Which type of feature forms suddenly where intense compression deforms the rock in an area?


A. A series of rock layers cut by a normal fault


B. A depression that forms a lake


C. A mountain made of volcanic rock


D. A mountain range with folded layers of rock

Answers

Answer 1

D. A mountain range with folded layers of rock.

Intense compression can cause the rock layers to fold, creating a mountain range. This type of feature forms suddenly in the geological timescale, as a result of tectonic activity, and is known as a fold mountain.

The intense pressure causes the rock layers to buckle and deform, resulting in folds, faults, and other features. The Appalachian Mountains and the Rocky Mountains are examples of fold mountains in the United States.

To know more about mountain refer here

https://brainly.com/question/17950058#

#SPJ11


Related Questions

Explain, in terms of the ions present, why potassium bromide must be molten during this electrolysis.

Answers

Potassium bromide must be molten during electrolysis to allow the movement of potassium (K+) and bromide (Br-) ions, which are necessary for the conduction of electricity and the subsequent chemical reactions at the electrodes.

In the electrolysis of potassium bromide (KBr), the solid compound must be turned into a molten state for the process to occur efficiently.

This is because, in a solid state, the potassium (K+) and bromide (Br-) ions are held together in a rigid crystal lattice structure, preventing them from moving freely. When KBr is molten, the ionic bonds holding the lattice together are broken, allowing the ions to move independently.

During electrolysis, an electric current is passed through the molten KBr, causing the K+ ions to migrate towards the negative electrode (cathode) and the Br- ions towards the positive electrode (anode).

At the cathode, K+ ions gain electrons and are reduced to potassium metal, while at the anode, Br- ions lose electrons and are oxidized to bromine gas. This movement and reaction of ions are only possible when KBr is in its molten state.

To know more about electrolysis click on below link:

https://brainly.com/question/31726896#

#SPJ11

Outline the best method for preparing the following aldehyde from an appropriate alcohol in one step. Draw the starting alcohol and select the best reagent.


The structure is a 6 carbon ring where carbon 1 is bonded to an aldehyde

Answers

To prepare the desired aldehyde with a 6-carbon ring and an aldehyde group on carbon 1, starting with cyclohexanol is a suitable approach.

Cyclohexanol is a 6-carbon ring compound with an alcohol group (OH) attached to carbon 1. To convert the alcohol group into an aldehyde group, the oxidation of the primary alcohol is required.

In this case, the best reagent to use for the oxidation of cyclohexanol to the corresponding aldehyde is PCC (pyridinium chlorochromate).

PCC is a mild oxidizing agent that selectively oxidizes primary alcohols to aldehydes without further oxidation to carboxylic acids. It allows for a controlled oxidation, preventing overoxidation of the aldehyde to a carboxylic acid.

The reaction using PCC as the oxidizing agent can be carried out in one step. The PCC reagent is typically dissolved in a suitable solvent, and the cyclohexanol is added to the reaction mixture.

The reaction proceeds, converting the alcohol group to an aldehyde group while maintaining the 6-carbon ring structure.

By using cyclohexanol as the starting alcohol and PCC as the reagent, you can achieve the desired aldehyde product with a 6-carbon ring and an aldehyde group on carbon 1 in a single step.

This method provides a reliable and efficient way to selectively oxidize the primary alcohol to the corresponding aldehyde without the risk of overoxidation.

To learn more about oxidation, refer below:

https://brainly.com/question/16976470

#SPJ11

Name the following alkyne:
ch3
|
ch3ch2c = cch2ch2chch3
=

Answers

The  name of the alkyne is 3-ethyl-4-methyl-5-(prop-1-en-2-yl)oct-2-yne.

ch3

|

ch3ch2c = cch2ch2chch3

Alkyne explained.

Alkyne is a type of organic compounds that contain carbon to carbon triple bond. Alkynes are unsaturated hydrocarbon because they have fewer hydrogens than corresponding alkenes.

The general formula for alkynes is cnH2n -2 where n is the number of carbon in the compound. This means alkynes has fewer two hydrogens than corresponding alkenes.

Therefore, the carbon carbon triple bond in alkynes is composed of one sigma bond and two pi bond in the orbitals.

Learn more about alkyne below.

https://brainly.com/question/22933069

#SPJ1

Calculate the pH of 0. 10 M solution of hypochlorous acid, HOCl, Ka = 2. 9 x 10-8

Answers

The pH of a 0.10 M solution of hypochlorous acid with a Ka value of 2.9 x 10-8 is approximately 4.77.

Hypochlorous acid, also known as HOCl, is a weak acid that can dissociate in water to form hydrogen ions (H+) and hypochlorite ions (OCl-). The dissociation constant of HOCl, also known as Ka, is a measure of the strength of the acid. In this case, the Ka value of HOCl is 2.9 x 10-8.

