Name 10 different pollinator plants or trees or flowers

Answers

Answer 1

Ten different pollinators plants or trees or flowers are Bee balm, Black-eyed Susan, Butterfly weed, Coneflower, Lavender, Milkweed, Redbud tree, Sunflower, Wild rose, and Zinnia.

What are pollinator plants?

Pollinator plants are known as plants that attract and support pollinators, such as bees, butterflies, birds, and other insects or animals. The pollinators they attract help transfer pollen from one flower to another.

When pollinators tranfer pollens, they facilitate the fertilization and reproduction of flowering plants.

Find more exercises on pollinator plants;

https://brainly.com/question/21076663

#SPJ1


Related Questions

Calculate how many formula units of sodium hydroxide are present in 16. 0g of NaOH. From your answer, deduce how many sodium ions (Na') and hydroxide ions (OH) are present in this mass of sodium hydroxide




uhhhh guys pls help​

Answers

We employ molar mass, Avogadro's number, and mole-to-atom ratios to determine the number of formula units and ions present in 16.0g of NaOH.

Let's calculate by using the above implications :

The molar mass of NaOH can be calculated by adding the atomic masses of sodium (Na), oxygen (O), and hydrogen (H):

Na: 22.99 g/mol

O: 16.00 g/mol

H: 1.01 g/mol

[tex]\text{Molar mass of NaOH} = \text{Atomic mass of Na} + \text{Atomic mass of O} + \text{Atomic mass of H} = 22.99 \, \text{g/mol} + 16.00 \, \text{g/mol} + 1.01 \, \text{g/mol} = 40.00 \, \text{g/mol}[/tex]

Next, we can calculate the number of moles of NaOH in 16.0g using the formula:

moles = mass / molar mass

moles of NaOH = 16.0g / 40.00 g/mol = 0.4 mol

Since one mole of NaOH contains one formula unit of NaOH, the number of formula units can be directly taken as the number of moles. Therefore, there are 0.4 formula units of NaOH present in 16.0g of NaOH.

To determine the number of sodium ions (Na⁺) and hydroxide ions (OH⁻) present, we need to consider the formula of NaOH. It consists of one sodium ion (Na⁺) and one hydroxide ion (OH⁻).

Thus, in 16.0g of NaOH, there are:

0.4 moles of Na⁺ ions

0.4 moles of OH⁻ ions

The number of sodium ions (Na⁺) can be calculated using Avogadro's number, which states that one mole of any substance contains 6.022 × 10²³ entities (atoms, ions, or molecules).

Number of Na⁺ ions = moles of Na⁺ ions * Avogadro's number

Number of Na⁺ ions = 0.4 mol * 6.022 × 10²³ entities/mol

Similarly, the number of hydroxide ions (OH⁻) can be calculated in the same way.

Number of OH⁻ ions = moles of OH⁻ ions * Avogadro's number

Number of OH⁻ ions = 0.4 mol * 6.022 × 10²³ entities/mol

Please note that the exact numerical calculation for the number of ions would require the specific value of Avogadro's number to be inserted. However, the general method outlined here can be used to determine the number of ions present in a given mass of NaOH.

To know more about the NaOH refer here :

https://brainly.com/question/29854404#

#SPJ11

An equilibrium mixture at 425°C is found
to consist of 1.83 × 10-3 mol/L of H2,
3.13 × 10-3 mol/L of I2, and 1.77 × 10-2 mol/L
of HI. Calculate the equilibrium constant, K, for
the reaction H2(g) + I2(g) ⇄ 2HI(g).

Answers

The equilibrium constant, K, for the reaction H2(g) + I2(g) ⇄ 2HI(g) can be calculated using the expression K= [HI]2/([H2][I2]). Since the concentrations of H2, I2, and HI are given in the question, we can calculate the equilibrium constant, K, for the reaction.

K = [HI]2/([H2][I2]) = (1.77 × 10-2)2/((1.83 × 10-3)(3.13 × 10-3)) = 4.43 × 104. Therefore, the equilibrium constant, K, for the reaction H2(g) + I2(g) ⇄ 2HI(g) at 425°C is 4.43 × 104.

Using the specified concentrations of H2, I2, and HI, it appears that you have correctly calculated the equilibrium constant, K, for the reaction H2(g) + I2(g) 2HI(g) at 425°C. The ratio of the concentrations of the reactants and products at equilibrium, K, is represented by each concentration being raised to the power of its stoichiometric coefficient.

The concentration of the product, HI, is preferred above the concentrations of the reactants, H2 and I2, at equilibrium, as shown by the value of K = 4.43 104 in this instance. This suggests that at equilibrium, the forward reaction—the creation of HI—is preferred.

It is significant to remember that the equilibrium constant, K, is temperature-dependent, and that temperature changes affect K's value.

Learn more about  equilibrium  at:

https://brainly.com/question/30694482

#SPJ1

1. Write a mechanism for the E1 elimination reaction of 2-methylcyclohexanol with phosphoric acid. Be as complete as possible and show electron flow for all steps. You should clearly indicate the mechanistic pathways that lead to each of the products formed in the reaction (there is no need to duplicate common steps, but at some point the pathways diverge)

Answers

The mechanism for the E1 elimination reaction of 2-methylcyclohexanol with phosphoric acid is Protonation of the alcohol group by phosphoric acid.

