  click on below link:

https://brainly.com/question/28294176#

#SPJ11

How many electron domains does CO have?

Answers

CO is made up of carbon (C) and oxygen (O) that are covalently bound and share electrons to create a molecule. To determine a molecule's electron domain shape, we count the number of electron domains surrounding the core atom.

An electron domain can be a bond pair or a single electron pair.

The central atom in CO is carbon, which is double-bonded to oxygen. As a result, the carbon atom has two electron domains: one from the double bond with oxygen and one from the two lone pairs of electrons on oxygen.

As a result, CO contains two electron domains surrounding the center carbon atom.

CO, as a result of the double bond with oxygen and two lone pairs of electrons on oxygen, has two electron domains surrounding its center carbon atom.

learn more about the electron domain here

https://brainly.com/question/30912314

#SPJ1

How many grams of no2 can be produced when 25.0 g of oxygen reacts?

Answers

71.875 grams of NO2 can be produced when 25.0 g of oxygen reacts in this reaction.

When 25.0 grams of oxygen reacts, the amount of NO2 produced can be determined by using stoichiometry. The balanced chemical equation for the reaction is:

2 NO + O2 → 2 NO2

From the equation, it can be seen that for every one mole of O2, two moles of NO2 are produced. Therefore, the first step is to convert the given mass of oxygen into moles. The molar mass of oxygen is 32 g/mol, so:

25.0 g O2 ÷ 32 g/mol = 0.78125 mol O2

Since the stoichiometry of the reaction shows that two moles of NO2 are produced for every one mole of O2, the next step is to calculate the number of moles of NO2 produced:

0.78125 mol O2 × 2 mol NO2/1 mol O2 = 1.5625 mol NO2

Finally, the mass of NO2 can be calculated by multiplying the number of moles of NO2 by its molar mass, which is 46 g/mol:

1.5625 mol NO2 × 46 g/mol = 71.875 g NO2

Therefore, 71.875 grams of NO2 can be produced when 25.0 g of oxygen reacts in this reaction.

To know more about oxygen, visit:

https://brainly.com/question/13370320#

#SPJ11

How many moles of hydrogen gas are needed to react with 15.1g of chlorine gas
produce hydrogen chloride gas?

Answers

The number of moles of hydrogen gas needed is 0.213 moles, under the condition that their is a necessity of reacting 15.1g of chlorine gas to produce hydrogen chloride gas.


Here the balanced chemical equation for the reaction  regarding hydrogen gas and chlorine gas in the process of producing hydrogen chloride gas is
H₂(g) + Cl₂(g) → 2HCl(g)

The given molar mass of chlorine gas is 70.9 g/mol.
Now to evaluate the number of moles of chlorine gas in 15.1 g of chlorine gas,
We need to divide the mass by the molar mass

Number of moles of chlorine gas = Mass of chlorine gas / Molar mass of chlorine gas
= 15.1 g / 70.9 g/mol
= 0.213 mol

Then, from the balanced chemical equation, we can interpret that 1 mole of hydrogen gas reacts with 1 mole of chlorine gas to produce 2 moles of hydrogen chloride gas.
Hence, to calculate the number of moles of hydrogen gas required to react with 15.1 g of chlorine gas,

1 mol H₂ / 1 mol Cl₂ = x mol H₂ / 0.213 mol Cl₂

Evaluating for x,
x = (1 mol H₂ / 1 mol Cl₂) × (0.213 mol Cl₂)
= 0.213 mol H₂
To learn more about molar mass
https://brainly.com/question/837939
#SPJ4

Calculate the moles of barium phosphate that will react with 1.60 g of aluminum hydroxide. you need to write and balance the equation, then solve it.

Answers

A total of 0.0103 moles of barium phosphate will react with 1.60 g of aluminum hydroxide.

The balanced chemical equation for the reaction between barium phosphate and aluminum hydroxide is:

Ba₃(PO₄)₂ + 2 Al(OH)₃ → 2 AlPO₄ + 3 Ba(OH)₂

To calculate the moles of barium phosphate that will react with 1.60 g of aluminum hydroxide, we need to convert the given mass of aluminum hydroxide into moles using its molar mass:

Molar mass of Al(OH)₃ = 78 g/mol

Number of moles of Al(OH)₃ = 1.60 g / 78 g/mol = 0.0205 mol

According to the balanced chemical equation, 2 moles of Al(OH)3 react with 1 mole of Ba3(PO4)2. Therefore, the number of moles of Ba₃(PO₄)₂ required can be calculated as:

Number of moles of Ba₃(PO₄)₂ = (0.0205 mol Al(OH)₃) / 2 = 0.0103 mol

To know more about balanced chemical equation click on below link:

https://brainly.com/question/28294176#

#SPJ11

Chlorophyll is a green pigment in plants responsible for harnessing sunlight to help the plant produce sugars through the process of photosynthesis. If several tomato plants were to be grown under lamps producing only a single color of light, what would be the least effective choice for light color?