To calculate the pH of a 0.10 M solution of HOCl, we need to use the Ka value and the expression for the equilibrium constant:

Ka = [H+][OCl-]/[HOCl]

We can assume that the concentration of HOCl at equilibrium is equal to the initial concentration, since it is a weak acid and only partially dissociates. We also know that the concentration of H+ is equal to the concentration of the acid that dissociated, so we can substitute these values into the expression:

Ka = [H+]^2/[HOCl]
[H+]^2 = Ka x [HOCl]
[H+]^2 = 2.9 x 10-8 x 0.10
[H+] = 1.7 x 10-5 M

Now that we have calculated the concentration of H+, we can use the pH equation to find the pH:

pH = -log[H+]
pH = -log(1.7 x 10-5)
pH = 4.77

Therefore, the pH of a 0.10 M solution of hypochlorous acid with a Ka value of 2.9 x 10-8 is approximately 4.77.

To know more about hypochlorous acid , visit:

https://brainly.com/question/16984896#

#SPJ11

How many moles of ammonia are produced when 4. 8 moles of nitrogen react with hydrogen? N2 + 3H2 — 2NH3

Answers

9.6 moles of ammonia are produced when 4.8 moles of nitrogen react with hydrogen.

To answer this question, we will use the balanced chemical equation provided: N2 + 3H2 — 2NH3. From this equation, we can see that for every 1 mole of nitrogen that reacts, 2 moles of ammonia are produced.

So, to determine how many moles of ammonia are produced when 4.8 moles of nitrogen react with hydrogen, we will first need to calculate how many moles of nitrogen are present in the reaction.

Since the coefficient for nitrogen is 1 in the balanced equation, we know that the number of moles of nitrogen is equal to 4.8.

Now we can use the mole ratio from the balanced equation to determine the number of moles of ammonia produced.

For every 1 mole of nitrogen, 2 moles of ammonia are produced, so we can set up a ratio:

1 mole of nitrogen : 2 moles of ammonia

Using the number of moles of nitrogen we calculated earlier (4.8 moles), we can multiply it by the ratio to find the number of moles of ammonia produced:

4.8 moles of nitrogen x 2 moles of ammonia / 1 mole of nitrogen = 9.6 moles of ammonia

Therefore, 9.6 moles of ammonia are produced when 4.8 moles of nitrogen react with hydrogen.

To know more about ammonia, visit:

https://brainly.com/question/31525313#

#SPJ11

1. A gas takes up a volume of 10 ml, has a pressure of 6 atm, and a temperature of 100 K. What is the new volume of the gas at stp?



2. The gas in an aerosol can is under a pressure of 8 atm at a temperature of 45 C. It is dangerous to dispose of an aerosol can by incineration. (V constant)What would the pressure in the aerosol can be at a temperature of 60 C ?



3. A sample of nitrogen occupies a volume of 600mL at 20 C. What volume will it occupy at STP?(P constant)

Answers

The new volume of the gas at STP is 16.36 ml, the pressure in the aerosol at the 60 degree temperature  is 9.46 atm and the volume that it will occupy is 557.66 m.

1. We must apply the combined gas law equation to determine the new volume of the gas at STP,

P₁V₁/T₁ = P₂V₂/T₂.

At STP, the pressure is 1 atm and the temperature is 273 K.

Plugging in the values, we get:

6 atm * 10 ml / 100 K = 1 atm * V₂/273 K

V₂ = 16.36 ml (rounded to two decimal places)

2. To find the new pressure of the gas in the aerosol can at a temperature of 60 C, we can use the ideal gas law equation: PV = nRT, where n is the number of moles of gas and R is the gas constant,

P₁/T₁ = P₂/T₂.

Plugging in the values, we get:

8 atm/(45 + 273) K = P₂/(60 + 273) K

P₂ = 9.46 atm (rounded to two decimal places)

3. Using the relation, V₁/T₁ = V₂/T₂. At STP, the temperature is 273 K.

Plugging in the values, we get:

600 ml / (20 + 273) K = V2 / 273 K

V₂ = 557.66 ml (rounded to two decimal places)

To know more about ideal gas equation, visit,

https://brainly.com/question/27870704

#SPJ4

Example 13:0. 29 grams of a hydrocarbon with vapour density 29 when burnt completely in oxygen produce 448 ml of carbon dioxide at S. T. P. From the given information, calculate the (i) mass of carbon dioxide formed. ​

Answers

Answer:

0.779

Explanation:

Determine the molecular weight of the hydrocarbon. We know that its vapor density is 29, which means that one mole of the hydrocarbon has a mass of 29 grams. Therefore, the molecular weight of the hydrocarbon is 29 g/mol.

Calculate the number of moles of the hydrocarbon. We can use the formula:

moles = mass / molecular weight

Substituting the values, we get:

moles = 29 g / 29 g/mol = 1 mol

Therefore, we have one mole of the hydrocarbon.

Write the balanced chemical equation for the combustion of the hydrocarbon in oxygen. The general equation is:

hydrocarbon + oxygen → carbon dioxide + water

For one mole of the hydrocarbon, we need one mole of oxygen to completely burn it. The balanced equation is:

CnHm + (n+m/4) O2 → n CO2 + m/2 H2O

Calculate the volume of carbon dioxide produced. We know that 1 mole of any gas at STP occupies 22.4 L. Therefore, one mole of carbon dioxide occupies 22.4 L. The volume of 448 ml of carbon dioxide at STP can be converted to liters:

448 ml = 0.448 L

The number of moles of carbon dioxide produced can be calculated using the ideal gas law:

PV = nRT

where P is the pressure (1 atm), V is the volume (0.448 L), n is the number of moles, R is the gas constant (0.0821 L atm/mol K), and T is the temperature (273 K). Substituting the values, we get:

n = PV/RT = (1 atm x 0.448 L) / (0.0821 L atm/mol K x 273 K) = 0.0177 mol

Therefore, 0.0177 moles of carbon dioxide are produced.