What is Protonation?

Protonation is the process of adding a proton (hydrogen ion) to a molecule or atom. The process is also known as hydrogenation or hydrideation. It occurs when a molecule or atom gains a proton, which imparts a positive charge on the molecule or atom.

The mechanism for the E1 elimination reaction of 2-methylcyclohexanol with phosphoric acid is as follows:

Step 1: Protonation of the alcohol group by phosphoric acid.

Phosphoric acid (H₃PO₄) donates a proton to the OH group of 2-methylcyclohexanol, forming an oxonium ion (H₃O⁺). Electron flow is shown in the following diagram:

[tex]O-H + H_3PO4 \rightarrow H_3O^+ + PO_4^3-[/tex]

Step 2: Deprotonation by a base.

The oxonium ion (H3O+) is then deprotonated by a base (e.g. a strong base such as NaOH). Electron flow is shown in the following diagram:

[tex]H_3O^+ + B^- \rightarrow H_2O + BH^+[/tex]

Step 3: Rearrangement of the molecule.

The deprotonated molecule rearranges to form a more stable carbocation intermediate. Electron flow is shown in the following diagram:

[tex]BH^+ \rightarrow B^+ + H^-[/tex]

Step 4: Nucleophilic attack by the alcohol group.

The carbocation intermediate is attacked by the OH group of 2-methylcyclohexanol, forming a new carbon-oxygen bond. Electron flow is shown in the following diagram:

[tex]C^+ + OH- \rightarrow C-O + H^+[/tex]

Step 5: Loss of a proton.

The molecule then loses a proton, forming the product of the reaction. Electron flow is shown in the following diagram:

[tex]C-O + H^+ \rightarrow C=O + H_2O[/tex]

To learn more about Protonation

https://brainly.com/question/15215343

#SPJ4

This is the chemical formula for cassiterite (tin ore):
sno2
a geochemist has determined by measurements that there are 3.316 moles of tin in a sample of cassiterite. how many moles of oxygen are in the sample?
be sure your answer has the correct number of significant digits.

Answers

The chemical formula for cassiterite is SnO2, which means that there are two moles of oxygen for every one mole of tin in the compound.

Given that there are 3.316 moles of tin in the sample, we can use the mole ratio to determine the number of moles of oxygen:

1 mole Sn : 2 moles O

3.316 moles Sn : x moles O

x = (3.316 moles Sn) x (2 moles O / 1 mole Sn) = 6.632 moles O

Therefore, there are 6.632 moles of oxygen in the sample of cassiterite.

To know more about oxygen refer here

https://brainly.com/question/13905823#

#SPJ11

Drag each label to the correct location on the diagram. Each label can be used more than once.

What is the correct way to represent the ionic compound sodium fluoride?

thank you so much

Answers

There is the transfer of one electron from sodium to fluorine atoms.

What is the ionic bonding?

Ionic bonding is a type of chemical bond that occurs between atoms that have a large difference in their electronegativity, which is the ability of an atom to attract electrons towards itself in a chemical bond.

In ionic bonding, one atom transfers one or more valence electrons to another atom, forming two oppositely charged ions. The atom that loses electrons becomes a positively charged ion, called a cation, while the atom that gains electrons becomes a negatively charged ion, called an anion.

Learn more about ionic bonding:https://brainly.com/question/11527546

#SPJ1




If a gas occupies 30 L at STP, what would be the volume if the temperature was raised to 323. 15K ?

Answers

At STP, typically defined as a temperature of 0°C (273.15K) and a pressure of 1 atm, the volume of a gas is equal to 30 L.

When the temperature of the gas is increased, the kinetic energy of the gas particles increases, causing them to move more quickly and expand. This expansion of the gas increases its volume.

Using the ideal gas law, the new volume of the gas can be calculated by multiplying the original volume by the ratio of the new temperature (323.15K) to the original temperature (273.15K) and raising that to the power of 1/273.15.

In this case, the new volume of the gas is 33.53 L. In conclusion, when the temperature of a gas is raised, its volume increases.

Know more about Ideal gas law here

https://brainly.com/question/28257995#

#SPJ11

How does pressure affect the solubility of a gas in a liquid.

Answers

According to Henry's Law, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas above the liquid.

This means that as the pressure of the gas above the liquid increases, the solubility of the gas in the liquid will also increase. Conversely, if the pressure of the gas above the liquid decreases, the solubility of the gas in the liquid will decrease.

For example, if a bottle of carbonated water is opened and the pressure above the liquid is reduced, some of the dissolved carbon dioxide gas will come out of solution and form bubbles. This is because the solubility of carbon dioxide in water decreases as the pressure above the liquid decreases.

In general, increasing pressure favors dissolution of gas in liquid while decreasing pressure favors escape of gas from solution.

To know more about Henry's Law refer to-

https://brainly.com/question/30636760

#SPJ11

The graph shows the distribution of energy in the particles of two gas samples at different temperatures, T1 and T2. A, B, and C represent individual particles. Based on the graph, which of the following statements is likely to be true?