Group of answer choices



green



orange



red



blue

Answers

The least effective choice of color would be green color. Hence option a is correct.

The plants absorb all different wavelength lights of the visible light spectra but the only color that is not absorbed and reflected back is green color light.

The principal pigment in photosynthesis, chlorophyll, reflects green light and significantly absorbs red and blue light. Chloroplasts, which house the chlorophyll in plants, are where photosynthesis occurs.

The plant's green colour is a reflection of the green light. Violet and orange (chlorophyll a) and blue and yellow (chlorophyll b) are the colours that are most readily absorbed. Therefore, green colour light would be least effective for the production of sugar and fruit in this tomato plant.

To know about chlorophyll

https://brainly.com/question/29853003

#SPJ4

PLEASE HELP MEEEEE PLEASEEEE


Given the following reaction: CuO (s) + H2 (g) ® Cu (s) + H2O (g) If 357. L of hydrogen gas are used to reduce copper (II) oxide at STP, what mass of copper is to be expected?

Answers

The mass of copper produced from the reaction of 357 L of H₂ gas with CuO at STP is 949 g.

Using the ideal gas law equation PV = nRT, Pressure is P, temperature is T, gas constant is R, volume is V and moles are n. From the balanced chemical equation, we know that 1 mole of Cu reacts with 1 mole of H₂.

1. The mass of Cu produced is equal to the number of moles of Cu times its molar mass since copper has a molar mass of 63.55 g/mol. Therefore, the steps to solve the problem are,

Convert the volume to liters,

357 L

Calculate the number of moles of H₂ using the ideal gas law:

PV = nRT

(1 atm) (357 L) = n (0.0821 L·atm/mol·K) (273 K)

n = 14.94 mol

2. Calculate the number of moles of Cu based on the balanced chemical equation,

1 mole Cu : 1 mole H₂

14.94 mol H₂ : x mole Cu

x = 14.94 mol

3. Calculate the mass of Cu produced:

m = n × M, mass in grams is m, the number of moles is n, the molar mass of Cu is M.

M(Cu) = 63.55 g/mol

m = 14.94 mol × 63.55 g/mol

m = 949 g

Therefore, the mass of copper produced is 949 g.

To know more about ideal gas equation, visit,

https://brainly.com/question/27870704

#SPJ4

Under what circumstances is an exothermic reaction non-spontaneous?.

Answers

An exothermic reaction is spontaneous if the overall Gibbs free energy change (ΔG) is negative, indicating that the reaction is energetically favorable and will proceed without an external energy input. However, an exothermic reaction can become non-spontaneous under certain circumstances.

One such circumstance is when the entropy change (ΔS) is negative. If ΔH is negative (exothermic) but ΔS is also negative (decrease in disorder), the value of ΔG could still be positive (non-spontaneous) or close to zero (at equilibrium) at temperatures where ΔH is not sufficiently large to overcome the negative ΔS.

This means that even though energy is released during the reaction, the decrease in disorder can make the reaction unfavorable.

Another circumstance is when the reactants are in a highly ordered or low-energy state, and the products are in a highly disordered or high-energy state. In such cases, the enthalpy change (ΔH) may be negative (exothermic), but the entropy change (ΔS) is also positive, and the resulting ΔG value may still be positive, making the reaction non-spontaneous.

To know more about exothermic reaction refer to-

https://brainly.com/question/10373907

#SPJ11

A sample of 4. 25 moles of Hydrogen at 20. 0 ⁰C occupies a volume of 25. 0 L. Under what pressure is this sample?

Answers

The pressure of the Hydrogen gas sample is approximately 29.4 atm.

To find the pressure of the 4.25 moles of Hydrogen gas at 20.0°C and occupying a volume of 25.0 L, we can use the ideal gas law formula: PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant (8.314 J/mol·K), and T is the temperature in Kelvin.

First, convert the temperature to Kelvin: 20.0°C + 273.15 = 293.15 K.