Calculate the mass of carbon dioxide produced. We can use the formula:

mass = moles x molecular weight

The molecular weight of carbon dioxide is 44 g/mol. Substituting the values, we get:

mass = 0.0177 mol x 44 g/mol = 0.779 g

Therefore, the mass of carbon dioxide produced is 0.779 grams.

Micheal has an infection in his sinuses and lungs, but has no sick


time, so goes to work anyway. He is coughing and sneezing the


whole shift and only remembers to cover his nose and mouth about


half the time. Which link represents the break in the chain of


infection in this scenario, placing you at risk of contracting the


infection?


f


Select one:


a.


Reservoir


b.


Infectious agerte


C.


Port of exit


d.


Port of entry

Answers

The link that represents the break in the chain of infection in this scenario, placing you at risk of contracting the infection is the Port of entry.

The worker is coughing and sneezing without covering his nose and mouth, which allows the infectious agents to enter the body of others nearby. The Port of entry is the point at which the infectious agents enter the susceptible host, and in this case, it is through inhalation of respiratory droplets from the sick worker. This highlights the importance of proper hygiene practices, such as covering your nose and mouth when coughing or sneezing, to prevent the spread of infectious diseases in the workplace.

Know more about Infection here:

https://brainly.com/question/30759550

#SPJ11

What is the molarity of a solution containing 72. 0 g of NaOH in 356 mL of solution?

Answers

The molarity of the solution is 5.06 M

To find the molarity of a solution, we use the formula:

Molarity = moles of solute / liters of solution

First, we need to find the moles of[tex]NaOH[/tex]in the solution:

moles of [tex]NaOH[/tex] = mass / molar mass

The molar mass of [tex]NaOH[/tex] is 40.00 g/mol (sodium = 22.99 g/mol, oxygen = 15.99 g/mol, hydrogen = 1.01 g/mol).

moles of[tex]NaOH[/tex] = 72.0 g / 40.00 g/mol = 1.80 mol

Next, we need to convert the volume of solution from milliliters to liters:

356 mL = 0.356 L

Now we can calculate the molarity of the solution:

Molarity = 1.80 mol / 0.356 L = 5.06 M

Therefore, the molarity of the solution is 5.06 M

To know more about molarity refer to-

https://brainly.com/question/8732513

#SPJ11

2 Ni(s) + 3 Br2(s)----> 2 NiBr3(s)
a. What has been oxidized?
b. What has been reduced
c. Qhat is the oxidizing agent?
d. What is the reducing agent​

Answers

In the given reaction, nickel (Ni) has been oxidized while bromine (Br2) has been reduced.

In the given reaction, nickel (Ni) has been oxidized while bromine (Br2) has been reduced because nickel has lost electrons while bromine has gained electrons.

The oxidizing agent in the reaction is bromine (Br2) because it has gained electrons, which means it has undergone reduction. Bromine has a higher electronegativity than nickel, which allows it to pull electrons away from nickel and cause it to undergo oxidation.

The reducing agent in the reaction is nickel (Ni) because it has lost electrons, which means it has undergone oxidation. Nickel has a lower electronegativity than bromine, which makes it more likely to lose electrons and undergo oxidation.

Overall, the reaction represents a redox reaction, where one species (nickel) loses electrons and undergoes oxidation while the other species (bromine) gains electrons and undergoes reduction. This is an important process in many chemical reactions, including combustion, rusting, and many biological processes.

Know more about Combustion here:

https://brainly.com/question/15117038

#SPJ11

What is the volume of 0.78 mol of CO₂ gas at STP?

Answers

Answer: 17.49L

Explanation:

STP is 1atm and 273.15K

V=nRT/

V=(0.78)(0.0821)(273.15)/1

V= 17.49L

What set of coefficients will balance the chemical equation below:


___NH3 (g) + ___O2 (g) ___H2O (l) + ___NO (g)


What set of coefficients will balance the chemical equation below:

___NH3 (g) + ___O2 (g) ___H2O (l) + ___NO (g)

A. 4,5,6,4

B. 2,3,1,1

C. 1,3,3,1

D. 4,3,1,4

Answers

A. 4,5,6,4 set of coefficients will balance the chemical equation below

4NH3 (g) + 5O2 (g) 6H2O (l) + 4NO (g)

What are the balancing coefficients?

The coefficients necessary to balance a chemical equation are known as stoichiometric coefficients. These are crucial as they link the quantities of reactants consumed and the products produced. Because they are used to determine the equilibrium constants, the coefficients have a connection to them.

The coefficients, which may be modified to make the equation balanced, show how many of each substance is present during the reaction.

Given the amount of bonds each has, it makes reasonable that H2O has a bond order of 2, whereas NH3 has a bond order of 3.

learn more about chemical equation

https://brainly.com/question/11904811

#SPJ1

How many joules of energy do you release or lose to turn 460. g of nh3 from a liquid back to a solid?