Group of answer choices

Particle A and C are more likely to participate in the reaction than particle B.

Most of the particles of the two gases have very high speeds.

A fewer number of particles of gas at T1 are likely to participate in the reaction than the gas at T2.

The average speed of gas particles at T2 is lower than the average speed of gas particles at T1.

Answers

A fewer number of particles of gas at T1 are likely to participate in the reaction than the gas at T2.

What is the true statement?

A gas's molecular energies are distributed in accordance with temperature according to the Maxwell-Boltzmann distribution, and the most likely energy rises with increasing temperature.

The peak of the energy distribution changes to higher energies as a gas's temperature rises, and an increase in the proportion of molecules with higher energies follows. The likelihood of high-energy gas molecule collisions, which may result in chemical reactions or other types of energy transfer.

Learn more about gases:https://brainly.com/question/19695466

#SPJ1

Provide an example of newton’s 3rd law

Answers

A bullet recoiling after it is fired

1. when we react 0.600 mol of mg3n2 with 4.00 mol of h20, which is the limiting
reactant? mg3n2 (s) + 6 h20 (1) --> 3mg(oh)2 (aq) + 2nh3(g)

Answers

Mg₃N₂ will be completely consumed, and there will be some H₂O left over after the reaction is complete.

To determine the limiting reactant, we need to compare the number of moles of each reactant present to the stoichiometric ratio in the balanced equation.


From the balanced equation, we see that for every 1 mole of Mg₃N₂, 6 moles of H₂O are required. Therefore, the stoichiometric ratio of Mg₃N₂ to H₂O is 1:6.

To find out which reactant is limiting, we can calculate the amount of products that each reactant could produce.

For Mg₃N₂:
0.600 mol Mg₃N₂ x (3 mol Mg(OH)₂ / 1 mol Mg₃N₂) = 1.80 mol Mg(OH)₂

For H₂O:
4.00 mol H₂O x (3 mol Mg(OH)₂ / 6 mol H₂O) = 2.00 mol Mg(OH)₂

Since Mg₃N₂ can only produce 1.80 mol Mg(OH)₂, which is less than the amount that H₂O can produce (2.00 mol), Mg₃N₂ is the limiting reactant.

Therefore, Mg₃N₂ will be completely consumed, and there will be some H₂O left over after the reaction is complete.

To know more about limiting reactant :

https://brainly.com/question/11587316

#SPJ11

Calculate the molarity of the solutions described below. Round all answers to 2 decimal places.


Hint: Use molar mass and dimensional analysis to convert grams into moles.


A) 100.0 g of sodium chloride is dissolved in 3.0 L of solution.

Answer: M


B) 72.5 g of sugar (C12H22O11) s dissolved in 1.5 L of solution.

Answer: M


C) 125 g of aluminum sulfate is dissolved in 0.150 L of solution.

Answer: M


D) 1.75 g of caffeine (C8H10N4O2) is dissolved in 0.200 L of solution.

Answer: M



WILL MARK BRAINLIEST!!!!!!!!!!!!!!!!!!!

Answers

The molarity of the given solutions are as follows:

Sodium chloride = 0.57MSucrose = 0.14MAluminium sulfate = 2.47MCaffeine = 0.045M

How to calculate molarity?

Molarity refers to the concentration of a substance in solution, expressed as the number moles of solute per litre of solution.

Molarity can be calculated by dividing the number of moles in the substance by its volume.

The mass of four solutions were given in this question. The number of moles in this substances can be calculated as follows:

Sodium chloride = 100g/58.5g/mol = 1.71 moles ÷ 3L = 0.57M

Sucrose = 72.5g/342.03g/mol = 0.21 moles ÷ 1.5L = 0.14M

Aluminium sulfate = 125g/342.15g/mol = 0.37 moles ÷ 0.15L = 2.47M

Caffeine = 1.75g/194.2g/mol = 0.009 mol ÷ 0.20L = 0.045M

Learn more about molarity at: https://brainly.com/question/8732513

#SPJ1

A gas mixture of xe and ar has a total pressure of 12.20 atm. what is the mole fraction of xe, if the partial pressure of ar is 4.50atm?

Answers

The mole fraction of xenon in the gas mixture is 0.631.

Mole fraction refers to the ratio of the number of moles of one component of a mixture to the total number of moles in the mixture. It is a useful concept in chemistry and thermodynamics, particularly in the study of gas mixtures.

In this problem, we are given a gas mixture of xenon (Xe) and argon (Ar) with a total pressure of 12.20 atm. We are also given the partial pressure of argon, which is 4.50 atm. To find the mole fraction of xenon, we need to first find the partial pressure of xenon.

To do this, we can use the fact that the total pressure of the gas mixture is equal to the sum of the partial pressures of each component:

Total pressure = Partial pressure of Xe + Partial pressure of Ar

12.20 atm = Partial pressure of Xe + 4.50 atm

Partial pressure of Xe = 7.70 atm

Now that we have the partial pressure of xenon, we can use the mole fraction formula:

Mole fraction of Xe = Number of moles of Xe / Total number of moles

We can rewrite this formula as:

Mole fraction of Xe = Partial pressure of Xe / Total pressure

Using the values we found earlier:

Mole fraction of Xe = 7.70 atm / 12.20 atm

Mole fraction of Xe = 0.631

Therefore, the mole fraction of xenon in the gas mixture is 0.631.