Now, rearrange the formula to solve for pressure: P = nRT/V

Substitute the values: P = (4.25 moles) × (8.314 J/mol·K) × (293.15 K) / (25.0 L)

Calculate the pressure: P ≈ 3921.2 J/L

Since 1 J/L = 0.00750062 atm, convert the pressure to atm: P ≈ 3921.2 J/L × 0.00750062 atm/J·L ≈ 29.4 atm

So, the pressure of the Hydrogen gas sample is approximately 29.4 atm.

To learn more about hydrogen, refer below:

https://brainly.com/question/28937951

#SPJ11

1. How many liters of water will be produced if you have 17. 43 grams of ammonia (NH3)? *


(8 Points)


4 NH3 + 502 --> 4 NO + 6H2O


Enter your math answer

Answers

17.43 grams of NH₃ will produce 34.39 liters of water.

The balanced chemical equation is 4 NH₃ + 5O₂ → 4NO + 6H₂O. From the equation, we can see that for every 4 moles of NH₃ reacted, 6 moles of water are produced.

Therefore, to determine the number of moles of water produced, we need to convert the mass of NH₃ given to moles. The molar mass of NH₃ is 17.03 g/mol, so:

17.43 g NH₃ × (1 mol NH₃/17.03 g NH₃) = 1.023 mol NH₃

Using stoichiometry, we can calculate the number of moles of water produced:

1.023 mol NH₃ × (6 mol H₂O/4 mol NH₃) = 1.5345 mol H₂O

Finally, we can convert the number of moles of water to liters using the fact that 1 mole of any gas at standard temperature and pressure (STP) occupies 22.4 L:

1.5345 mol H₂O × (22.4 L/mol) = 34.39 L


To know more about chemical equation, refer here:

https://brainly.com/question/19626681#

#SPJ11

Na2co3(aq) + cocl2(aq) --> express your answer as a chemical equation. enter noreaction if no precipitate is formed. nothing

Answers

The reaction is a double displacement reaction, in which two ions switch places in the reactants to form the products. The chemical equation for the reaction between Na2CO3 (aq) and NaCl2 (aq) is as follows:

2 Na2CO3 (aq) + NaCl2 (aq) → 2 NaCl (aq) + CO2 (g) + H2O (l).

In this reaction, sodium carbonate (Na2CO3) reacts with sodium chloride (NaCl2) to form sodium chloride (NaCl), carbon dioxide (CO2) and water (H2O). The reaction is a double displacement reaction, in which two ions switch places in the reactants to form the products. The sodium ions in the Na2CO3 react with the chloride ions in the NaCl2 to form the NaCl, while the carbonate ions in the Na2CO3 react with the sodium ions in the NaCl2 to form CO2 and H2O.

The reaction does not form a precipitate, so no solid product is formed. This is because both the reactants and products are soluble in water, and so no solid product is formed.

Overall, this reaction between Na2CO3 and NaCl2 results in the formation of NaCl, CO2 and H2O, and no solid precipitate is formed. This is because both the reactants and products are soluble in water, and so no solid product is formed.

Know more about chemical equation here

https://brainly.com/question/28792948#

#SPJ11

If you have 500 ml of a 0.10 m solution of the acid, what mass of the corresponding sodium salt of the conjugate base do you need to make the buffer with a ph of 2.08 (assuming no change in volume)

Answers

The mass of the corresponding sodium salt of the conjugate base needed to make a buffer with a pH of 2.08.

To determine the mass of the corresponding sodium salt of the conjugate base needed to make a buffer with a pH of 2.08, you can follow these steps:

1. Identify the given information:
  - Initial volume of acid solution: 500 mL
  - Initial concentration of acid solution: 0.10 M
  - Desired pH: 2.08

2. Use the Henderson-Hasselbalch equation:
  pH = pKa + log ([conjugate base]/[acid])

3. Assuming the acid is a weak monoprotic acid (HA) and its conjugate base is A-, determine the pKa:
  pKa = pH - log ([A-]/[HA])

4. Calculate the ratio of [A-] to [HA]:
  [A-]/[HA] = 10^(pH-pKa)

5. Calculate the moles of HA in the 500 mL of 0.10 M solution:
  moles of HA = (volume x concentration) = 500 mL x 0.10 mol/L = 0.050 mol

6. Calculate the moles of A- needed:
  moles of A- = moles of HA x ([A-]/[HA]) ratio

7. Determine the molar mass of the sodium salt of the conjugate base (A-) using the molecular formula.

8. Calculate the mass of the sodium salt of the conjugate base:
  mass = moles of A- x molar mass of A-

By following these steps, you will be able to determine the mass of the corresponding sodium salt of the conjugate base needed to make a buffer with a pH of 2.08.