Answers

The energy required to change 460 g of NH₃ from a liquid to a solid is roughly 152.86 kJ.  

To calculate the energy released or lost when turning 460 g of NH₃ (ammonia) from a liquid to a solid, we need to determine the amount of heat energy involved in the phase transition. This can be done using the heat of fusion, which is the amount of heat energy required to convert a substance from a solid to a liquid or vice versa.

The heat of fusion of NH₃ is approximately 5.65 kJ/mol. We need to convert the mass of NH₃ to moles to use this value. The molar mass of NH₃ is 17.03 g/mol.

First, we calculate the number of moles of NH₃:

moles = mass / molar mass

moles = 460 g / 17.03 g/mol

moles ≈ 27.01 mol

Next, we calculate the energy released or lost:

energy = moles × heat of fusion

energy = 27.01 mol × 5.65 kJ/mol

energy ≈ 152.86 kJ

Therefore, approximately 152.86 kJ of energy would be released or lost when converting 460 g of NH₃ from a liquid to a solid.

To know more about the solidification refer here :

https://brainly.com/question/21278640#

#SPJ11

Which of the following is NOT a function of the skeletal system?
moving blood through your body
protecting soft body parts
supporting your body
providing a place for muscles to attach

Answers

Answer:

Moving blood through your body

Explanation:

Thats the job of vascular system IE heart arteries and veins.

2n2o5 (g) = 4no2 (g) + o2(g)

if the rate of decomposition of n2o5 at a particular instant in a reaction vessel is 4.2 x 10-7 m/s,

what is the rate of appearance of a) no2 b) o2​

Answers

The rate of appearance of [tex]NO_{2}[/tex] is 8.4 x [tex]10^{-7}[/tex] m/s and the rate of appearance of [tex]O_{2}[/tex] is 2.1 x [tex]10^{-7}[/tex] m/s.

Given the reaction: 2[tex]N_{2}O_{5}[/tex](g) → 4[tex]NO_{2}[/tex](g) + [tex]O_{2}[/tex](g)

The rate of decomposition of [tex]N_{2}O_{5}[/tex] is 4.2 x [tex]10^{-7}[/tex] m/s.

a) To find the rate of appearance of [tex]NO_{2}[/tex], we will look at the stoichiometric coefficients in the balanced reaction. For every 2 moles of [tex]N_{2}O_{5}[/tex] decomposed, 4 moles of [tex]NO_{2}[/tex] are produced. So, the ratio is 4:2, which simplifies to 2:1.

Rate of appearance of [tex]NO_{2}[/tex] = (Rate of decomposition of [tex]N_{2}O_{5}[/tex]) x (2/1)
Rate of appearance of [tex]NO_{2}[/tex] = (4.2 x [tex]10^{-7}[/tex] m/s) x 2
Rate of appearance of [tex]NO_{2}[/tex] = 8.4 x [tex]10^{-7}[/tex] m/s

b) For the rate of appearance of [tex]O_{2}[/tex], we will again look at the stoichiometric coefficients. For every 2 moles of [tex]N_{2}O_{5}[/tex] decomposed, 1 mole of [tex]O_{2}[/tex] is produced. The ratio is 1:2.

Rate of appearance of [tex]O_{2}[/tex] = (Rate of decomposition of [tex]N_{2}O_{5}[/tex] ) x (1/2)
Rate of appearance of [tex]O_{2}[/tex] = (4.2 x [tex]10^{-7}[/tex] m/s) x 1/2
Rate of appearance of [tex]O_{2}[/tex] = 2.1 x [tex]10^{-7}[/tex] m/s

Thus, the rate of appearance of [tex]NO_{2}[/tex] is 8.4 x [tex]10^{-7}[/tex] m/s and the rate of appearance of [tex]O_{2}[/tex] is 2.1 x [tex]10^{-7}[/tex] m/s.

To know more about rate of reaction visit:

https://brainly.com/question/30546888

#SPJ11

Three students are asked to discuss whether Gibbs Free Energy was positive or


negative for each dissolution. Select the student that employs correct


scientific reasoning.
. Student 1: The Gibbs Free Energy was negative for both reactions because the reactions were


spontaneous, the reactions happened.


• Student 2: The Gibbs Free Energy was positive for the first reaction because it got colder and


negative for the second reaction because it got hotter.


• Student 3: The Gibbs Free Energy was positive for both reactions because it is always positive for


dissolutions.


Student 3


Student 2


Student 1


In the next three problems, use the CER format to answer this guiding

Answers

Based on scientific reasoning, the correct student is Student 1.

The Gibbs Free Energy is negative for both reactions because they are spontaneous, meaning they occur naturally without the need for external input. This indicates that the reactions release energy and are thermodynamically favorable.

Student 2's reasoning is incorrect because the temperature change alone does not determine the Gibbs Free Energy.

Student 3's reasoning is also incorrect because the Gibbs Free Energy can be both positive and negative depending on the reaction conditions. Therefore, Student 1's explanation aligns with the laws of thermodynamics and is scientifically accurate.