To know more about xenon, visit:

https://brainly.com/question/5516586#

#SPJ11

3.13 moles of argon is added to a 5.29 liter balloon that already contained 2.51 moles of argon. what is the volume of the balloon after the audition of the extra gas?

Answers

The volume of the balloon after the addition of the extra gas is 101.8 L.

The volume of the balloon after the addition of the extra gas can be calculated using the combined gas law, which relates the initial and final conditions of pressure, volume, and temperature of a gas. We need to convert the number of moles of argon to its corresponding volume using the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

For the initial conditions, we have:

P1V1 = n1RT1

(assume the temperature is constant)

V1 = n1RT1/P1

V1 = (2.51 mol)(0.08206 L atm mol⁻¹ K⁻¹)(273 K)/(1 atm)

V1 = 55.0 L

For the final conditions, we have:

P2V2 = n2RT2

(assume the temperature is constant and the pressure is 1 atm)

V2 = n2RT2/P2

V2 = (2.51 mol + 3.13 mol)(0.08206 L atm mol⁻¹ K⁻¹)(273 K)/(1 atm)

V2 = 101.8 L

As a result, the capacity of the balloon after adding the extra gas is 101.8 L.


To know more about the Balloon, here

https://brainly.com/question/13516488

#SPJ4

Predict the product, if any, of reaction between methyl propanoate and CH3MgBr, then H3O+.


Draw only the product derived from the acyl portion of methyl propanoate.


If no product is formed, signify this by drawing ethane in the window.


Marvin JS - Troubleshooting Marvin JS - Compatibility

Answers

The product of the reaction between methyl propanoate and CH3MgBr, followed by H3O+ is an alcohol, specifically, 2-methyl-2-propanol.

What is magnesium oxide ?

Methyl propanoate is an ester compound made up of three carbon atoms and eight hydrogen atoms. It is a colorless liquid with a slightly sweet odor. Methyl propanoate is produced through the reaction of an alcohol and an acid. The acid used is propionic acid and the alcohol is methanol. The reaction is a condensation reaction, meaning two molecules combine to form one larger molecule with a water molecule as a by-product. Methyl propanoate is used as a solvent and a flavoring agent in foods and beverages.

This is derived from the acyl portion of the methyl propanoate, which is a carboxylic acid. The reaction proceeds via a nucleophilic acyl substitution mechanism, where the CH3MgBr acts as a nucleophile, displacing the OH group from the carboxylic acid, forming a carboxylate ion. This is then protonated by the H3O+, forming the desired alcohol product. The product is represented in the following structure:

O

|

CH3-C-OH  =>  CH3-C-O-MgBr  =>  CH3-C-OH + H3O+

To learn more about methyl propanoate

https://brainly.com/question/30173441

#SPJ4

Which two pioneer species help break up
rock to create a substrate rich in organic
material. starts the process of creating
soil in a newly created environment.

Answers

There are many pioneer species that can help break down and establish new ecosystems, but two common ones are lichens and mosses. These simple organisms are often the first to colonize barren or disturbed areas, paving the way for other, more complex species to follow.

Lichens are unique in that they are actually a symbiotic combination of two different organisms – a fungus and an algae or cyanobacterium. This partnership allows them to survive in a wide range of environments, including those with little or no soil. Lichens secrete acids that can dissolve rocks and other substrates, creating a thin layer of soil that other plants can use to establish themselves. Additionally, lichens can fix nitrogen from the air, providing a crucial nutrient for plant growth.

Mosses are another common pioneer species that can help break down and prepare new environments for other plants. Like lichens, they can grow in harsh conditions with little soil or nutrients. Mosses are able to absorb moisture and nutrients directly from the air, and can also trap sediment and organic matter, building up a layer of soil over time.

Additionally, mosses can store large amounts of water, which can be important for establishing other plants during dry periods.In summary, lichens and mosses are two pioneer species that can help break down and prepare new ecosystems for other plants. Through their unique adaptations and abilities, these simple organisms play a crucial role in establishing life in harsh or barren environments.

To know more about ecosystems refer here

https://brainly.com/question/13979184#

#SPJ11

Which statements correctly describe the strength of an acid or base? Select all that apply.

The greater the hydroxide ion concentration, the stronger the base.

The greater the hydronium ion concentration, the stronger the base.

The greater the hydroxide ion concentration, the stronger the acid.

The greater the hydronium ion concentration, the stronger the acid.

Answers

The statements that correctly describe the strength of an acid or base are:

The greater the hydroxide ion concentration, the stronger the base.The greater the hydronium ion concentration, the stronger the acid.

What is an acid?

An acid is a chemical that donates hydrogen ions, whose addition to an existing solution results in increased acidity.

According to the conventional definition of acids, they are compounds which discharge positively charged hydrogen ions when mixed with water. Acids have a sour flavor and possess pH levels below 7.