To know more about conjugate base refer here: https://brainly.com/question/30086613#

#SPJ11

Determine the ph if 50.0 ml of 0.75 m hi solution is added to 0.027 l of a 0.05 m koh solution

Answers

The pH of the resulting solution is about 0.33.

To determine the pH of the resulting solution when 50.0 mL of 0.75 M HI solution is added to 0.027 L of a 0.05 M KOH solution, we first need to find the moles of each reactant and then determine the concentration of the remaining ions.

1. Calculate moles of HI:
Volume (L) = 50.0 mL × (1 L / 1000 mL) = 0.050 L
Moles of HI = Volume (L) × Molarity = 0.050 L × 0.75 M = 0.0375 mol

2. Calculate moles of KOH:
Moles of KOH = Volume (L) × Molarity = 0.027 L × 0.05 M = 0.00135 mol

3. Determine the limiting reactant and the amount of remaining ions:
Since HI is a strong acid and KOH is a strong base, they will react completely in a 1:1 ratio. KOH is the limiting reactant, and there will be a remaining amount of HI.

Moles of remaining HI = Moles of HI - Moles of KOH = 0.0375 mol - 0.00135 mol = 0.03615 mol

4. Calculate the concentration of remaining H+ ions:
Total volume of the solution = 0.050 L (HI) + 0.027 L (KOH) = 0.077 L
Concentration of H+ ions = Moles of remaining HI / Total volume = 0.03615 mol / 0.077 L = 0.469 M

5. Determine the pH of the solution:
pH = -log10([H+]) = -log10(0.469) ≈ 0.33

The pH of the resulting solution is approximately 0.33.

To learn more about concentration, refer below:

https://brainly.com/question/10725862

#SPJ11

Calculate the decrease in temperature when 3.00 L at 28.0 °C is compressed to 1.00 L.

Answers

Answer:

[tex]\huge\boxed{\sf T_2=100.3 \ K}[/tex]

Explanation:

Given data:

Volume 1 = [tex]V_1[/tex] = 3.00 L

Volume 2 = [tex]V_2[/tex] = 1.00 L

Temperature 1 = [tex]T_1[/tex] = 28 °C + 273 = 301 K

Required:

Temperature 2 = [tex]T_2[/tex] = ?

Formula:

[tex]\displaystyle \frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex] (Charles Law)

Solution:

Put the given data in the above formula.

[tex]\displaystyle \frac{3.00}{301} = \frac{1.00}{T_2} \\\\Cross \ Multiply\\\\3 \times T_2=301 \times 1\\\\3T_2= 301\\\\Divide \ both \ sides \ by \ 3\\\\T_2=301/3\\\\T_2=100.3 \ K\\\\\rule[225]{225}{2}[/tex]

the total volume of hydrogen gas needed to fill the hindenburg was l at atm and . given that for is , how much heat was evolved when the hindenburg exploded, assuming all of the hydrogen reacted to form water?

Answers

2.4453  ×  10⁹ KJ energy was evolved  when the total volume of hydrogen gas needed to fill the hindenburg was 2.09 × 10⁸ l at 1.00 atm and 25.1°

According to the given data,  

Volume of the hydrogen gas = 2.09 × 10⁸ L

Pressure of the gas = P = 1 atm

Temperature of the gas =T = 25.1 °C =298.1 K

We know that, for an ideal gas equation

PV=nRT

1 atm ×2.09 × 10⁸ L = n × 0.0820 atmL/molK × 298.1 K

⇒n = 1 atm ×2.09 × 10⁸ L/  0.0820 atmL/molK × 298.1 K

⇒n = 0.0855 ×10⁸ mol

ΔH for hydrogen gas is =-286 kJ/mol

For  0.0855 ×10⁸ mol energy evolved when hydrogen gas is burned =

0.0855 ×10⁸ mol × (-286 KJ/mol) = -2.4453  ×  10⁹ KJ

Therefore, 2.4453  ×  10⁹ KJ energy was evolved when it was burned.

To know more about energy evolved here

https://brainly.com/question/13196730

#SPJ4

The complete question is-

The total volume of hydrogen gas needed to fill the hindenburg was 2.09 × 108 l at 1.00 atm and 25.1°. how much energy was evolved when it burned?