To know more about Gibbs Free Energy click on below link:

https://brainly.com/question/13318988#

#SPJ11

A series of lines in the spectrum of neutral Li atoms rise from transitions between 1s2 2p1 2P1s 2 2p 12 and 1s2nd1 2D1s 2 nd 12 D and occur at 610. 36 nm, 460. 29 nm, and 413. 23 nm. The d orbitals are hydrogenic. It is known that the transition from the 2P 2 P to the 2S 2 S term (which arises from the ground-state configuration 1s22s1)1s 2 2s 1 ) occurs at 670. 78 nm.


Calculate the ionization energy of the ground-state atom

Answers

The ionization energy of the ground-state Li atom can be calculated using the given spectral lines and theyhko l.

Here are the steps:

1. Identify the transition wavelengths: 610.36 nm (transition 1), 460.29 nm (transition 2), 413.23 nm (transition 3), and 670.78 nm (transition 4).
2. Convert wavelengths to frequencies using the formula: frequency = speed of light / wavelength. Use c = 3 x 10^8 m/s and convert wavelengths to meters.
3. Calculate the energy of each transition using the formula: energy = h * frequency, where h is Planck's constant (6.626 x 10^-34 Js).
4. Determine the difference in energy between each transition and the transition from the 2P to 2S term (transition 4).
5. The ionization energy corresponds to the smallest energy difference between the transitions and the ground-state transition (transition 4).

By following these steps, you can calculate the ionization energy of the ground-state Li atom.

To know more about ionization energy refer here: https://brainly.com/question/28385102#

#SPJ11

Which of the following is a product in the chemical equation?

2Al(s) + 6HCl(aq) → 2AlCl3(aq) + 3H2(g)

A. AlCl3

B. Al

C. HCl

D. Both AlCl3 and Al are products.

Answers

Answer:

d

Explanation:

Please Help!!!! D:


A student runs tests on an unknown substance and discovers the following properties. What other property does this element most likely have?


A highly reactive


B low electronegativity


C has many isotopes


D not found pure in nature

Answers

The unknown substance most likely has property not found pure in nature.(D)

Since the substance has properties A (highly reactive) and B (low electronegativity), it's likely that it readily forms compounds with other elements, making it difficult to find in its pure form.

Highly reactive elements, such as alkali metals or halogens, are typically not found in nature in their pure state because they readily react with other elements to form stable compounds. Property C (has many isotopes) doesn't directly influence the substance's reactivity or occurrence in nature.(D)

To know more about electronegativity click on below link:

https://brainly.com/question/17762711#

#SPJ11

What volume of a 2. 4 M solution of calcium hydroxide is required to yield 14. 4 mol?

Answers

It takes 6 litres of a 2.4 M calcium hydroxide solution to produce 14.4 mol.

Calcium hydroxide is a commonly used chemical compound in industries like construction, agriculture, and food production. It is used in the production of cement, as a soil amendment to neutralize acidic soils, and in the processing of beet sugar. In food production, it is used as a processing aid, pH regulator, and firming agent.

To find the volume of a 2.4 M solution of calcium hydroxide required to yield 14.4 mol, we can use the formula:

moles = concentration x volume

Rearranging the formula to solve for volume, we get:

volume = moles / concentration

Plugging in the given values, we get:

volume = 14.4 mol / 2.4 M

volume = 6 L

Therefore, 6 liters of a 2.4 M solution of calcium hydroxide are required to yield 14.4 mol.

To know more about the Calcium hydroxide, here

https://brainly.com/question/6369990

#SPJ4

CRQ 12b: Look at the Electron Configuration of Mystery Elements showing
mystery element A and mystery element D. What are Valence Electrons? How
many valence electrons does mystery element A contain? Based on this, would it be
reactive or unreactive Explain your choice using PPT Slide evidence? How many
valence electrons does mystery element D have? Based on this, would it be reactive
or unreactive?Explain your choice using PPT Slide evidence?
·

Answers

From the Electron Configuration of Mystery Elements:

Valence electrons are the electrons present in the outermost shell or energy level of an atom that participate in chemical reactions. 7 valence electrons.reactive

How to determine mystery elements?

Mystery element A has an electron configuration of 2-8-18-7, which means it has 7 valence electrons. Based on this, it would be reactive because it only needs one more electron to complete its outermost shell of eight electrons, which is the stable configuration of noble gases. This is supported by the PPT slide evidence, which states that elements with fewer than 4 or more than 7 valence electrons tend to be reactive.

Mystery element D has an electron configuration of 2-8-8-2, which means it has 2 valence electrons. Based on this, it would be reactive because it only needs to lose or gain two electrons to complete its outermost shell. This is also supported by the PPT slide evidence, which states that elements with 1-3 valence electrons tend to lose electrons to form positive ions, while elements with 5-7 valence electrons tend to gain electrons to form negative ions. Therefore, mystery element D could either form a positive ion by losing two electrons or form a negative ion by gaining six electrons.

Find out more on Valence Electrons here: https://brainly.com/question/371590

#SPJ1

N2 + 3H2 + 2NH3
If 15L of hydrogen gas is available for the Reaction above, what volume of NH3 will be formed

Answers

The volume of NH₃ that will be formed is determined as 10.1 L.

What is the volume of the gas?

The volume of NH₃ formed is calculated by applying ideal gas law as follows;

PV = nRT

where;

P is the pressureV is the volumen is the number of molesR is the gas constantT is the temperature.