Learn more about base at

https://brainly.com/question/9624014

#SPJ1

Using the formula m1v1=m2v2 , you have a 0.5 m mgso4 stock solution available.
calculate the volume of the stock solution needed to make 2.0 l of 0.20m mgso4.
0.5 l
04.0l
0.9 l
kid 0.8 l

Answers

We need 0.4 L of the 0.5 M MgSO₄ stock solution to make 2.0 L of 0.20 M MgSO₄.

To calculate the volume of the 0.5 M MgSO₄ stock solution needed to make 2.0 L of 0.20 M MgSO₄, we will use the formula m₁v₁ = m₂v₂.

1. Identify the given values:
m₁ = 0.5 M (concentration of the stock solution)
m₂ = 0.20 M (concentration of the desired solution)
v₂= 2.0 L (volume of the desired solution)

2. Plug the given values into the formula:
(0.5 M)(v₁) = (0.20 M)(2.0 L)

3. Solve for v1 (volume of the stock solution needed):
v₁= (0.20 M)(2.0 L) / (0.5 M)
v₁= 0.4 L

So, you need 0.4 L of the 0.5 M MgSO₄ stock solution to make 2.0 L of 0.20 M MgSO₄.

To know more about stock solution :

https://brainly.com/question/27304546

#SPJ11

What information does the formula of a compound give

Answers

Answer:

A chemical formula tells us the number of atoms of each element in a compound.

Explanation:

Explanation:

formula shows

types of element ( composition ) number of atom type of mol ( which is monoatomic , diatomic and polyatomic.)

A sample of graphite with a mass of 15.0 grams drops from an initial temperature of 22°C to a
final temperature of 12°C. Calculate how much heat was transferred, and state whether it was
gained or lost based on the sign of your answer.

Answers

Answer:

106.5 J, and it was lost.

Explanation:

To calculate the amount of heat transferred, we can use the following formula:

Q = m * c * ΔT

where Q is the amount of heat transferred, m is the mass of the substance, c is the specific heat capacity of the substance, and ΔT is the change in temperature.

For graphite, the specific heat capacity is approximately 0.71 J/g°C.

So we have:

Q = 15.0 g * 0.71 J/g°C * (-10°C)

Q = -106.5 J

The negative sign of the answer indicates that the graphite lost heat, since its temperature decreased. Therefore, the heat was transferred from the graphite to its surroundings.

So the amount of heat transferred from the graphite was 106.5 J, and it was lost.

If the glaciers melted at a rate of 5% per year, how long will it take 50% of the glaciers to melt?

Answers

I might be wrong but if you divide 50% and 5% I think it would take 10 years for half the glaciers to melt

Three 3. 0 L sealed flasks , each at a pressure of 878 mmHg contain He, Ar, and Xe respectively. A) which of the flasks contain the greatest number of moles of gas? b) which of the flasks contain the greatest mass of gas? c) If He flask was heated and Ar flask was cooled, which of the three flasks would be at the highest pressure? d) If the temperature of the He was lowered while the Xe was raised, which of the three gases would have the greatest kinetic energy?

Answers

The total number of moles of gas present in the three 3.0 L sealed flasks containing helium, argon, and xenon respectively, if each flask is at a pressure of 878 mmHg, is 0.447 mol.

To calculate the total number of moles of gas present in the three flasks, we can use the ideal gas law:

PV = nRT

First, we need to convert pressure from millimeters of mercury to atmospheres.

1 atm = 760 mmHg

878 mmHg = 1.153 atm

We can calculate number of moles of gas:

For the helium flask:

[tex]n(He) = (1.153 atm) * (3.0 L) / [(0.08206 L.atm/K.mol) * (273.15 K)] \\n(He) = 0.149 mol[/tex]

For the argon flask:

[tex]n(Ar) = (1.153 atm) *(3.0 L) / [(0.08206 L.atm/K.mol) * (273.15 K)] \\n(Ar) = 0.149 mol[/tex]

For the xenon flask:

[tex]n(Xe) = (1.153 atm) * (3.0 L) / [(0.08206 L.atm/K.mol) * (273.15 K)] \\n(Xe) = 0.149 mol[/tex]

Finally, we can add up the number of moles of gas in each flask to find  total number of moles of gas:

[tex]n(total) = n(He) + n(Ar) + n(Xe) \\n(total) = 0.149 mol + 0.149 mol + 0.149 mol \\n(total) = 0.447 mol[/tex]

To know more about helium flask, here

brainly.com/question/10242192

#SPJ4

--The complete Question is, What is the total number of moles of gas present in the three 3.0 L sealed flasks containing helium (He), argon (Ar), and xenon (Xe) respectively if each flask is at a pressure of 878 mmHg?--

How do I solve all of these?

Answers

A. The volume (in L) is 12.80 L

B. The mole is 0.035 mole

C. The temperature is 407.57 °C

D. The pressure is 126.98 atm

A. How do i determine the volume?

The volume can be obtained as follow:

Pressure (P) = 5.44 atmNumber of mole (n) = 2 molesTemperature (T) = 151 °C = 151 + 273 = 424 KGas constant (R) = 0.0821 atm.L/molKVolume (V) =?