The first law the of thermodynamic also known as the "Law of Conservation of Mass" states that

A. heat changes occur during chemical and physical changes.

B. there are two types of energy, kinetic and potential

C. In any chemical or physical change, energy cannot be created or destroyed, only transformed in form.

D. energy is the capacity to do work or to supply heat

Answers

In any chemical or physical change, energy cannot be created or destroyed, only transformed in form.

option C.

What is the first law of thermodynamics?

The first law of thermodynamics is known as the law of Conservation of Energy.

This law states that energy can neither be created nor destroyed but can be converted from one form to another.

So the first law of thermodynamics is not known as the "Law of Conservation of Mass", but rather as the "Law of Conservation of Energy".

The statement that best corresponds to the first law of thermodynamics is option C: "In any chemical or physical change, energy cannot be created or destroyed, only transformed in form."

Learn more about first law of thermodynamics here: https://brainly.com/question/26035962

#SPJ1

Other Questions
Creative Writing!!!Answer: C (Diction)Through what element of writing is a writer MOST likely to establish both the time period and social class of theircharacters?toneexpositiondictionmetaphor Complete the paragraph about Cristinas routine by writing the correct expression from the word bank in the associated blank. OJO! Use each expression only once. Do not forget to capitalize the first letter of the word if it begins a sentence. A waitress sold 11 ribeye steak dinners and 14 grilled salmon dinners, totaling $551.11 on a particular day. Another day she sold 15 ribeye steak dinners and 7 grilled salmon dinners, totaling $581.47. How much did each type of dinner cost? What pre-reading strategy would help you determine which items or information might be important to learn? A.Consider prior knowledge. B.Read text questions. C. Use organizers. D. Match your approach with purposes A bag of sweets contains only gobstoppers and sherbert lemons.There are 3 gobstoppers for every 4 sherbert lemons.There are 56 sweets in the bag. How many gobstoppers are there? Please help me guys, I'm so confused with this question :'( An observer of World War II once said, "In a strange twist of irony, the Axis Power simply did to Europeans what Europeans have done to people of color. " Do you agree with this statement? Please consider both the rise of the Axis powers, especially Germany and Japan, and the rise of imperialism discussed earlier in class. In what ways were they similar? In what ways were they different? , Which substance abuse involves injection of the drug to produce intense excitement, energy, boldness, and paranoia similar to that produced by cocaine In urgent need of assistance pls and thanks Part AAlex has \$ 30,000$30,000 in his savings account that earns 10\%10% annually. How much interest will he earn in one year? Interest == \$$ Part BIf Alex spends 20\%20% of the interest received on buying furniture for his new house, what amount did he spent on furniture? C (g) + e (g) 2 w (g)initially, there are 3.5 moles of w placed in a 2.5 l evacuated container. equilibrium is allowed to establish and the value of k = 2.34 e-5 for the reaction under current conditions. determine the concentration of e at equilibrium. a. [e] = 8.352 e -6b. [e] = 0.00578c. [e] = 0.00289d. cannot solve using 5% approximation rule Just the answer is fine:)Let S be the surface in R3 that lies on C = {(x, y, z) ER3 | 22 = 100(x2 + y)} - and between the planes given by z= 1 and 2 = 5. Then the area of Sis = A(S) Check Thomas Paine wrote in common sense that the king was The accounting records of Shinault Inc. Show the following data for 2020 (its fi rst year of operations). 1. Life insurance expense on offi cers was $9,000. 2. Equipment was acquired in early January for $300,000. Straight-line depreciation over a 5-year life is used, with no salvage value. For tax purposes, Shinault used a 30% rate to calculate depreciation Use the Generalized Power Rule to find the derivative of the function.f(x) = (3x + 1)^5(3x - 1)^6 The triangle above has the following measures.q=8 inm/Q = 37Find the length of sider.Round to the nearest tenth and include correct units. ( , , ) : -, , (.). A cylinder of Krypton has contains 17 L of Ar at 22. 8 atm and 112 degrees celsisus. How many moles are in the cylinder? The following outline is a section from a skeleton outline. Use the guidelines from the lesson to put this information in a keyword outline. NOTE: The program will not display this outline with the proper capital A and B. However, it will accept your answer with capital A and B.II. Many teenagers do not volunteer because they don't know how to get involved.There are many resources that can help you find a service that's right for you.The Internet is a great way to search for community service opportunities.Your local community center or public library can be a good resource.Ask teachers or parents how you can get involved.Get involved with friends. It is often easier to try something new if there is a familiar face nearby. When you volunteer in groups, you are also able to accomplish more.