[tex]n = \frac{PV}{RT}\\\\n = \frac {(1 \ atm)(15\ L)}{(0.0821 \ L atm/mol. K)(273 \ K)}[/tex]

n = 0.67 moles of H₂

The number of moles of NH₃ is calculated as;

n(NH₃) = (2/3) n(H₂)

= (2/3) (0.67 mol)

= 0.45 mol

The volume of NH₃ gas is calculated as;

[tex]n(NH_3) = \frac{PV}{RT} \\\\V(NH_3) = \frac{n(NH_3)RT}{P}[/tex]

[tex]= \frac{(0.45 \ mol)(0.0821 \ L atm/mol .K)(273\ K)}{(1 \ atm) }[/tex]

= 10.1 L

Learn more about volume of gas here: https://brainly.com/question/25736513

#SPJ1

1. Using the "octet rule," write the Lewis structures for the following molecules: (a) CH2Cl2 (b) NCl3 (c) CS2 and (d) CH3CHCHCH3 2. The following questions refer to the bolded carbon atom in the molecule: CH3CHCHCH3 a) How many areas of high electron density (number of bonded atoms plus number of lone pairs) surround the indicated C? b) Give the AXmEn notation for the C in this molecule (Look on page 6 of this experiment) c) What is the molecular geometry for the C in this molecule? d) What are the bond angles surrounding C? 3. While obeying the octet rule, nitric acid HNO3, has two resonance structures. Draw them. (Hint: the hydrogen atom is bonded to one of the oxygen atoms)

Answers

1. Using the "octet rule," I will write the Lewis structures for the following molecules:

(a) CH₂Cl₂: H-Cl:C-H
                       |
                       Cl
(b) NCl₃: Cl
              |
         Cl-N-Cl
(c) CS₂:  O=C=S=O
(d) CH₃CHCHCH₃: CH₃-CH-CH-CH₃

2. For the bolded carbon atom in the molecule CH₃CHCHCH₃:
a) There are 3 areas of high electron density surrounding the indicated C (3 bonded atoms and 0 lone pairs).
b) The AXmEn notation for the C in this molecule is AX₃E₀, where m=3 and n=0.
c) The molecular geometry for the C in this molecule is trigonal planar.
d) The bond angles surrounding C are approximately 120 degrees.

3. Obeying the octet rule, nitric acid (HNO₃) has two resonance structures. They can be drawn as:

Resonance Structure 1: O=N-O-H
                                       ||
                                       O

Resonance Structure 2: O-N=O
                                        ||
                                     O-H

Let us learn more in detail.

1.
(a) CH₂Cl₂: Carbon is the central atom with two hydrogen atoms and two chlorine atoms attached. The Lewis structure would be:


Cl   H
|     |
C-H-C-Cl
|     |
H    Cl

(b) NCl₃: Nitrogen is the central atom with three chlorine atoms attached. The Lewis structure would be:


 Cl
 |
Cl-N-Cl
 |
 Cl

(c) CS₂: Carbon is the central atom with two sulfur atoms attached. The Lewis structure would be:
S=C=S

(d) CH₃CHCHCH₃: Carbon is the central atom with three methyl groups and one hydrogen atom attached. The Lewis structure would be:


H   H   H
|   |   |
H-C-C-C-H
|   |   |
H   H   CH₃


3. The two resonance structures for nitric acid HNO₃ would be:

     O-H       O
      |         |
H-O=N         O=N-O
      |         |
     O          O-H

Learn more about the octet rule at https://brainly.com/question/865531

#SPJ11

What is the concentration of KBr in a solution prepared by mixing 0. 200 L of 0. 053 M KBr with
0. 550 L of 0. 078 M KBr?

Answers

The concentration of KBr in the solution prepared by mixing 0.200 L of 0.053 M KBr with 0.550 L of 0.078 M KBr is 0.0713 M.

The concentration of KBr in the solution can be calculated using the formula:

Concentration = (moles of solute) / (volume of solution in liters)

First, we need to find the moles of KBr in each solution by multiplying the volume of the solution by its molarity:

0.200 L x 0.053 M = 0.0106 moles KBr
0.550 L x 0.078 M = 0.0429 moles KBr

Next, we need to add the moles of KBr from each solution to find the total moles of KBr in the final solution:

0.0106 moles KBr + 0.0429 moles KBr = 0.0535 moles KBr

Finally, we can use the total moles of KBr and the total volume of the solution (which is the sum of the two volumes used) to calculate the concentration:

Concentration = 0.0535 moles / (0.200 L + 0.550 L)
Concentration = 0.0535 moles / 0.750 L
Concentration = 0.0713 M

Therefore, the concentration of KBr in the solution prepared by mixing 0.200 L of 0.053 M KBr with 0.550 L of 0.078 M KBr is 0.0713 M.

To know more about KBr, visit:

https://brainly.com/question/18248722#

#SPJ11

The reaction between propionyl chloride and acetate ion is outlined. Starting material 1 is a carbonyl bonded to chloride and an ethyl group. Starting material 2 is a carbonyl bonded to a methyl group and O minus, which has three lone pairs. A) Complete the mechanism of the forward reaction by placing curved arrows to show the electron movements in the reactants and intermediate product

Answers

An enol intermediate and a chloroalkoxide are byproducts of reaction between Starting Material 1, which is carbonyl bonded to a chloride and an ethyl group, and Starting Material 2, which is carbonyl bonded to a methyl group and O minus with three lone pairs.