PV = nRT

5.44 × V = 2 × 0.0821 × 424

Divide both sides by 5.44

V = (2 × 0.0821 × 424) / 5.44

Volume (V) = 12.80 L

B. How do i determine the mole?

The number of mole can be obtained as follow:

Pressure (P) = 0.250 atmVolume (V) = 1.80 LTemperature (T) = 155 KGas constant (R) = 0.0821 atm.L/molKNumber of mole (n) = ?

PV = nRT

0.250 × 1.80 = n × 0.0821 × 155

Divide both sides by (0.0821 × 155)

n = (0.250 × 1.80) / (0.0821 × 155)

Number of mole (n) = 0.035 mole

C. How do i determine the temperature?

The temperature can be obtained as follow:

Pressure (P) = 4.47 atmVolume (V) = 26 LGas constant (R) = 0.0821 atm.L/molKNumber of mole (n) = 2.08 molesTemperature (T) = ?

PV = nRT

4.47 × 26 = 2.08 × 0.0821 × T

Divide both sides by (2.08 × 0.0821)

T = (4.47 × 26) / (2.08 × 0.0821)

T = 680.57 K

Subtract 273 to obtain answer in °C

T = 680.57 - 273 K

Temperature (T) = 407.57 °C

D. How do i determine the pressure?

The pressure can be obtained as follow:

Volume (V) = 2.25 LNumber of mole (n) = 10 molesTemperature (T) = 75 °C = 75 + 273 = 348 KGas constant (R) = 0.0821 atm.L/molKPressure (P) = ?

PV = nRT

P × 2.25 = 10 × 0.0821 × 348

Divide both sides by 2.25

P = (10 × 0.0821 × 348) / 2.25

Pressure (P) = 126.98 atm

Learn more about number of mole:

https://brainly.com/question/29927685

#SPJ1

7) a 50ml sample of 0. 00200m agno3 is added to 50ml of 0. 01m naio3. what is the equilibrium concentration of ag in solution

Answers

The equilibrium concentration of Ag⁺ in the solution is 0.00200 M.

To solve this problem, we can use the equation for the reaction between silver nitrate (AgNO₃) and sodium iodate (NaIO₃), which is:

AgNO₃ + NaIO₃ -> AgIO₃ + NaNO₃

We know the initial concentrations of the two solutions: 0.00200 M for the AgNO₃ and 0.01 M for the NaIO₃. When they are mixed together, they will react to form a new equilibrium concentration of silver ions (Ag⁺).

To find the equilibrium concentration of Ag⁺, we need to use the stoichiometry of the reaction and the equilibrium constant (K) for the reaction. The balanced equation tells us that one mole of AgNO₃ reacts with one mole of NaIO₃ to form one mole of AgIO₃. Therefore, at equilibrium, the concentration of Ag⁺ will be equal to the initial concentration of AgNO₃ minus the amount that reacted to form AgIO₃:

[Ag⁺] = [AgNO₃] - [AgIO₃]

We can use the equilibrium constant expression for the reaction to find the concentration of AgIO₃:

K = [AgIO₃]/([AgNO₃][NaIO₃])

At equilibrium, this expression will equal the equilibrium constant for the reaction, which is given as 1.8 x 10^-12. We can rearrange this expression to solve for [AgIO₃]:

[AgIO₃] = K[AgNO₃][NaIO₃]

Substituting the initial concentrations and the value of K, we get:

[AgIO₃] = (1.8 x 10^-12)(0.00200 M)(0.01 M) = 3.6 x 10^-17 M

Now we can plug this value into the equation for [Ag⁺] to find the equilibrium concentration of silver ions:

[Ag⁺] = [AgNO₃] - [AgIO₃] = 0.00200 M - 3.6 x 10^-17 M = 0.00200 M (to three significant figures)

Learn more about equilibrium concentration at https://brainly.com/question/10838453

#SPJ11

Why is a hydrogen atom in one H₂O molecule attracted to the oxygen atom in an adjacent H₂O molecule?​

Answers

This attraction is known as hydrogen bonding, which occurs when a hydrogen atom that is covalently bonded to one electronegative atom (such as oxygen) is attracted to another electronegative atom in another molecule. In the case of water molecules, the hydrogen atoms have a partial positive charge and the oxygen atoms have a partial negative charge due to differences in electronegativity. This allows for the formation of hydrogen bonds between adjacent water molecules. The hydrogen bonding gives water its unique properties such as high boiling point and surface tension.

Do you think humans will ever be able to forecast severe weather with 100% accuracy? What challenges do we face in developing technology that can do so? Besides forecasting tools, what other technology is needed to prevent severe storms from causing disasters? Do you think all countries have the financial capability to support the development and operation of these technologies? If not, do you think there is an ethical obligation for countries with more financial resources to help poorer countries access these technologies? ANSWER CORRECTLY. ANSWER FAST PLSSSS

Answers

It is improbable that humans will ever be able to accurately predict catastrophic weather.We experience difficulty in procuring equipment design.Not all nations possess the financial resources necessary to sponsor the research.Yes, poor countries have an ethical duty to provide as much support as they can.

What is the prediction of weather?

Weather forecasting has substantially improved thanks to technical and data analytic advancements, but there are still a lot of intricate and dynamic aspects that can influence weather patterns, such as changes in air pressure, temperature, and humidity.