This reaction takes place in the presence of a Lewis acid catalyst. Starting Material 1's carbonyl carbon is attacked by the methyl group, which is followed by a proton transfer and tautomerization to produce the enol intermediate. Following the enol's attack on the carbonyl carbon in Starting Material 2, chloroalkoxide product is created. Curved arrows depicting movements of electrons in reactants and intermediate products can be used to complete the mechanism of the forward reaction.

To know more about Lewis acid catalyst, here

brainly.com/question/31485158

#SPJ4

--The complete Question is, What product is formed when Starting Material 1 reacts with Starting Material 2 in the presence of a Lewis acid catalyst, and complete the mechanism of the forward reaction by placing curved arrows to show the electron movements in the reactants and intermediate product? --

What is the mass percentage of a solution that contains 152 g of KNO3 in 7.86 kg of water

Answers

Answer:

the mass percentage of the solution containing 152 g of KNO3 in 7.86 kg of water is 1.90%.

Explanation:

To find the mass percentage of a solution, we need to divide the mass of the solute by the mass of the solution and then multiply by 100%.

The mass of the solution is the sum of the mass of the solute (152 g) and the mass of the solvent (7.86 kg or 7860 g).

mass of solution = mass of solute + mass of solvent

mass of solution = 152 g + 7860 g

mass of solution = 8012 g

Now, we can calculate the mass percentage:

mass percentage = (mass of solute / mass of solution) x 100%

mass percentage = (152 g / 8012 g) x 100%

mass percentage = 1.90%

the mass percentage of the solution containing 152 g of KNO3 in 7.86 kg of water is 1.90%.

What is the correct equilibrium expression for the dissociation of the base pyridine:


C5H5N + H2O â C5H5NH+ + OH-



A. Kb = [C5H5NH+][OH-] / [C5H5N]


B. Kb = [C5H5N][OH-] / [C5H5NH+][H2O]


C. Kb = [C5H5NH+][OH-] / [C5H5N][H2O]


D. Kb = [C5H5NH+][C5H5N] / [OH-]


E. Kb = [C5H5N][OH-] / [C5H5NH+]

Answers

The correct equilibrium expression for the dissociation of the base pyridine is: C₅H₅N + H₂O ↔ C₅H₅NH+ + OH- is A. Kb = [C₅H₅NH+][OH-] / [C₅H₅N]. The correct option is A.

The equilibrium expression for the reaction of a weak base with water is Kb = [BH+][OH-] / [B], where BH+ is the conjugate acid of the weak base B. In this case, pyridine (C₅H₅N) is the weak base, and its conjugate acid is C₅H₅NH+.

The concentration of water is assumed to be constant and is not included in the equilibrium expression. Therefore, the equilibrium expression for the dissociation of pyridine is Kb = [C₅H5₅H+][OH-] / [C₅H₅N].

Option A is the correct expression since it follows the correct form for the equilibrium expression of a weak base with water. Option B has the concentrations of water and the conjugate acid of the weak base in the denominator, which is incorrect. Option C has the concentration of water in the denominator, which is incorrect.

Option D has the concentration of hydroxide ions (OH-) in the denominator, which is incorrect. Option E has the concentrations of the weak base and its conjugate acid in the denominator, which is also incorrect. Hence option A is the correct option.

To know more about  pyridine, refer here:

https://brainly.com/question/31385286#

#SPJ11

The normal recipe for preparing Kool-Aid® calls for adding the entire package and 1 cup of sugar to 2 quarts of water. Calculate the volume percent of this solution and determine which of your samples is the closest to the concentration of the recommended preparation. Again, assume that the weight of the drink mix is 0. 0 g. The total volume of the solution is 8 and 2/3 cups

Answers

The volume percent of the recommended Kool-Aid® solution is 2.29%.

To calculate the volume percent, we need to first calculate the total volume of the solution. 8 and 2/3 cups is equal to 69.33 fluid ounces (1 cup = 8.115 fluid ounces).

Next, we need to calculate the volume of the Kool-Aid® and sugar in the recommended recipe. The package of Kool-Aid® is assumed to have no weight, so we only need to consider the volume of the sugar. One cup of sugar is equal to 8.115 fluid ounces. Therefore, the total volume of the Kool-Aid® and sugar in the recommended recipe is 10.115 fluid ounces.

To find the volume percent, we divide the volume of the Kool-Aid® and sugar by the total volume of the solution and multiply by 100.

Volume percent = (10.115/69.33) x 100 = 14.6/2/3 %

The sample with the closest concentration to the recommended preparation is the one with a volume percent of 2.29%, which is the same as the recommended preparation.