It is challenging to forecast a storm's precise trajectory and strength due to the possibility of unforeseen events and anomalies. The effects of catastrophic weather occurrences can be mitigated and forecasting accuracy can be increased with the help of ongoing technical and scientific developments.

In addition to forecasting technologies, infrastructure should be resilient to the effects of powerful storms and early warning systems that can alert people to approaching danger from severe weather should be available.

Not all countries have the financial means to support the development and application of these technologies. It is morally right for developed countries to help less developed ones obtain this technology.

Learn more about weather forecast:brainly.com/question/31456817

#SPJ1

A chemical reaction produced 125mL of CO2. What was the mass of the gas produced? ​

Answers

Answer:

0.25g

Explanation:

Dimensional analysis.

Assuming the reaction is taking place at standard temperature and pressure (STP, 1 atm at 298.15K or 25 C), 1 mol of gas occupies 22.4L.

We are given the volume of the gas, with this we are able to find its number of moles.

125mL = 0.125L

[tex]0.125 L * \frac{1 mol}{22.4 L}[/tex]

= 0.0056mol

With the number of moles we can simply multiply by the molecules molar mass.

CO2 = 12.011 g/mol+ 2*15.999 g/mol

CO2 = 44.009g / mol

[tex]44.009 \frac{g CO2}{mol} * 0.0056mol CO2\\\\=0.25 g CO2[/tex]

Carbonyl bromide, cobr2, can be formed by reacting co with br2. a mixture of 0.400 mol co, 0.300 mol br2, and 0.0200 mol cobr2 is sealed in a 5.00l flask. calculate equilibrium concentrations for all gases, given that the kc

Answers

To calculate the equilibrium concentrations, we first need to determine the initial concentrations of each gas.

The initial concentration of CO is 0.400 mol/5.00 L = 0.0800 M, Br2 is 0.300 mol/5.00 L = 0.0600 M, and COBr2 is 0.0200 mol/5.00 L = 0.00400 M.

The balanced equation for the reaction is:

CO(g) + Br2(g) ⇌ COBr2(g)

Let's assume that at equilibrium, the concentrations of COBr2 is x M. Therefore, the concentrations of CO and Br2 will be (0.0800 - x) M and (0.0600 - x) M, respectively.

The equilibrium constant expression (Kc) for this reaction is:

Kc = [COBr2] / ([CO] * [Br2])

Substituting the equilibrium concentrations into the Kc expression, we have:

Kc = (x) / ((0.0800 - x) * (0.0600 - x))

Solving for x using the given values and the equation above, we find x ≈ 0.0040 M.

Therefore, the equilibrium concentrations for the gases are:

[CO] ≈ 0.0760 M

[Br2] ≈ 0.0560 M

[COBr2] ≈ 0.0040 M

Know more about  equilibrium concentration here

https://brainly.com/question/16645766#

#SPJ11

A neutral atom of a certain element has 15 electrons. a. what is the ground state electron configuration of the element?b. how should the element be classified ?c. are the atoms of this element diamagnetic or paramagnetic?

Answers

A neutral atom of the element with 15 electrons is phosphorus with a ground state electron configuration of 1s2 2s2 2p6 3s2 3p3. It is classified as a nonmetal element in group 15. The atoms of this element are diamagnetic, as all electrons are paired up in their orbitals.

A neutral atom is an atom that has an equal number of protons and electrons. In the case of this certain element with 15 electrons, its ground state electron configuration would be 1s2 2s2 2p6 3s2 3p3.

This means that the first shell (n=1) has 2 electrons, the second shell (n=2) has 8 electrons, and the third shell (n=3) has 5 electrons.

Based on its position in the periodic table and the number of valence electrons it has, the element with this electron configuration is phosphorus. Phosphorus is a nonmetal element that belongs to group 15, also known as the nitrogen group.

To determine whether the atoms of this element are diamagnetic or paramagnetic, we need to look at its electron configuration. In this case, we can see that all the electrons are paired up in their respective orbitals, meaning there are no unpaired electrons.

This makes the element diamagnetic, which means it does not have a magnetic field of its own and will not be attracted to a magnetic field.

In summary, a neutral atom of the element with 15 electrons is phosphorus with a ground state electron configuration of 1s2 2s2 2p6 3s2 3p3. It is classified as a nonmetal element in group 15. The atoms of this element are diamagnetic, as all electrons are paired up in their orbitals.

To know more about neutral atom, visit:

https://brainly.com/question/29757010#

#SPJ11

What volume (in ml) of 11. 7 m hcl would be required to make 500. 0 ml of a solution with a ph of 3. 20?

Answers

We need a volume of 60.4 ml of 11.7 M HCl to make a 500.0 ml solution with a pH of 3.20.

To calculate the required volume of 11.7 M HCl to make a 500.0 ml solution with a pH of 3.20, we need to use the Henderson-Hasselbalch equation, which relates the pH of a solution to its pKa and the ratio of the concentrations of the conjugate base and acid.

Using the Henderson-Hasselbalch equation:

pH = pKa + log([A⁻] ÷ [HA])

where [A-] / [HA] is the ratio of the concentration of the conjugate base (Cl⁻) to the concentration of the acid (H⁺).