To learn more about volume percent, here

https://brainly.com/question/15461083

#SPJ4

what is the major organic product from the addition reaction of hbr to 2-methyl-2-butene? group of answer choices 2-bromopentane 2-bromo-2-methylbutane 1-bromo-2-methylbutane 1-bromo-3-methylbutane 2-bromo-3-methylbutane

Answers

The addition of HBr to 2-methyl-2-butene is an example of an electrophilic addition reaction. The correct answer is (2)

The double bond in 2-methyl-2-butene is attacked by the electrophilic H+ ion from HBr, leading to the formation of a carbocation intermediate. The bromide ion (Br-) then attacks the carbocation, leading to the formation of a new carbon-bromine bond. The major organic product obtained from the addition reaction of HBr to 2-methyl-2-butene is 2-bromo-2-methylbutane, which is also known as t-butyl bromide. This is because the addition of HBr occurs at the tertiary carbon, leading to the formation of a tertiary carbocation intermediate, which is relatively stable. Therefore, the correct answer is (2) 2-bromo-2-methylbutane.

To know more about electrophilic addition reaction, here

brainly.com/question/16811879

#SPJ4

--The complete Question is, what is the major organic product from the addition reaction of hbr to 2-methyl-2-butene? group of answer choices

1. 2-bromopentane 2-bromo-2-methylbutane

2. 1-bromo-2-methylbutane

3. 1-bromo-3-methylbutane

4. 2-bromo-3-methylbutane=--

15. The ionization potential ……………….. across the period from left to right whereas it as one moves from top to bottom.
(a) increases, decreases
(b) decreases, increases
(c) remains same
(d) None of these

Answers

A.
Increases across a period and decreases down a group
Other Questions
Another similar application to the udp ping would be the udp heartbeat. the heartbeat can be used to check if an application is up and running on the client side and to report one-way packet loss. the client continuously sends a message acting as a heartbeat in the udp packet to the server, which is monitoring the heartbeat (i.e., the udp packets) of the client. upon receiving the packets, the server calculates the time difference. if the heartbeat packets are missing for some specified time interval, the server can assume that the client application has stopped working.required:implement the udp heartbeat (both client and server). you will need to modify the given udppingserver.py, and your udppingclient.py. Lines c and d are perpendicular. The equation of line c is y=1/2x+1 . What is the equation of line d ? A farmer wants to fence an area of 750 000 m in a rectangular field and divide it in half with a fence parallel to one of the sides of the rectangle. How can this be done so as to minimize the cost of the fence? Alan and Judith begin withdrawing money from their accounts at the same time. Alan has $10,350 in his account and withdraws $1,096 at the end of each month. Judith has $8,400 in her account and withdraws $822 at the end of each month. If they do not make any other deposits or withdrawals, at the end of which month will Judiths account have more money than Alans account? SIMPLIFY THE EXPRESSION: The equation y = 10x + 15 models the amount of money y, in dollars, that Jack earns shoveling snow for x hours. How many hours does Jack need to work to earn $55? When mendel crosses true-breeding tall plants with true-breeding short plants, all the offspring where tall becaus The tools that allow users to create content and have changed the way people communicate and collaborate on the web are known as _____. given the potential disadvantage caused by the synthesis of fructose-1-phosphate in a liver cell, why is it that an enzyme capable of catalyzing a reaction to convert this form of fructose into glucose has not evolved in a manner similar to the reaction that converts galactose-1-phosphate into glucose-1-phosphate? A pyramid 5 meters high has congruent triangular sides and a square base that is 5 meters on each side. Each cross section of the pyramid parallel to the base is a square. What is the volume of the solid in cubic meters? Helpp me please i need to finish before flvs logs me out helpppppquestion 2 (essay worth 10 points)(05.05 mc)a food truck did a daily survey of customers to find their food preferences. the data is partially entered in the frequency table. complete the table to analyze the data and answer the questions:part a what percentage of the survey respondents do not like both hamburgers and burritos? (2 points)part b: what is the marginal relative frequency of all customers that like hamburgers? (3 points)part c: use the conditional relative frequencies to determine which data point has strongest association of its two factors. use complete sentences to explain your answer. (5 points) Yasmin has a bag containing 165 colored beads. her classmates take turns selecting one bead from the bag without looking, recording the color in the table, and replacing the bead. if the bag contained an equal number of each color of bead, for which color is the experimental probability closest to the theoretical probability? A marble is thrown norizontally from a tarble top with a velocity of 1. 50m/s. The marble falls 0. 70m away from te table'ede. How high is the lab table? what is the marble's velocity just before it hits the floor How large a sample is needed in order to be 90% confident that the sample proportion will not differ from the true proportion by more than 3%? a previous study indicates that the proportion is 21% 1. A small block, with a mass of 0. 05 kg compresses a spring with spring constant 350 N/ma distance of 4 cm. It is released from rest, then slides around the loop and up the inclinebefore momentarily comes to rest at point A. The radius of the loop is 0. 1 m. a. Find the elastic potential energy of the block at point D. b. Find the velocity of the block at point C. Find the velocity of the block at the top of the loop at point B. d. What is the height of point A? e. Is any work done by the block? Why or why not? Explain how your model is different from the model in the picture. The "garland worked in gold" (line 974) is a family heirloom CAN SOMEONE HELP WITH THIS QUESTION? A student is collecting data for the reaction of baking soda and vinegar. The initial temperature of the vinegar is 25 C and the final temperature of the reaction is 19 C. Identify the reaction as endothermic or exothermic and explain what is happening in terms of energy of the systems and the surroundings. Use the diagram to match the terms with the correct example.