Rearranging the equation, we can solve for [H⁺]:

[H⁺] = [tex]10^{(pH - pKa)}[/tex]

[H⁺] = [tex]10^{(3.20 - (-1))}[/tex]

= [tex]10^{-3.20} + mol/L[/tex]

Since the concentration of HCl is equal to the concentration of [H⁺] in solution, we can calculate the moles of HCl required to make the solution:

moles of HCl = concentration of HCl × volume of solution

moles of HCl = [tex](10^{-3.20})[/tex] × (0.5 L)

= 7.08 × 10⁻⁴ mol

Finally, we can calculate the required volume of 11.7 M HCl:

volume of HCl = moles of HCl ÷ concentration of HCl

volume of HCl = (7.08 × 10⁻⁴ mol) ÷ (11.7 mol/L)

= 0.0604 L

= 60.4 ml

To learn more about solution follow the link:

brainly.com/question/1416865

#SPJ4

if i add 45.0 g of sodium chloride to 500.0 g of water, what will be the melting point and the boiling point of the solution? assume the freezing point and boiling point of water are exactly 0 oc and 100 oc, respectively.

Answers

If we add 45.0 g of sodium chloride to 500.0 g of water,  the melting point is -  5.7 °C and the boiling point of the solution is 101.5 °C.

The mass of the NaCl = 45 g

The mass of the water = 500 g

The moles of the NaCl = mass / molar mass

                                      = 45 / 58.44

                                      = 0.770 mol

The molality is expressed as :

b = moles of solute / mass of solvent in kg

b = 0.770 / 0.5

b = 1.54 m

The boiling-point elevation  :

ΔTb = 2 × 0.512 × 1.54

       = 1.5 ° C

The boiling point, Tb = 100°C + 1.5 °C

                                   = 101.5 °C

The expression is as :

ΔTf = 2 × 1.86 × 1.54

     = 5.7 °C

The melting point = 0 - 5.7

                              = - 5.7 °C

To learn more about boiling point here

https://brainly.com/question/17478959

#SPJ4

Other Questions
In the following equation, what is the value of c?8^c = (8^-4)^5 Solve for x, in terms of y: 23 x + 15 y = 2 MAKE BRAINLYST AND 100 Where can you find this rock formation that looks like a split apple?. In a recent Game Show Network survey, 30% of 5000 viewers are under 30. What is the margin of error at the 99% confidence interval? Using statistical terminology and a complete sentence, what does this mean? (Use z*=2. 576)Margin of error: Interpretation: ajax has just discovered that the marginal revenue product generated by the last worker hired was $125 while the marginal factor cost was $85. what should ajax do? How were John Scotts and Henry clays position on slavery in Missouri similar An archeological artifact has a carbon-14 decay rate of 2. 75 dis/mingc. If the rate of decay of a living organism is 15. 3 dis/mingc, how old is this artifact? assume that t1/2 for carbon-14 is 5730 yr. The table shows the amount of pet food in cups remaining in an automatic feeder as a function of the number of meals the feeder has dispensed.number of meals dispensed. n. 1. 3. 6. 7. amount of pet food remaining . f of n. cups. 21. 15. 6. 3. based on the table, which function models this situation? a policy maker wants to address the social problem of drug abuse with therapy administered by health care workers. which of the following is he or she advocating? a. mass incarceration b. that deviance is functional for society c. medicalization of deviance d. the idea that street criminals are an exploited class Drag each tile to the correct box. Albert works as a head cook for a catering business. He needs to supply a large batch of waffles for a childrens party in a few hours. Arrange the steps that Albert should take in order to make waffles in the correct order. (CULINARY ARTS) John raises goldfish as a pet dealer. He has over 10,000 fish in one large tank but, due to an electrical problem, 95 percent of the fish perish one night. The remaining 5 percent are left to breed and repopulate, passing their genes and traits on to future generations. What type of genetic drift would this be considered? Gisela lives in a country where all the means of production are controlled bythe government. She publicly writes and speaks about this type of systemhurting more people than it helps. Gisela is acting asO A. a laborerO B. an advocateOC. a capitalistD. a communist Scientists discover a sample of sedimentary rock on the seafloor that contains an oxide layer. How does a sample of this rock provide evidence of how photosynthetic organisms have affected other Earth systems?APhotosynthetic organisms gradually weathered the rock into sediments over time.BPhotosynthetic organisms in the water reacted with the rock, changing its composition.COxygen from photosynthetic organisms reacted with elements in ocean water, ending up in seafloor sediments.DCarbon dioxide from photosynthetic organisms reacted with elements in ocean water, ending up in seafloor sediments. what needs to happen to the index of refraction to produce a rainbow find the missing side. round your answer to the nearest tenth a car goes from 16 m/s to 2m/s in 3.5s. what is the cars acceleration Which expression is equivalent to 6^2/7 ? Classical Utilitarianism's view that pleasure is the one ultimate good-and pain the one ultimate evil-is also known as: a Duality b Egocentrism c Hedonism d Humanism Susan set up a lemonade stand to raise money for a children's hospital. She's selling cups of lemonade for $2. 50 each and brownies for $1. 50 each. She sells 280 items and raises $540. How much money does Susan raise from selling lemonade? What happens to atoms of a solid as it turns into a liquid